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1 Introduction
We consider the system of nonlinear ordinary fractional differential equations{

Dα
+u(t) + λf (t,u(t), v(t)) = , t ∈ (, ),n –  < α ≤ n,

Dβ
+v(t) +μg(t,u(t), v(t)) = , t ∈ (, ),m –  < β ≤m,

(S)

with the integral boundary conditions{
u() = u′() = · · · = u(n–)() = , u() =

∫ 
 u(s)dH(s),

v() = v′() = · · · = v(m–)() = , v() =
∫ 
 v(s)dK (s),

(BC)

where n,m ∈N, n,m ≥ ,Dα
+, andD

β
+ denote the Riemann-Liouville derivatives of orders

α and β , respectively, the integrals from (BC) are Riemann-Stieltjes integrals and f , g are
sign-changing continuous functions (that is, we have a so-called system of semipositone
boundary value problems). These boundary conditions include multi-point and integral
boundary conditions and the sum of these in a single framework.
Fractional differential equations describemany phenomena in various fields of engineer-

ing and scientific disciplines such as physics, biophysics, chemistry, biology, economics,
control theory, signal and image processing, aerodynamics, viscoelasticity, electromag-
netics, and so on (see [–]). Integral boundary conditions arise in thermal conduction
problems, semiconductor problems, and hydrodynamic problems.
By using a nonlinear alternative of Leray-Schauder type, we present intervals for pa-

rameters λ and μ such that the above problem (S)-(BC) has at least one positive so-
lution. By a positive solution of problem (S)-(BC) we mean a pair of functions (u, v) ∈
C([, ]) × C([, ]) satisfying (S) and (BC) with u(t) ≥ , v(t) ≥  for all t ∈ [, ] and
u(t) > , v(t) >  for all t ∈ (, ). In the case when f and g are nonnegative, the above
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problem (S)-(BC) has been investigated in [] by using the Guo-Krasnosel’skii fixed point
theorem. The system (S) with λ = μ = , and with f (t,u, v) and g(t,u, v) replaced by f̃ (t, v)
and g̃(t,u), respectively, with the boundary conditions (BC), was studied in []. In [], the
authors obtained the existence and multiplicity of positive solutions (u(t)≥ , v(t)≥  for
all t ∈ [, ], supt∈[,] u(t) > , supt∈[,] v(t) > ) by applying some theorems from the fixed
point index theory.We would also like tomention the paper [], where the authors inves-
tigated the existence and multiplicity of positive solutions of the semipositone system (S)
with α = β and the boundary conditions u(i)() = v(i)() = , i = , . . . ,n – , u() = av(ξ ),
v() = bv(η), ξ ,η ∈ (, ), and  < abξη < .
The paper is organized as follows. Section  contains some preliminaries and lemmas.

The main theorem is presented in Section  and, finally, in Section , two examples are
given to support the new result.

2 Auxiliary results
We present here the definitions, some lemmas from the theory of fractional calculus, and
some auxiliary results that will be used to prove our main theorem.

Definition . The (left-sided) fractional integral of order α >  of a function f : (,∞) →
R is given by

(
Iα+f

)
(t) =


�(α)

∫ t


(t – s)α–f (s)ds, t > ,

provided the right-hand side is pointwise defined on (,∞), where �(α) is the Euler
gamma function defined by �(α) =

∫ ∞
 tα–e–t dt, α > .

Definition . The Riemann-Liouville fractional derivative of order α ≥  for a function
f : (,∞)→R is given by

(
Dα

+f
)
(t) =

(
d
dt

)n(
In–α
+ f

)
(t) =


�(n – α)

(
d
dt

)n ∫ t



f (s)
(t – s)α–n+

ds, t > ,

where n = �α� + , provided that the right-hand side is pointwise defined on (,∞).

The notation �α� stands for the largest integer not greater than α. We also denote the
Riemann-Liouville fractional derivative of f byDα

+f (t). If α =m ∈N thenDm
+f (t) = f (m)(t)

for t > , and if α =  then D
+f (t) = f (t) for t > .

Lemma . ([]) Let α >  and n = �α� +  for α /∈ N and n = α for α ∈ N; that is, n is the
smallest integer greater than or equal to α. Then the solutions of the fractional differential
equation Dα

+u(t) = ,  < t < , are

u(t) = ctα– + ctα– + · · · + cntα–n,  < t < ,

where c, c, . . . , cn are arbitrary real constants.

