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Abstract The envelope of holomorphy of an arbitrary domain in a two-dimensional Stein
manifold is identified with a connected component of the set of equivalence classes of an-
alytic discs immersed into the Stein manifold with boundary in the domain. This implies,
in particular, that for each of its points the envelope of holomorphy contains an embedded
(non-singular) Riemann surface (and also an immersed analytic disc) passing through this
point with boundary contained in the natural embedding of the original domain into its en-
velope of holomorphy. Moreover, it says, that analytic continuation to a neighbourhood of
an arbitrary point of the envelope of holomorphy can be performed by applying the Conti-
nuity Principle once. Another corollary concerns representation of certain elements of the
fundamental group of the domain by boundaries of analytic discs. A particular case is the
following. Given a contact three-manifold with Stein filling, any element of the fundamen-
tal group of the contact manifold whose representatives are contractible in the filling can be
represented by the boundary of an immersed analytic disc.

Mathematics Subject Classification (2000) 32A40 · 32E35 · 53D10

1 Introduction

The notion of the envelope of holomorphy of domains in C
n (or, more generally, in Stein

manifolds) is as classical as the notion of pseudoconvex domains. Nevertheless, basic ques-
tions about envelopes of holomorphy are open. For instance, not much is known in general
about the number of sheets of the envelope of holomorphy. It is not clear in general when the
envelope of holomorphy is single-sheeted or at least (say smoothly) equivalent to a domain
in the same Stein manifold (see e.g. [22]).

One of the most interesting problems in this respect is to understand invariants of the
envelope of holomorphy in terms of invariants of the original domain. It is known that the
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first Betti number of the envelope of holomorphy does not exceed that of the original do-
main [13]. Moreover, it is proved in [13] that the natural homomorphism between fundamen-
tal groups is surjective. In the same vein the natural map between first Cech cohomologies
is injective [19], but in the general situation not too much is known beyond these results.
Naive hopes are not justified (see e.g. the paper [3]).

The problem of understanding invariants of the envelope of holomorphy in terms of in-
variants of the domain is even interesting in the following particular case. The domain is a
suitable one-sided neighbourhood of the boundary of a strictly pseudoconvex domain in a
Stein manifold (for instance, it equals the set {−ε < ρ < 0} for a strictly plurisubharmonic
defining function and a small positive constant ε) and the envelope of holomorphy is the do-
main itself. This case reduces to understanding the topology of the Stein fillings of a contact
manifold in terms of the topology of the contact manifold and is well-known to symplectic
geometers. Despite recent progress and breakthroughs many problems remain open. For in-
stance, there are examples of contact three-manifolds that have a Stein filling with second
Betti number strictly exceeding that of the three-manifold and an estimate of the second
Betti number of Stein fillings of a given contact three-manifold is not known in general. For
a contemporary account see [17].

The general problem motivates the search for a geometric description of the envelope
of holomorphy. It is well-known that any domain in a Stein manifold has an envelope of
holomorphy. Several constructions are known (see e.g. [9, 14, 18]). It is not obvious how to
obtain from these constructions geometric information about the envelope of holomorphy.

We give here a new description of the envelope of holomorphy of a domain in a Stein
manifold in terms of equivalence classes of analytic discs. This description, in particular,
implies that analytic continuation to a neighbourhood of each point in the envelope of holo-
morphy can be performed by applying the Continuity Principle once along a family of im-
mersed analytic discs (see below for details).

The approach has further geometric consequences which were not known before. To
mention only one of them concerning the case of dimension n = 2: for each of its points the
envelope of holomorphy contains an embedded (non-singular) Riemann surface (and also an
immersed analytic disc) passing through this point with boundary contained in the natural
embedding of the original domain into its envelope of holomorphy. This is in contrast to
what is known for polynomial hulls.

In the paper we focus on the case of Stein manifolds of dimension 2, which is in several
aspects the most interesting case, though the methods work without essential change in
higher dimensions too.

2 Statement of results

Denote by X2 a Stein surface, i.e. a two-dimensional Stein manifold. Let G ⊂ X2 be a
domain. For the description of the envelope of holomorphy we use analytic discs immersed
into X2 with boundary in G. More precisely, we need the following definition.

Definition 1 Consider a holomorphic immersion from a neigbourhood of the closed unit
disc D ⊂ C into X2. The restriction d : D � X2 is an analytic disc.

If the boundary d(∂D) of the disc is contained in G we will call the disc a G-disc. The
set of G-discs is denoted by G .

Fix a metric on X2. For this we fix a proper holomorphic embedding F : X2 → C
n into

the Euclidean space Cn of suitable dimension n and pull back the metric induced on FX2
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by C
n. (By [2] one can always take n = 4.) Having in mind this metric on X2 we will usually

endow the set G of G-discs with the topology of C1-convergence on the closed disc D.
When dealing with an individual G-disc we usually consider the generic case when its

boundary is embedded. The following definition selects those G-discs which participate in
the Continuity Principle.

Definition 2 A G-disc d is G-homotopic to a constant, or for short d is a G0-disc, if there
is a continuous family of G-discs joining d to a constant disc. The set of G0-discs is denoted
by G0.

More detailed, the existence of the G-homotopy means, that there is a continuous map-
ping F(t, z), t ∈ I = [0,1], z in a neighbourhood of D, such that for each t ∈ (0,1] the
mapping z → F(t, z) is a G-disc, moreover, F(1, z) = d(z) and the mapping z → F(0, z)

maps the disc to a point which is then automatically contained in G.
Notice that the existence of a G-homotopy to a constant is equivalent to the existence of

a G-homotopy to an analytic disc which is embedded into G and whose image has small
diameter. In other words, G0 is the connected component of G that contains small analytic
discs embedded into G.

For convenience, in the sequel we will frequently use two ways of notation for a contin-
uous map A defined on a subset of R × C, namely A(t, z) = At (z).

The reason to consider G0-discs is the following lemma which can be considered as
Continuity Principle applied to G.

Lemma 1 Any G0-disc d : D → X2 can be lifted to a (uniquely defined) immersion d̃ ,
d̃ : D � G̃, into the envelope of holomorphy G̃ of G, such that P ◦ d̃ = d and d̃(∂D) ⊂ i(G).

Here P : G̃ → X2 is the natural projection and i : G → G̃ is the natural embedding of G

into the envelope of holomorphy G̃ with P ◦ i = id on G.
Note that the lifted disc d̃ may have less self-intersections than the disc d . We do not

know a description of those G0-discs which lift to embedded discs in the envelope of holo-
morphy.

The proof of the lemma will be given below in Sect. 4.
We are interested in the whole image d(D), but it will be convenient to obtain each

point in the image as center of another analytic disc obtained by precomposing with an
automorphism of the unit disc. In detail, let d be a G-disc and p = d(z), z ∈ D. Denote by
ϕz an automorphism of the unit disc D which maps 0 to z and consider d ◦ ϕz : D → X2.
The disc d ◦ ϕz is a G-disc with center p = d ◦ ϕz(0). Multiple points of an immersed disc
p = d(z1) = d(z2) correspond to centers of different discs d ◦ ϕz1 and d ◦ ϕz2 .

Points in the envelope of holomorphy may occur as centers of many different lifted G-
discs. Introduce an equivalence relation in the set G0 of G0-discs. Notice that equivalent
discs have the same center.

Definition 3 The equivalence relation on G0 is the relation generated by the following two
conditions.

(1) G0-discs contained in G and having common center are equivalent.
(2) Equivalence is preserved under homotopies of equally centered G-disc pairs.

Equivalently, in condition (1) we may consider analytic discs with images of small diam-
eters embedded into G instead of all G0-discs with images in G.
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The second condition can be rephrased in more detail as follows. A homotopy of pairs
of equally centered G0-discs is a continuous family of ordered pairs of G-discs, i.e.
a continuous family of pairs of mappings (F1(t, z),F2(t, z)), t ∈ I, z in a neighbourhood
of D, such that for each t ∈ [0,1] both mappings Fj (t, z), z ∈ D, j = 1,2, define G0-
discs and their centers p(t) = F1(t,0) = F2(t,0) coincide (but may depend on the para-
meter t ).

Condition (2) says the following: Suppose the initial pair of discs of the homotopy (i.e.
the pair corresponding to the parameter t = 0) consists of equivalent discs, then so does the
terminating pair (i.e. the pair corresponding to the parameter t = 1).

In Sect. 3 below we describe a construction which leads to building all possible pairs of
equivalent G0-discs according to Definition 3. The construction will be given in terms of
trees. The motivation for considering the introduced equivalence relation is the following
lemma which will be proved in Sect. 4.

Lemma 2 Centers of equivalent G0-discs lift to the same point in the envelope of holomor-
phy: If d1 and d2 are equivalent G0-discs then d̃1(0) = d̃2(0) ∈ G̃.

Our main theorem is the following.

Theorem 1 Let G be a domain in a Stein surface X2. Then the set of equivalence classes of
G0-discs can be equipped with the structure of a Riemann domain Ĝ over X2. The natural
projection P̂ : Ĝ → X2 assigns to each equivalence class of discs their common center.
There is a natural embedding î : G → Ĝ, P̂ ◦ î = id, which assigns to a point in G the
equivalence class represented by discs embedded into G (of small diameter) and centered
at this point.

The Riemann domain Ĝ coincides with the envelope of holomorphy G̃ of G.
The number of sheets of G̃ over a point p ∈ X2 equals the number of equivalence classes

of G0-discs with center p.

It has been a classical fact that the whole envelope of holomorphy G̃ of a domain G in a
Stein manifold X2 can be covered by the following successive procedure.

Put D0 = i(G) ⊂ G̃. Consider analytic discs immersed into G̃ with boundary in D0 and
call them D̃0-discs. See Definition 1, but now G is replaced by D0 = i(G) and X2 is replaced
by G̃. A continuous family of D̃0-discs which joins a given D̃0-disc d with a constant disc
is called a continuity-principle-family. The points in the image of d are said to be reachable
by applying the Continuity Principle once. See Definition 2 with G replaced by D0 = i(G)

and X2 replaced by G̃. By the Continuity Principle (see e.g. [6]) any analytic function in
i(G) has analytic continuation to a neighbourhood of the image of d . This distinguishes the
present situation from that of Lemma 1. The discs of the family in Lemma 1 are immersed
into X2 rather than into G̃. In the situation of Lemma 1 near self-intersection points of the
disc multi-valued analytic continuation may occur.

Let Dj+1, j = 0,1, . . . , be the open subset of G̃ obtained from Dj by adding all points
of G̃ reached from Dj by applying the Continuity Principle once. The classical fact is that
G̃ is equal to the union of all Dj .

The theorem states that, actually, all points of the envelope of holomorphy G̃ can be
reached from i(G) by applying the Continuity Principle only once. Moreover, another ob-
servation of Theorem 1 is the following. Information about the topology of the envelope
of holomorphy is contained in the intersection behaviour of homotopies of G0-discs (which
depends on the Stein manifold in which the domain is included).
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Notice that there is no unique definition of Riemann domains in the literature. Here
by a Riemann domain over an n-dimensional Stein manifold Xn we mean a connected
complex manifold of dimension n which admits a locally biholomorphic mapping (called
projection) to Xn. Such Riemann domains are separable ([11]). We do not require (as done
e.g. in [9]) that analytic functions on a Riemann domain separate points. Our terminology
is close to that of Grauert (see [8]). However, Grauert allows a Riemann domain to have at
most countably many connected components instead of being connected.

Together with the projection P̂ : Ĝ → X2 we will use the projection P0 : G0 → X2

which assigns to each individual G0-disc its center, and the mapping P̂0 : G0 → Ĝ which
assigns to each G0-disc the equivalence class it represents. Notice that P0 = P̂ ◦ P̂0.
Later we will use liftings of mappings with respect to different projections. For instance,
let E be a topological space and ψ : E → X2 be a continuous mapping. A continuous
mapping ψ̊ : E → G0 is a lift of ψ to G0 if P0 ◦ ψ̊ = ψ . Respectively, a continuous map-
ping ψ̂ : E → Ĝ with P̂ ◦ ψ̂ = ψ is a lift of ψ to Ĝ. To specify which lift is meant we
will either indicate the projection itself or the source and the target space of the projec-
tion.