Lemma . ([, ]) Let α > , n be the smallest integer greater than or equal to α (n –  <
α ≤ n) and y ∈ L(, ). The solutions of the fractional equation Dα

+u(t) + y(t) = ,  < t < ,

http://www.advancesindifferenceequations.com/content/2014/1/179
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are

u(t) = –


�(α)

∫ t


(t – s)α–y(s)ds + ctα– + · · · + cntα–n,  < t < ,

where c, c, . . . , cn are arbitrary real constants.

We consider now the fractional differential equation

Dα
+u(t) + z(t) = ,  < t < ,n –  < α ≤ n, ()

with the integral boundary conditions

u() = u′() = · · · = u(n–)() = , u() =
∫ 


u(s)dH(s), ()

where n ∈N, n≥ , and H : [, ]→R is a function of the bounded variation.
By using Lemma ., after some computations, we obtain the following lemma.

Lemma . ([]) If H : [, ] → R is a function of bounded variation, � =  –∫ 
 s

α– dH(s) �=  and z ∈ C([, ]), then the solution of problem ()-() is u(t) =
∫ 
 G(t, s)×

z(s)ds, where

G(t, s) = g(t, s) +
tα–

�

∫ 


g(τ , s)dH(τ ), (t, s) ∈ [, ]× [, ], ()

g(t, s) =


�(α)

{
tα–( – s)α– – (t – s)α–, ≤ s ≤ t ≤ ,
tα–( – s)α–,  ≤ t ≤ s ≤ .

()

Lemma . The function g given by () has the properties
(a) g : [, ]× [, ]→R+ is a continuous function, g(t, s) ≥  for all

(t, s) ∈ [, ]× [, ] and g(t, s) >  for all (t, s) ∈ (, )× (, ).
(b) g(t, s)≤ h(s) for all (t, s) ∈ [, ]× [, ], where h(s) = s(–s)α–

�(α–) .
(c) g(t, s)≥ k(t)h(s) for all (t, s) ∈ [, ]× [, ], where

k(t) =min

{
( – t)tα–

α – 
,
tα–

α – 

}
=

{
tα–
α– ,  ≤ t ≤ 

 ,
(–t)tα–

α– , 
 ≤ t ≤ .

()

Proof The first part (a) is evident. For the second part (b), see [].
For part (c), for s≤ t, we obtain

g(t, s) =


�(α)
[
tα–( – s)α– – (t – s)α–

]
=


�(α)

[
(t – ts)α– – (t – s)α–

]
=


�(α)

[
(t – ts)α– – (t – s)α–(t – s)

]
≥ 

�(α)
[
(t – ts)α–(t – ts) – (t – ts)α–(t – s)

]
=


�(α)

tα–( – t)s( – s)α– ≥ tα–( – t)
α – 

· s( – s)α–

�(α – )
.

http://www.advancesindifferenceequations.com/content/2014/1/179
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If s≥ t, we have

g(t, s) =


�(α)
tα–( – s)α– ≥ 

α – 
· t

α–

s
· s( – s)α–

�(α – )
≥ tα–

α – 
· s( – s)α–

�(α – )
.

Therefore, we deduce that g(t, s)≥ k(t)h(s), where k(t) is defined in (). �

Lemma . ([]) If H : [, ] →R is a nondecreasing function and � > , then the Green’s
function G of problem ()-() given by () is continuous on [, ] × [, ] and satisfies
G(t, s) ≥  for all (t, s) ∈ [, ] × [, ], G(t, s) >  for all (t, s) ∈ (, ) × (, ). Moreover,
if z ∈ C([, ]) satisfies z(t) ≥  for all t ∈ [, ], then the unique solution u of problem ()-
() satisfies u(t) ≥  for all t ∈ [, ].

Lemma . Assume that H : [, ] →R is a nondecreasing function and � > . Then the
Green’s function G of problem ()-() satisfies the inequalities:
(a) G(t, s)≤ J(s), ∀(t, s) ∈ [, ]× [, ], where

J(s) = τh(s), τ =  +


�

∫ 


dH(τ ) =  +


�

(
H() –H()

)
.