As a corollary of the theorem we obtain the following result which was surprisingly not
known before.

Corollary 1 Let G be a domain in a Stein manifold X2 and G̃ its envelope of holomorphy.
Then for each of its point p the envelope of holomorphy G̃ contains a (non-singular) embed-
ded Riemann surface (and also an immersed analytic disc) passing through p and having
its boundary in i(G).

The proof of the corollary will be given below in Sect. 12.
Corollary 1 should be contrasted to counterexamples known for polynomial hulls.

Namely, there are compact subsets K of C
n, n ≥ 2, with the following property. There is

a point in the polynomial hull K̂ such that for any small enough neighbourhood U of K

there is no Riemann surface with boundary in U passing through this point.
The following question seems natural.

Question 1 For a point p ∈ G̃, what is the minimal genus of a (non-singular) Riemann
surface in G̃ passing through p with boundary in i(G)?

This genus may serve as a measure how “far” the point p is from i(G).
The second corollary states that for each closed orientable surface in G̃ there is a homo-

topy that moves a big part of it to i(G); what remains in G̃ \ i(G) is an immersed analytic
disc in G̃ with boundary in i(G). We may assume that the disc is either empty or belongs
to G \ G0.

Corollary 2 Let G and G̃ be as in the preceding corollary. Let f : S ↪→ G̃ be a connected
closed orientable surface embedded into G̃. Then there exists a homotopy to a (singular)
surface F : S → G̃ (F a continuous mapping), such that either F(S) is contained in i(G)

or there is a disc � ⊂ S such that F(S \ �) is contained in G and (for a suitable complex
structure on �) F : � → G̃ is an immersed analytic disc in the envelope of holomorphy G̃.

In particular, F : S → G̃ represents the same homology class in H2(G̃) as the original
surface.
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The condition that f is an embedding can be skipped. It is sufficient that f is con-
tinuous.

The obstruction to move a surface f : S ↪→ G̃ to the lift i(G) of the original domain can
be described in different terms.

Denote by La the set of loops in G that bound analytic discs in X2 (equipped with the
topology of C1 convergence). Let La

0 be the connected component of La which contains
constant loops. In the situation of Corollary 2 a non-trivial analytic disc F : � → G̃ emerges
from the existence of a non-contractible closed curve in the set La

0 (see below Sect. 12).
There is a variant of Corollary 2 for surfaces with boundary in i(G). We formulate only

the following special case of it.
Denote by ϕ the natural homomorphism from π1(G) to π1(G̃) which is induced

by inclusion i : G → G̃. It is known that ϕ is surjective ([13]). (Notice that this result
of [13] can also be obtained as an immediate consequence of Theorem 1, see below
Sect. 12.)

Corollary 3 Any element of the fundamental group of G which is in the kernel of ϕ can be
represented by a loop in i(G) which bounds an analytic disc that is immersed into G̃.

A reformulation of the corollary is the following. Any loop in i(G) which is contractible
in G̃ is homotopic in i(G) to a loop that bounds an immersed analytic disc in G̃.

The corollary can be slightly strengthened. Namely, given any point p ∈ G̃, the analytic
disc of Corollary 3 may be taken to pass through p. An analogous remark holds for Corol-
lary 2.

We do not know which elements of the kernel ϕ can be represented by boundaries of
embedded holomorphic discs.

We state separately the versions of Corollary 2 and 3 for Stein fillings. A relatively com-
pact strictly pseudoconvex domain 
 in a Stein surface is a Stein filling of the contact
three-manifold M3 if M3 is contactomorphic to ∂
 with the contact structure induced by
the complex tangencies.

Corollary 4 Let 
 be a relatively compact strictly pseudoconvex domain in a Stein surface
X2 with boundary ∂
 = M3. Let f : S ↪→ 
 be a connected closed orientable surface
embedded into 
. Then there exists a homotopy to a (singular) surface F : S → 
 (F a
continuous mapping), such that either F(S) is contained in ∂
 = M3 or there is a disc
� ⊂ S such that F(S \ �) is contained in M3 and (with a suitable complex structure on �)

F : � → 
 is an immersed analytic disc in 
 with boundary in M3.
In particular, F : S → 
 represents the same homology class in H2(
) as the original

surface.

Corollary 5 Let as before 
 be a relatively compact strictly pseudoconvex domain in a
Stein surface X2 with boundary ∂
 = M3. Denote by ϕ the homomorphism from π1(M

3) to
π1(
) induced by inclusion M3 ↪→ 
.

Then any element in the kernel kerϕ can be represented by the boundary of an analytic
disc immersed into 
.

Again, for any point p ∈ 
 the disc can be chosen passing through p.
We do not know whether in the situation of Corollary 5 one can always find an embedded

analytic disc (in other words whether a “holomorphic version” of the Loop Theorem holds)
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or whether the minimal number of self-intersections of analytic discs whose boundaries rep-
resent a given element of the fundamental group of M3 determines a non-trivial invariant
depending on the contact manifold M3, the filling 
 and the element of the fundamental
group. Note that in the case when 
 is a tubular neighbourhood of the standard Lagrangian
torus in C

2 all elements in the kernel of the homomorphism ϕ can be represented by bound-
aries of embedded analytic discs.

Question 2 Let p,q and r be pairwise relatively prime integers and ε �= 0 a small complex

number. Consider the Milnor-Brieskorn spheres M(p,q, r)
def= {zp

1 +z
q

2 +zr
3 = ε}∩S5 ⊂ C

3

and their natural filling. What is the minimal number of self-intersections of analytic discs
whose boundaries represent a given element of the fundamental group of M(p,q, r)? What
are these numbers for a collection of elements that generate the fundamental group in the
sense of semigroups?

We conclude with the following observation for the case M3 = ∂
 is a homology sphere.
Consider any embedded loop f : ∂D → M3 which bounds an analytic disc in the filling

. We may always assume that the loop passes through a given base point in M3 (see
below the sketch of Lemma 23). The loop determines a unique element sf of the second
homology H2(
). Indeed, consider the analytic disc f : D → 
 bounded by this loop and
attach to it along the loop a compact surface with boundary, the surface contained in M3.
We obtain a closed surface in 
. Since H2(M

3) = 0 the homology class represented by the
closed surface in H2(
) does not depend on the choice of the surface contained in M3 that
was attached to the loop. Further, two loops f1 and f2, fj : ∂D → M3 for j = 1,2, both
bounding analytic discs in 
 determine the same element in H2(
) if they are homotopic in
∂
 through loops bounding analytic discs. We do not have a satisfactory description of such
homotopies. Notice that the set of homotopy classes of boundaries of analytic discs (passing
through a given base point) has the structure of a semigroup.

Remark (The case of dimension n > 2) The definition of equivalence classes of G0-discs
can be taken over to dimensions n > 2. Theorem 1 is true for domains in Stein manifolds
of arbitrary dimension bigger than one. Most steps of the proof of Theorem 1 do not de-
pend at all on the dimension of the Stein manifold X and the domain G contained in
it. The steps which refer to the dimension (the genericity result for one-parameter fami-
lies of analytic discs (see below Lemma 9) and the Docquier-Grauert’s reformulation of
local pseudoconvexity in terms of the Continuity Principle) work with minor changes in
higher dimension as well. Corollaries 1, 2 and 3 and their proof can be taken over to higher
dimensions. However, an analytic disc in a complex manifold of dimension bigger than
two is generically embedded. Therefore, Corollary 1 can be strengthened in the following
way.

Let G be a domain in a Stein manifold Xn of dimension n > 2 and G̃ be its envelope of holo-
morphy. Then for each point p ∈ G̃ there is an embedded holomorphic disc in G̃ though p

with boundary in i(G).

In the same way the discs in Corollaries 2 and 3 can be taken to be embedded if the
dimension is bigger than two. Thus, Questions 1 and 2 are meaningless for dimensions
n > 2.

It is more subtle to treat analytic continuation from domains in complex manifolds that
are not Stein and we intend to come to this problem later. Notice that, e.g., for domains
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in compact complex surfaces equivalence classes of analytic discs produce Riemann do-
mains over the manifold in the same way as in Theorem 1. However, many problems remain
open. One of the arising difficulties is that pseudoconvex domains over complex manifolds
that are not Stein need not to be holomorphically convex.

3 A constructive description of the equivalence condition

Call a pair of equally centered G0-discs an ec-pair for short.

Lemma 3 The set of all pairs of equivalent G0-discs can be constructed by successively
choosing and applying a finite number of times one of the following procedures.

(i) Take a pair of small equally centered embedded analytic discs contained in G.
(ii) Take a pair of G0-discs that is homotopic through ec-pairs to a pair of equivalent discs.

(iii) Let d1, d2, . . . , dN be G0-discs such that consecutive discs dk, dk+1, k = 1,2, . . . ,

N − 1, are equivalent. Take the pair (d1, dN).

Proof Procedures (i) and (ii) give pairs of equivalent discs by conditions (1) and (2) of Defi-
nition 3, respectively. Since an equivalence relation is transitive (iii) gives pairs of equivalent
discs.

It remains to see that all pairs of equivalent discs can be obtained in this way. Consider
the property of a pair of discs to belong to the set constructed by the procedure described
in Lemma 3. This is an equivalence relation since it is symmetric and transitive. Moreover,
it satisfies conditions (1) and (2), and it is minimal with the latter property. Therefore it
coincides with the previous equivalence relation. �

Lemma 3 allows to characterize pairs of equivalent discs as those for which there exists
an associated planar rooted tree. (Such a tree is not uniquely determined for a given pair of
discs.) This goes as follows.

Recall that a rooted tree is a connected graph without simple closed paths with a vertex
chosen as root. If the root of the tree is not a multiple vertex we call the rooted tree simple.
Vertices that are different from the root and have only one adjacent edge are called leaves.
For each pair of vertices there is a unique path joining them. This allows to orient the edges
of the graph “towards the root”. We call the two endpoints of an oriented edge its minus-end
and its plus-end respectively. (Orientation is towards the plus-end.)

We will consider trees that are (embedded) subsets of the plane with edges being straight
line segments. The following additional structure is given. Edges whose plus-end is a com-
mon vertex of the graph (incoming edges for this vertex) will be given a label and placed in
the following way. When surrounding the common vertex counterclockwise starting from a
point on the first labeled edge, we meet the edges in the order prescribed by labeling. There
is at most one edge whose minus end is a given vertex (outgoing edge for this vertex). The
outgoing edge is always placed between the last and the first labeled incoming edge (with
respect to counterclockwise orientation).

Pairs of discs constructed by Lemma 3 produce planar rooted trees in the following way.
Pairs of small equally centered embedded analytic discs contained in G correspond to

leaves. A single leaf (see procedure (i)) can be considered as a tree without edges with its
root coinciding with its leaf.

Providing procedure (ii) with a pair of discs corresponds to attaching an edge to the root
of its tree. The attached edge corresponds to the homotopy of ec-pairs, in particular, each
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Fig. 1 Planar rooted trees
associated to pairs of equivalent
discs (leaves indicated by white
dots, roots by black dots)

point on the edge corresponds to a single ec-pair. The minus-end of the attached edge is the
root of the previous tree, it corresponds to the original pair of equivalent discs, the plus-end
is the root of the new tree, it corresponds to the pair of discs obtained from the original one
by applying procedure (ii).

Procedure (iii) obtains a pair of discs d1, dN from the pairs (d1, d2), . . . , (dN−1, dN) of
equivalent discs. This procedure corresponds to gluing trees together along their common
root. More, detailed, consider the rooted trees T1, T2, . . . , TN−1 corresponding to the afore-
mentioned pairs together with their label. Identify their roots. The obtained tree may be
represented as a subset of the plane, so that the previous trees are ordered counterclock-
wise around the common root. We obtain a new rooted tree, its root corresponds to the pair
(d1, dN).

We proved the following lemma.

Lemma 4 To each pair of equivalent G0-discs corresponds a planar rooted tree such that
the root of the tree corresponds to this pair. Leaves correspond to pairs of small equally
centered analytic discs embedded into G. Edges correspond to ec-homotopies. For each
multiple vertex those edges that have the vertex as plus-end are ordered. In this order their
ends correspond to pairs (d1, d2), (d2, d3), . . . , (dN−1, dN). The respective multiple vertex of
the tree corresponds to the pair (d1, dN).