(b) G(t, s) ≥ γ(t)J(s), ∀(t, s) ∈ [, ]× [, ], where

γ(t) =

τ

(
k(t) +

tα–

�

∫ 


k(τ )dH(τ )

)
.

Proof (a) We have

G(t, s) = g(t, s) +
tα–

�

∫ 


g(τ , s)dH(τ )

≤ h(s) +


�

∫ 


h(s)dH(τ ) = h(s)

(
 +


�

∫ 


dH(τ )

)
= J(s).

(b) For the second inequality, we obtain

G(t, s)≥ k(t)h(s) +
tα–

�

∫ 


k(τ )h(s)dH(τ )

=

τ

(
τh(s)

)(
k(t) +

tα–

�

∫ 


k(τ )dH(τ )

)
= γ(t)J(s).

We observe that γ(t) >  for all t ∈ (, ), and if H �≡ const., then γ() > . �

Lemma . Assume that H : [, ] → R is a nondecreasing function, � >  and z ∈
C([, ]), z(t) ≥  for all t ∈ [, ].Then the solution u(t), t ∈ [, ] of problem ()-() satisfies
the inequality u(t) ≥ γ(t)maxt′∈[,] u(t′) for all t ∈ [, ].

Proof For t ∈ [, ], we obtain

u(t) =
∫ 


G(t, s)z(s)ds≥

∫ 


γ(t)J(s)z(s)ds = γ(t)

∫ 


J(s)z(s)ds

≥ γ(t)
∫ 


G

(
t′, s

)
z(s)ds = γ(t)u

(
t′
)
, ∀t, t′ ∈ [, ].

http://www.advancesindifferenceequations.com/content/2014/1/179
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Therefore, we deduce that u(t) ≥ γ(t)maxt′∈[,] u(t′) for all t ∈ [, ]. �

We can also formulate similar results as Lemmas .-. above for the fractional differ-
ential equation

Dβ
+v(t) + z̃(t) = ,  < t < ,m –  < β ≤m, ()

with the integral boundary conditions

v() = v′() = · · · = v(m–)() = , v() =
∫ 


v(s)dK (s), ()

where m ∈ N, m ≥ , K : [, ] → R is a nondecreasing function and z̃ ∈ C([, ]). We
denote by �, g, G, h, k, τ, J, and γ the corresponding constants and functions for
problem ()-() defined in a similar manner as �, g, G, h, k, τ, J, and γ, respectively.
In the proof of our main result we shall use the following nonlinear alternative of Leray-

Schauder type (see []).

Theorem . Let X be a Banach space with � ⊂ X closed and convex.Assume U is a rela-
tively open subset of � with  ∈U , and let S : Ū → � be a completely continuous operator
(continuous and compact). Then either
() S has a fixed point in Ū , or
() there exist u ∈ ∂U and ν ∈ (, ) such that u = νSu.

3 Main result
In this section, we investigate the existence of positive solutions for our problem (S)-(BC).
We present now the assumptions that we shall use in the sequel.
(H) H ,K : [, ]→R are nondecreasing functions, � =  –

∫ 
 s

α– dH(s) > ,
� =  –

∫ 
 s

β– dK (s) > .
(H) The functions f , g ∈ C([, ]× [,∞)× [,∞), (–∞, +∞)) and there exist

functions p,p ∈ C([, ], (,∞)) such that f (t,u, v) ≥ –p(t) and
g(t,u, v) ≥ –p(t) for any t ∈ [, ] and u, v ∈ [,∞).

(H) f (t, , ) > , g(t, , ) >  for all t ∈ [, ].
We consider the system of nonlinear fractional differential equations

{
Dα

+x(t) + λ(f (t, [x(t) – q(t)]∗, [y(t) – q(t)]∗) + p(t)) = ,  < t < ,
Dβ

+y(t) +μ(g(t, [x(t) – q(t)]∗, [y(t) – q(t)]∗) + p(t)) = ,  < t < ,
()

with the integral boundary conditions

{
x() = x′() = · · · = x(n–)() = , x() =

∫ 
 x(s)dH(s),

y() = y′() = · · · = y(m–)() = , y() =
∫ 
 y(s)dK (s),

()

where

z(t)∗ =

{
z(t), z(t) ≥ ,
, z(t) < ,

http://www.advancesindifferenceequations.com/content/2014/1/179
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and (q,q) with q(t) = λ
∫ 
 G(t, s)p(s)ds, q(t) = μ

∫ 
 G(t, s)p(s)ds is the solution of the

system of fractional differential equations{
Dα

+q(t) + λp(t) = ,  < t < ,
Dβ

+q(t) +μp(t) = ,  < t < ,
()

with the integral boundary conditions{
q() = q′

() = · · · = q(n–) () = , q() =
∫ 
 q(s)dH(s),

q() = q′
() = · · · = q(m–)

 () = , q() =
∫ 
 q(s)dK (s).

()

By (H), we have q(t) > , q(t) >  for all t ∈ (, ).
We shall prove that there exists a solution (x, y) for the boundary value problem ()-()

with x(t)≥ q(t) and y(t)≥ q(t) for all t ∈ [, ]. In this case, the functions u(t) = x(t)–q(t)
and v(t) = y(t) – q(t), t ∈ [, ], represent a nonnegative solution, positive on (, ) of the
boundary value problem (S)-(BC). Indeed, by ()-() and ()-(), we have

Dα
+u(t) =Dα

+x(t) –Dα
+q(t) = –λf

(
t,

[
x(t) – q(t)

]∗,
[
y(t) – q(t)

]∗)
– λp(t) + λp(t) = –λf

(
t,u(t), v(t)

)
, ∀t ∈ (, ),

Dβ
+v(t) =Dβ

+y(t) –Dβ
+q(t) = –μg

(
t,

[
x(t) – q(t)

]∗,
[
y(t) – q(t)

]∗)
–μp(t) +μp(t) = –μg

(
t,u(t), v(t)

)
, ∀t ∈ (, ),

and

u() = x() – q() = , . . . , u(n–)() = x(n–)() – q(n–) () = ,

v() = y() – q() = , . . . , v(m–)() = y(m–)() – q(m–)
 () = ,

u() = x() – q() =
∫ 


x(s)dH(s) –

∫ 


q(s)dH(s) =

∫ 


u(s)dH(s),

v() = y() – q() =
∫ 


y(s)dK (s) –

∫ 


q(s)dK (s) =

∫ 


v(s)dK (s).

Therefore, in what follows, we shall investigate the boundary value problem ()-().
By using Lemma ., the system ()-() is equivalent to the system{

x(t) = λ
∫ 
 G(t, s)(f (s, [x(s) – q(s)]∗, [y(s) – q(s)]∗) + p(s))ds, t ∈ [, ],

y(t) = μ
∫ 
 G(t, s)(g(s, [x(s) – q(s)]∗, [y(s) – q(s)]∗) + p(s))ds, t ∈ [, ].

We consider the Banach space X = C([, ]) with supremum norm ‖ · ‖ and the Banach
space Y = X ×X with the norm ‖(x, y)‖Y = ‖x‖ + ‖y‖. We also define the cones

P =
{
x ∈ X,x(t)≥ γ(t)‖x‖,∀t ∈ [, ]

} ⊂ X,

P =
{
y ∈ X, y(t) ≥ γ(t)‖y‖,∀t ∈ [, ]

} ⊂ X,

and P = P × P ⊂ Y .

http://www.advancesindifferenceequations.com/content/2014/1/179
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For λ,μ > , we define now the operatorQ : P → Y byQ(x, y) = (T(x, y),T(x, y)) with

T(x, y)(t) = λ

∫ 


G(t, s)

(
f
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds,  ≤ t ≤ ,

T(x, y)(t) = μ

∫ 


G(t, s)

(
g
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds,  ≤ t ≤ .

Lemma . If (H) and (H) hold, then the operatorQ : P → P is a completely continuous
operator.