There is a continuous mapping �̂T : T → X2. It assigns to each point of T the class
represented by the equivalent discs corresponding to this point. The mapping �T = P̂ ◦ �̂T

assigns to each point of the tree the center of the equivalent discs corresponding to this
point.

Consider a planar tree T that has a non-trivial edge. Its complement Ĉ\T in the Riemann
sphere is a simply connected domain. Consider a conformal mapping φ : D → Ĉ \ T . The
mapping φ extends continuously to the closed disc D. Consider the boundary curve φ :
∂D → C of the conformal mapping and reverse its orientation. Note that this curve is the
limit of the simple closed curves φ(|z| = r), r < 1, r → 1, oriented suitably. The image of
the limit curve is contained in the tree T . We may think about the curve “surrounding the
tree counterclockwise along its sides.” We have in mind that we associate to each edge of the
tree its left side and its right side (copies of the edge which are the limit of its shifts to the
left, respectively to the right, when moving along the edge according to orientation; recall
that trees are oriented “towards the root”).

Definition 4 For a planar tree T the non-parametrized curve represented by the curve
φ(∂D) with reversed orientation is called the pellicle of the tree T .

The punctured pellicle of the tree is obtained by removing from the pellicle the point
over the root and adding instead two endpoints over the root.

This means that the initial point of the punctured pellicle is related to the tree in the
following way. Consider all edges of the tree adjacent to the root and have them labeled as
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Fig. 2 A planar rooted tree T

and a curve approximating its
punctured pellicle

above, i.e. counterclockwise when traveling around the root. Take the point over the root on
the left side of the first labeled edge. This is the initial point of the punctured pellicle of the
tree.

Respectively, the terminating endpoint of the punctured pellicle is the point over the root
on the right side of the last labeled edge.

We will parametrize the punctured pellicle by an interval (standardly it will be the unit
interval [0,1]) with affine parametrization on the sides of the edges. We denote the punctured
pellicle by mT : [0,1] → C. The image of mT covers the open edges of the tree T twice and
covers the vertices with, maybe, higher multiplicity.

We need the following definitions.

Definition 5 Let α be a curve in the plane and let � ◦ α be a curve in X2. A curve α̊ in G0

for which P0 ◦ α̊ = � ◦ α is called a halo assigned to α and �.

Notice that the halo is a continuously varying family of analytic discs around points in
the image of the curve P0 ◦ α̊ in X2. The latter curve is the curve of centers of the discs
constituting the halo. The curve α̊ can be considered as a mapping with values in X2 of the
trivial disc fibration over the curve α. The restriction of the mapping to the respective circle
fibration has values in G.

Definition 6 A planar rooted tree T with punctured pellicle mT together with a continu-
ous mapping �T : T → X2 is called a dendrite. The mapping �T ◦ mT is called the punc-
tured pellicle of the dendrite (opposed to the punctured pellicle mT of the underlying tree).
If the mapping �T ◦ mT lifts to a mapping m̊T to G0 (i.e. P0 ◦ m̊T = �T ◦ mT ) we call m̊T

a punctured halo of the dendrite. The set (T ,mT ,�T , m̊T ) is called a dendrite with punc-
tured halo and denoted by T.

Recall that for each point �T ◦ mT (t) in the punctured pellicle of the dendrite the value
of the halo at this point is an analytic disc centered at this point.

Note that we do not require here that the tree is associated to a pair of equivalent discs.
In particular, we do not require that the values of � at the leaves are contained in G and the
values of m̊T at the leaves are discs embedded into G.

The following lemma holds.

Lemma 5 Let (d1, d2) be a pair of equivalent G0-discs. Then there exists a dendrite
(T ,mT ,�T , m̊T ) with punctured halo m̊T such that (for standard parametrization) m̊T (0) =
d1 and m̊T (1) = d2.
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Fig. 3 Matching the halo at
common endpoints of punctured
pellicles of two trees

Moreover, at each of the leaves of the tree the value of m̊T is an analytic disc of small
diameter embedded into G and its center, the value of �T ◦ mT , is a point in G.

Further, there is a lift �̂T : T → Ĝ of �T , P̂ ◦ �̂T = �T , such that P̂0 ◦ m̊T = �̂T ◦ mT .

A dendrite with the properties described in Lemma 5 is said to be associated to the pair
(d1, d2) of equivalent discs.

Proof of Lemma 5 Let T be the planar rooted tree associated to the pair (d1, d2) by Lem-
mas 4. Let �T be the mapping from the tree into X2 defined in that lemma. We want to show
that for the punctured pellicle mT of the tree T the mapping �T ◦ mT lifts to a continuous
mapping m̊T with m̊T (0) = d1 and m̊T (1) = d2.

Recall that edges of the tree T correspond to homotopies of (ordered) ec-pairs. A homo-
topy of pairs of G0-discs consists of two homotopies of G0-discs, namely the homotopies
defined by the first labeled, respectively second labeled, discs. Assign the first homotopy of
G0-discs to the left side (i.e. to the first side when surrounding the edge counterclockwise
starting from the plus-end), and the second homotopy to the right side of the edge.

The statement of the lemma can be proved by induction using the successive procedure
of construction described in Lemma 3.

First we consider trees consisting of an edge adjacent to a leaf. Change slightly those
pairs of discs which correspond to points close to the leaf so that the pair associated to the
leaf itself consists of two equal discs. Then the above described procedure gives a continuous
mapping from the punctured pellicle of the edge into the set of G0-discs with the desired
values at the sides over the root. The value of the punctured halo at the leaf is a small disc
embedded into G.

In the case corresponding to procedure (iii) there are several rooted trees Tj , J =
1, . . . ,N − 1, and we assume that for each tree Tj there is a continuous lift m̊Tj

of �Tj
◦mTj

to G0 which coincides at the left, respectively right sides over the roots with dj , respectively
dj+1. The trees are glued together at their root and placed in the plane counterclockwise
around the common root. The punctured pellicle of the new tree is obtained by gluing the
right side over the root of Tj to the left side over the root of Tj+1. It is clear now that the
values of the punctured halo of the trees Tj match so that for the new tree T we obtain a
continuous lift of �T ◦ mT into G0. At the leaves the halo takes values in the set of small
analytic discs embedded into G.