Proof The operators T, T are well defined. For every (x, y) ∈ P, we have

T(x, y)(t)≤ λ

∫ 


J(s)

(
f
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds < ∞,

T(x, y)(t)≤ μ

∫ 


J(s)

(
g
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds < ∞,

for all t ∈ [, ], and

T(x, y)(t)≥ λ

∫ 


γ(t)J(s)

(
f
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds

≥ λγ(t)
∫ 


G

(
t′, s

)(
f
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds

= γ(t)T(x, y)
(
t′
)
,

T(x, y)(t)≥ μ

∫ 


γ(t)J(s)

(
g
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds

≥ μγ(t)
∫ 


G

(
t′, s

)(
g
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds

= γ(t)T(x, y)
(
t′
)
,

for all t, t′ ∈ [, ]. Therefore, we obtain

T(x, y)(t)≥ γ(t)
∥∥T(x, y)

∥∥, T(x, y)(t)≥ γ(t)
∥∥T(x, y)

∥∥, ∀t ∈ [, ],

andQ(x, y) = (T(x, y),T(x, y)) ∈ P.
By using standard arguments, we deduce that the operator Q : P → P is a completely

continuous operator (a compact operator, that is, itmaps bounded sets into relatively com-
pact sets, and it is continuous). �

It is clear that (x, y) ∈ P is a solution of problem ()-() if and only if (x, y) is a fixed point
ofQ.

Theorem . Assume that (H)-(H) hold. Then there exist constants λ >  and μ > 
such that for any λ ∈ (,λ] and μ ∈ (,μ], the boundary value problem (S)-(BC) has at
least one positive solution.

http://www.advancesindifferenceequations.com/content/2014/1/179
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Proof Let δ ∈ (, ) be fixed. From (H), there exists R >  such that

f (t,u, v) ≥ δf (t, , ) > , g(t,u, v) ≥ δg(t, , ) > ,

∀t ∈ [, ],u, v ∈ [,R]. ()

We define

f̄ (R) = max
≤t≤,≤u,v≤R

{
f (t,u, v) + p(t)

} ≥ max
≤t≤

{
δf (t, , ) + p(t)

}
> ,

ḡ(R) = max
≤t≤,≤u,v≤R

{
g(t,u, v) + p(t)

} ≥ max
≤t≤

{
δg(t, , ) + p(t)

}
> ,

c =
∫ 


J(s)ds > , c =

∫ 


J(s)ds > ,

λ =
R

c f̄ (R)
> , μ =

R

cḡ(R)
> .

We will show that for any λ ∈ (,λ] and μ ∈ (,μ], problem ()-() has at least one
positive solution.
So, let λ ∈ (,λ] and μ ∈ (,μ] be arbitrary, but fixed for the moment. We define the

set U = {(x, y) ∈ P,‖(x, y)‖Y < R}. We suppose that there exist (x, y) ∈ ∂U (‖(x, y)‖Y = R

or ‖x‖ + ‖y‖ = R) and ν ∈ (, ) such that (x, y) = νQ(x, y) or x = νT(x, y), y = νT(x, y).
Because

[
x(t) – q(t)

]∗ = x(t) – q(t) ≤ x(t)≤ R, if x(t) – q(t) ≥ ,[
x(t) – q(t)

]∗ = , for x(t) – q(t) < ,∀t ∈ [, ],[
y(t) – q(t)

]∗ = y(t) – q(t)≤ y(t) ≤ R, if y(t) – q(t)≥ ,[
y(t) – q(t)

]∗ = , for y(t) – q(t) < ,∀t ∈ [, ],

then, for all t ∈ [, ], we obtain

x(t) = νT(x, y)(t)≤ T(x, y)(t)

= λ

∫ 


G(t, s)

(
f
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds

≤ λ

∫ 


G(t, s)f̄ (R)ds≤ λ

∫ 


J(s)f̄ (R)ds≤ λc f̄ (R) = R/,

y(t) = νT(x, y)(t)≤ T(x, y)(t)

= μ

∫ 


G(t, s)

(
g
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds

≤ μ

∫ 


G(t, s)ḡ(R)ds≤ μ

∫ 


J(s)ḡ(R)ds ≤ μcḡ(R) = R/.

Hence ‖x‖ ≤ R/ and ‖y‖ ≤ R/. Then R = ‖(x, y)‖ = ‖x‖+‖y‖ ≤ R
 + R

 = R
 , which

is a contradiction.
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Therefore, byTheorem. (with� = P), we deduce thatQ has a fixed point (x, y) ∈ Ū∩P.
That is, (x, y) =Q(x, y)⇔ x = T(x, y), y = T(x, y) and ‖x‖+‖y‖ ≤ R, with x(t)≥ γ(t)‖x‖ ≥
 and y(t) ≥ γ(t)‖y‖ ≥  for all t ∈ [, ].
Moreover, by (), we obtain

x(t) = T(x, y)(t) = λ

∫ 


G(t, s)

(
f
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds

≥ λ

∫ 


G(t, s)

(
δf (s, , ) + p(s)

)
ds > λ

∫ 


G(t, s)p(s)ds = q(t), ∀t ∈ (, ),

y(t) = T(x, y)(t) = μ

∫ 


G(t, s)

(
g
(
s,

[
x(s) – q(s)

]∗,
[
y(s) – q(s)

]∗) + p(s)
)
ds

≥ μ

∫ 


G(t, s)

(
δg(s, , ) + p(s)

)
ds > μ

∫ 


G(t, s)p(s)ds = q(t), ∀t ∈ (, ).

Therefore, x(t) > q(t) >  and y(t) > q(t) >  for all t ∈ (, ).
Let u(t) = x(t) – q(t) ≥  and v(t) = y(t) – q(t)≥  for all t ∈ [, ], with u(t) > , v(t) > 

on (, ). Then (u, v) is a positive solution of the boundary value problem (S)-(BC). �

4 Examples
Let α = 

 (n = ), β = 
 (m = ),

H(t) =

⎧⎪⎨⎪⎩
, t ∈ [, /),
, t ∈ [/, /),
/, t ∈ [/, ],

and K (t) = t for all t ∈ [, ]. Then
∫ 
 u(s)dH(s) = u(  ) +


u(


 ) and

∫ 
 v(s)dK (s) =


∫ 
 s

v(s)ds.
We consider the system of fractional differential equations

{
D/

+ u(t) + λf (t,u(t), v(t)) = ,  < t < ,
D/

+ v(t) +μg(t,u(t), v(t)) = ,  < t < ,
(S)

with the boundary conditions

{
u() = u′() = , u() = u(  ) +


u(


 ),

v() = v′() = v′′() = , v() = 
∫ 
 s

v(s)ds.
(BC)

Then we obtain � =  –
∫ 
 s

/ dH(s) =  – (  )
/ – 

 (

 )

/ = –
√


 ≈ . > , � =
 –

∫ 
 s

/ dK (s) =  – 
∫ 
 s

/ ds = 
 ≈ . > .

We also deduce

g(t, s) =



√

π

{
t/( – s)/ – (t – s)/, ≤ s ≤ t ≤ ,
t/( – s)/,  ≤ t ≤ s≤ ,

g(t, s) =


�(/)

{
t/( – s)/ – (t – s)/, ≤ s≤ t ≤ ,
t/( – s)/,  ≤ t ≤ s≤ ,
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τ = +
√


 , h(s) = √
π
s( – s)/, J(s) = τh(s) = +

√



√

π
s( – s)/, s ∈ [, ], τ =


 , h(s) =


�(/) s( – s)/, J(s) = τh(s) = 

�(/) s( – s)/, s ∈ [, ], c =
∫ 
 J(s)ds ≈

., and c =
∫ 
 J(s)ds≈ ..

Example  We consider the functions

f (t,u, v) = (u – a)(u – b) + cos(θv), g(t,u, v) = (v – c)(v – d) + sin(θu),

t ∈ [, ],u, v≥ ,

where b > a > , d > c > , θ, θ > .
There exists M >  such that f (t,u, v) +M ≥ , g(t,u, v) +M ≥  (p(t) = p(t) =M,

∀t ∈ [, ]) for all t ∈ [, ], u, v ≥ . Indeed, M = max{ (b–a) + , (d–c)


 + } satisfies the
above inequalities.
Let δ =min{ a(b–a)(ab+) ,

c(d–c)
cd } <  and R =min{ a , c , π

θ
, π
θ

}. Then

f (t,u, v)≥ δf (t, , ) = δ(ab + ), g(t,u, v) ≥ δg(t, , ) = δcd,

for all t ∈ [, ], u, v ∈ [,R]. Besides,

f̄ (R) = max
≤t≤,≤u,v≤R

{
f (t,u, v) + p(t)

}
= ab +  +M,

ḡ(R) = max
≤t≤,≤u,v≤R

{
g(t,u, v) + p(t)

}
= cd + sin(θR) +M.

Then λ = R
c(ab++M)

and μ = R
c(cd+sin(θR)+M)

. For example, if a = , b = , c = ,
d = , θ = θ = , then R = /, δ = /, M = /, f̄ (R) = ., ḡ(R) ≈ .,
λ = 

c
≈ ., and μ = 

(+sin(/)+/)c
≈ ..