The general case corresponding to (ii) is easier and left to the reader. �



84 B. Jöricke

We will identify rooted trees realized as subsets of C if there is a piecewise affine home-
omorphism of the plane mapping one tree to the other fixing the root and mappings edges
(i.e. straight line segments joining vertices) to edges. We will identify the parametrized
punctured pellicle and halo of such trees if they are obtained by precomposing with the
mentioned homeomorphism.

We will not distinguish between different parametrizations of the pellicles and of the halo
for a given embedding of a tree into C if the parametrization does not play a role.

4 Plan of the proof of Theorem 1

The proof of the theorem is divided into three steps according to the following propositions.

Proposition 1 The set of equivalence classes of G0-discs can be equipped with the struc-
ture of a Riemann domain (Ĝ, P̂) over X2. The projection P̂ associates to each equivalence
class its center. There is a natural embedding î : G → Ĝ of G into Ĝ, such that P̂ ◦ î = id
on G.

Proposition 2 For each analytic function on G its push-forward to î(G) extends to an
analytic function on Ĝ.

The most subtle part of the proof of the theorem is the following proposition.

Proposition 3 The Riemann domain Ĝ is pseudoconvex.

The concept of pseudoconvexity of Riemann domains over C
n goes back to Oka ([15]).

Oka showed that pseudoconvex Riemann domains over C
n are holomorphically convex (i.e.

hulls of compacts with respect to analytic functions on the Riemann domain are compact.)
In the paper [1] the notion of pseudoconvexity of an arbitrary complex manifold is intro-
duced. Moreover, the authors present several equivalent characterizations of pseudoconvex-
ity and extend Oka’s result to Riemann domains over arbitrary Stein manifolds. Together
with results of Grauert ([8]) this implies the following theorem.

Theorem DGO A pseudoconvex Riemann domain over a Stein manifold is a Stein manifold.

This theorem shows, in particular, that holomorphic functions on pseudoconvex Riemann
domains separate points (see [8] and [1]).

The three propositions imply Theorem 1 Indeed, Propositions 1 and 3 show that the set of
equivalence classes of G0-discs can be equipped with the structure of a Riemann domain
(Ĝ, P̂) over X2, and moreover Ĝ is a Stein manifold. Proposition 2 shows that Ĝ is a holo-
morphic extension of G (see [9], Chap. 5.4). Therefore Ĝ coincides (up to a holomorphic
isomorphism) with the envelope of holomorphy G̃ (see [9], Theorem 5.4.3). �

We will provide now proofs of the propositions.

Proof of Proposition 1 We start with the construction of a complex atlas on the set of equiv-
alence classes of G0-discs. Take an equivalence class d̂ and choose a representative d ∈ d̂ .
Denote the point d(0) ∈ X2 by p. Associate to d a Riemann domain Rd = (Vd,Fd) over X2
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such that d lifts to it as an embedded disc and, moreover, Rd is foliated by analytic discs
close to the lifted one. Such a Riemann domain may be constructed in a standard way. Take
a small tubular neighbourhood Vd = (1 + ε)D × δD of D × {0} in C

2. Here ε > 0, δ > 0 are
small numbers. Put Fd(z1,0) = d(z1), |z1| < 1 + ε, and choose a holomorphic vector field
V : Vd → T X2 such that V|(1 + ε)D × {0} is transversal to Fd(z,0), z ∈ (1 + ε)D. Denote
by � its flow. Then, taking Fd(z1, z2) = �z2(Fd(z1,0)) and shrinking the Riemann domain
(Vd,Fd) if necessary, we arrive at a Riemann domain that has the required properties. For
each z2, |z2| < δ, the analytic disc Fd | D × {z2} is a G0-disc since the central disc d is a
G0-disc.

Consider now the set of equivalence classes of G0-discs. Take an arbitrary element d̂ of
this set, choose a representative d and associate to it a Riemann domain Rd . We want to
define a Euclidean set in the set of equivalence classes that contains d̂ . For this purpose we
use the discs of the foliation of Rd in the following way. Choose a neighbourhood Nd of zero
in Vd so that Fd is biholomorphic from Nd onto a neighbourhood Qd of p in X2. Associate
to each point q ∈ Qd the unique disc dq of the foliation of Rd which passes through q ,
normalized so that q becomes its center. Take the equivalence class d̂q which is represented
by dq . Define the set N̂d = {d̂q : q ∈ Qd} and the mapping P̂d : N̂d → Qd, P̂d(d̂

q) = q . Call
this set a standard neighbourhood of d̂ associated to the representative d ∈ d̂ , the Riemann
domain Rd and the set Qd . Call P̂d the related standard projection.

The following lemma implies that standard neighbourhoods form a basis of a Hausdorff
topology in the set of equivalence classes of G0-discs.

Lemma 6 Let d̂1, and d̂2 respectively, be equivalence classes of G0-discs. Suppose N̂1 and
N̂2 are standard neighbourhoods of d̂1 and d̂2, respectively, and P̂1 : N̂1 → Q1 and P̂2 :
N̂2 → Q2 are the related standard projections onto the open subsets Q1 and Q2 of X2.
Suppose N̂1 and N̂2 intersect. Let d̂ be a point in their intersection, hence P̂1(d̂) = P̂2(d̂).
Denote the latter point by p. It is contained in Q1 ∩ Q2.

Then N̂1 and N̂2 intersect over the whole connected component Qp of the intersection
Q1 ∩ Q2 which contains p. In other words, for q ∈ Qp the inclusion P̂ −1

1 (q) = P̂ −1
2 (q) ⊂

N̂1 ∩ N̂2 holds.

It is clear from the lemma, that standard neighbourhoods form the basis of a topol-
ogy. The lemma also implies that this topology is Hausdorff. Indeed, equivalence classes
of G0-discs with different center have obviously non-intersecting standard neighbourhoods.
Let now d̂1, and d̂2 be distinct equivalence classes with equal center. Take standard neigh-
bourhoods P̂j : N̂j → Qj of d̂j , j = 1,2. Let Qp0 be the connected component of Q1 ∩ Q2

that contains the common center p0 of d̂1 and d̂2. Then by the lemma P̂ −1
j (Qp0) are disjoint

standard neighbourhoods of the d̂j .