By Theorem ., for any λ ∈ (,λ] and μ ∈ (,μ], we deduce that problem (S)-(BC)
has a positive solution (u, v), with ‖(u, v)‖ ≤ R.

Example  We consider the functions

f (t,u, v) = va + cos(θu), g(t,u, v) = ub + cos(θv), t ∈ [, ],u, v≥ ,

where a,b, θ, θ > .
There exists M >  (M = ) such that f (t,u, v) + M ≥ , g(t,u, v) + M ≥  (p(t) =

p(t) =M, ∀t ∈ [, ]) for all t ∈ [, ], u, v≥ .
Let δ = 

 <  and R =min{ π
θ

, π
θ

}. Then

f (t,u, v)≥ δf (t, , ) =


, g(t,u, v)≥ δg(t, , ) =



, ∀t ∈ [, ],u, v ∈ [,R].

Besides,

f̄ (R) = max
≤t≤,≤u,v≤R

{
f (t,u, v) + p(t)

}
= Ra

 + ,

ḡ(R) = max
≤t≤,≤u,v≤R

{
g(t,u, v) + p(t)

}
= Rb

 + .
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Then λ = R
c(Ra+)

and μ = R
c(Rb+)

. For example, if a = , b = /, θ = θ = , then

R = π
 , f̄ (R) = π

 + , ḡ(R) =
√

π
 + , λ = π

(π+)c
≈ ., and μ = π

(
√
π+)c

≈
..
By Theorem ., for any λ ∈ (,λ] and μ ∈ (,μ], we deduce that problem (S)-(BC)

has a positive solution (u, v), with ‖(u, v)‖ ≤ R.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed equally to this paper. Both authors read and approved the final manuscript.

Author details
1Department of Mathematics, Gh. Asachi Technical University, Iasi, 700506, Romania. 2Faculty of Computer Engineering
and Automatic Control, Gh. Asachi Technical University, Iasi, 700050, Romania.

Acknowledgements
This work was supported by the CNCS grant PN-II-ID-PCE-2011-3-0557, Romania.

Received: 30 April 2014 Accepted: 13 June 2014 Published: 22 Jul 2014

References
1. Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus Models and Numerical Methods. Series on

Complexity, Nonlinearity and Chaos. World Scientific, Boston (2012)
2. Das, S: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008)
3. Graef, JR, Kong, L, Kong, Q, Wang, M: Uniqueness of positive solutions of fractional boundary value problems with

non-homogeneous integral boundary conditions. Fract. Calc. Appl. Anal. 15(3), 509-528 (2012)
4. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
5. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
6. Sabatier, J, Agrawal, OP, Machado, JAT (eds.): Advances in Fractional Calculus: Theoretical Developments and

Applications in Physics and Engineering. Springer, Dordrecht (2007)
7. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach,

Yverdon (1993)
8. Henderson, J, Luca, R: Positive solutions for a system of nonlocal fractional boundary value problems. Fract. Calc.

Appl. Anal. 16(4), 985-1008 (2013)
9. Henderson, J, Luca, R: Existence and multiplicity of positive solutions for a system of fractional boundary value

problems. Bound. Value Probl. 2014, 60 (2014)
10. Yuan, C, Jiang, D, O’Regan, D, Agarwal, RP: Multiple positive solutions to systems of nonlinear semipositone fractional

differential equations with coupled boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2012, 13 (2012)
11. Yuan, C: Multiple positive solutions for (n – 1, 1)-type semipositone conjugate boundary value problems of nonlinear

fractional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 36 (2010)
12. Agarwal, RP, Meehan, M, O’Regan, D: Fixed Point Theory and Applications. Cambridge University Press, Cambridge

(2001)

10.1186/1687-1847-2014-179
Cite this article as: Luca and Tudorache: Positive solutions to a system of semipositone fractional boundary value
problems. Advances in Difference Equations 2014, 2014:179

http://www.advancesindifferenceequations.com/content/2014/1/179

	Positive solutions to a system of semipositone fractional boundary value problems
	Abstract
	MSC
	Keywords

	Introduction
	Auxiliary results
	Main result
	Examples
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