Proof of Lemma 6 Let q be any point in Qp . Join p with q by a curve γ in Qp , γ : [0,1] →
Qp , γ (0) = p, γ (1) = q . Let γ̂j

def= P̂ −1
j ◦ γ , j = 1,2. By construction the equivalence

class γ̂j (t), j = 1,2, t ∈ [0,1], is represented by the unique disc of the foliation of Rdj

which passes through γ (t) normalized so that its center becomes γ (t). Denote the respective
normalized disc by dj

γ (t). For t = 0 the discs dj
γ (t), j = 1,2, coincide with the central discs

dj of the foliation.
By the conditions of the lemma the discs d1 and d2 are equivalent, hence for t = 0 the

pair (d1
γ (t), d2

γ (t)) consists of equivalent discs. Therefore, by Definition 3 (see (ii)) for each
t ∈ [0,1] the pair consists of equivalent discs. For t = 1 the pair coincides with (d1

q , d2
q).



86 B. Jöricke

By construction the respective equivalence classes d̂1
q = d̂2

q
coincide with the respective

points of N̂j over q . The lemma is proved. �

The standard neighbourhoods equip the set of equivalence classes of G0-discs with the
structure of a complex manifold which admits a locally biholomorphic mapping into X2 (i.e.
with the structure of the union of Riemann domains over X2). Denote this complex manifold
and the mapping (projection) by (Ĝ, P̂). The projection P̂ assigns to each equivalence class
of G0-discs its center.

There is a natural holomorphic embedding of G into Ĝ. Indeed, take any point p ∈ G.
All analytic discs with center p and sufficiently small diameter are entirely contained in G

and equivalent to each other (see Definition 3, (i)). Associate to p ∈ G this equivalence class
of discs which is a point p̂ ∈ Ĝ. The mapping î, which maps p to p̂ is locally biholomorphic
according to the way an atlas is introduced on Ĝ. The mapping is globally injective and P̂ ◦ î

is the identity mapping on G. Hence î is biholomorphic onto its image.
It remains to show that Ĝ is connected. This is an easy consequence of the following two

lemmas which will also be needed further.

Lemma 7 Let d : D → X2 be a G0-disc. Let U be the connected component of {ζ ∈ D :
d(ζ ) ∈ G} which contains ∂D. Then for any z ∈ U ∩ D the disc d ◦ ϕz is equivalent to
(small) discs centered at d(z) = d ◦ ϕz(0) and contained entirely in G.

Lemma 8 Consider the set of analytic discs d : D → X2 such that d extends to an analytic
mapping in a neighbourhood of D. Endow the set with the topology of C1-convergence on
the closed disc D. Then the set of G0-discs is open in this space and the mapping which
assigns to each G0-disc its equivalence class in Ĝ is continuous.

Postpone the proof of the lemmas for a moment and finish the proof of Proposition 1.

End of proof of Proposition 1. We show that any point in Ĝ can be connected with a point
in î(G) by a path. Let d̂ ∈ Ĝ and let d be a representative of d̂ . Take a segment [0, r] ⊂ D

in the unit disc with d(r) ∈ G. Then d ◦ ϕt , t ∈ [0, r], is a (continuous) curve of G0-discs.
By Lemma 7 the disc d ◦ ϕr is equivalent to small discs through d(r) ∈ G that are entirely
contained in G. Taking equivalence classes d̂t = d̂ ◦ ϕt , t ∈ [0, r], and applying Lemma 8
we obtain a curve in Ĝ with d̂0 = d̂ and d̂r ∈ î(G). The Proposition is proved. �

Proof of Lemma 7 Since d is a G0-disc there is a homotopy of G0-discs ds , s ∈ [0,1],
which joins d1 = d with a small disc d0 embedded into G. Consider a continuous path
zs in D, s ∈ [0,1], such that for each s the point zs is in the connected component Us

of {ζ ∈ D : ds(ζ ) ∈ G} which contains ∂D. The normalized discs ds ◦ ϕzs are centered at
ds(zs) ∈ G.

Consider a second continuous family of G0-discs Ds , s ∈ [0,1], consisting of small ana-
lytic discs embedded into G and centered at ds(zs). Then the two discs d0 ◦ ϕz0 and D0 are
equivalent, hence so are the discs d1 ◦ ϕz1 and D1 (see conditions (1) and (2) defining the
equivalence relation). �

Proof of Lemma 8 Let d be a G0-disc and d̂ ∈ Ĝ its equivalence class. Choose a Riemann
domain Rd = (Vd,Fd) foliated by G0-discs with d being the central leaf. Let Nd ⊂ Vd be
a neighbourhood of zero and let Qd ⊂ X2 be a neighbourhood of d(0) in X2 such that
Fd : Nd → Qd is biholomorphic. Let D : D → X2 be an analytic disc that is close to d in
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the topology of C1-convergence on D such that D extends analytically to a neighbourhood
of D. Then D is an immersion of a neighbourhood of D with D(∂D) ⊂ G and D(0) is close
to d(0). After possibly decreasing the neighbourhood of D on which D is given there is
a unique lift of D to the Riemann domain Rd that passes through the point F−1

d (D(0)).
The lifted disc is equivalent to the disc of the foliation of Rd that passes through this point.
Continuity of the mapping and openness of the set of G0-discs are now clear. �

The following two lemmas concern genericity of one-parameter families of analytic discs
and will be used in the sequel. Denote the unit interval by I = [0,1].

Lemma 9 Let ε > 0 be a small number. Any continuous mapping F : I × (1 + ε)D →
X2 that is fiberwise holomorphic can be approximated uniformly on I × (1 + ε

2 )D by a
continuous mapping that is fiberwise a holomorphic immersion.

The approximation may be done keeping the centers of the discs fixed.

Lemma 10 Let ε be a small positive number. A continuous mapping F : I × (1+ε)D → X2

that is fiberwise a holomorphic immersion can be approximated uniformly on I × (1 +
ε
2 )D by a holomorphic mapping F in a neighbourhood of I × (1 + ε

2 )D that is fiberwise a
holomorphic immersion. Moreover, the approximation can be made in such a way that F
coincides with F on {1} × (1 + ε

2 )D and is locally biholomorphic in a neighbourhood of
{1} × (1 + 1

2ε)D.

Proof of Lemma 10 Assume first that X2 equals C2. Decreasing ε > 0 we may replace F

by a C1-mapping which coincides with the previous one on {1}× (1 + ε)D and has injective
differential on [1 − δ,1] × (1 + ε)D for some small positive number δ. This can be done
so that the new mapping is uniformly close to the old one and is fiberwise a holomorphic
immersion. Denote the new mapping as before by F .

The mapping F can be expressed by Taylor series in the z-variable that converge uni-
formly for t ∈ I and z ∈ (1 + 3

4ε)D:

F(t, z) =
∞∑

k=0

ak(t)z
k.

We obtain a uniform estimate for the coefficients

|ak(t)| ≤ M

(
1 + 3

4
ε

)−k

, k = 1,2, . . . , t ∈ I,

for a constant M not depending on k and t . A similar estimate holds for the t -derivatives
a′

k(t) of the coefficients. The functions

FN(t, z) =
∞∑

k=0

ak(1)zk +
N∑

k=0

(ak(t) − ak(1))zk

converge to F uniformly on I × (1 + ε
2 )D and ∂

∂t
FN(t, z) converge uniformly to ∂

∂t
F (t, z)

on this set. It remains to approximate finitely many of the ak in C1([0,1]) by analytic func-
tions in a neighbourhood of [0,1] so that their value at 1 is fixed and the derivative at 1
converges to a′

k(1).
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For general Stein surfaces X2 we consider a holomorphic embedding F : X2 → C
4 and

proceed as above with the coordinate functions of the mapping F ◦ F . The image of the
approximating mappings is contained in a small tubular neighbourhood of FX2. It remains
to compose with a holomorphic projection of the tubular neighbourhood onto FX2. �

Proof of Lemma 9 The lemma follows from the Holomorphic Transversality Theorem ([12],
see also [4]) by standard dimension counting. For convenience of the reader we give the short
argument.

After uniform approximation on I × (1 + ε)D we may assume that the mapping F is

holomorphic on Y 2 def= U × (1 + 3
4 ε)D for a neighbourhood U of I in C, in other words

F is a holomorphic mapping from the Stein surface Y 2 into the complex manifold X2. We
may assume that the restriction F |[0,1] × {0} is the same as before and the mapping is a
fiberwise immersion near the set U × {0}.

Denote by A the set of all elements in the space of 1-jets J 1
hol(Y

2,X2) of holomorphic
mappings from Y 2 to X2 which have vanishing derivatives in the z-direction. A is an analytic
submanifold of J 1

hol(Y
2,X2). A mapping F from a subset of Y 2 to X2 is fiberwise (for fixed

t -variable) an immersion if its 1-jet extension j 1 F avoids A.
Since the 1-jet extension of F restricted to |U × {0} avoids A, by the Holomorphic

Transversality Theorem ([12], see also [4]) the mapping F can be uniformly approximated
on relatively compact open subsets Y̊ of Y 2 by holomorphic mappings F with 1-jet exten-
sion transversal to A, fixing its 1-jet on U × {0}. Take for Y̊ a set of the form Ů × (1 + ε

2 )D

for a relatively compact open subset Ů of U containing I .
Note that A has real codimension 4 in J 1

hol(Y
2,X2) and j 1 F maps the real 4-dimensional

manifold Y̊ into J 1
hol(Y

2,X2). Hence for a curve J ⊂ Ů which is a small perturbation of I

the restriction of F to J × (1 + ε
2 )D has the desired property: the restriction of the 1-jet

extension of F to this set avoids A, hence the restriction of F to this set is fiberwise a
holomorphic immersion. �

Proof of Lemma 1 Consider the subsets c
def= ([0,1) × D) ∪ ([0,1] × ∂D) and c0 =

({0} × D) ∪ ([0,1] × ∂D) of R × C and their convex hull C
def= [0,1] × D.

Recall that the most elementary version of the Continuity Principle states that any holo-
morphic function in a neighbourhood of the set c (more generally in a neighbourhood of c0)
in C

2 extends to a holomorphic function in a neighbourhood of C in C
2.

The proof is completely elementary: The Cauchy type integral over the circles {t} ×
(1 + ε)∂D (ε > 0 small and t ∈ [0,1]) defines an analytic function in a neighbourhood of C

which coincides with the original function in a neighbourhood of the bottom disc {0} × D.
Let d be a G0-disc. Let F be the mapping obtained from Fd by Lemmas 9 and 10.

For any analytic function g in G the function g ◦ F is analytic in a neighbourhood U of
c0 = ({0} × D) ∪ ([0,1] × ∂D). By the Continuity Principle g ◦ F extends analytically to a
neighbourhood of C = [0,1] × D, in particular it extends analytically to a neighbourhood V

of {1} × D.
The neighbourhood V together with the mapping F define a Riemann domain over X2.

Use the mapping F to glue the Riemann domain to the domain G along a suitable connected
neighbourhood of {1} × ∂D. Any analytic function g on G extends analytically to the union
of G with the Riemann domain.

Identify points in the union which are not separated by extensions of holomorphic func-
tions on G. This factorization gives a Hausdorff space (see [9] for the case of C

2 and [18]
for the general case), and hence a Riemann domain which is an extension domain of G the
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points of which are separated by analytic functions. It is biholomorphically equivalent to a
subset of the envelope of holomorphy (the biholomorphic mapping being compatible with
projection), see e.g. [9]. The described procedure gives an immersion d̃ of the G0-disc into
G̃ such that d = P̃ ◦ d̃ and d̃(∂D) is contained in ĩ(G). The lemma is proved. �

Proof of Lemma 2 The lemma is true for two discs of small diameter embedded into G. In-
deed, the mapping î maps the center of both of them to the same point in î(G). The statement
of the lemma is preserved under homotopies of pairs of equally centered G-discs. Indeed, let
(F1(t, ·),F2(t, ·)), t ∈ I, be such a homotopy. Suppose for dj = Fj (0, ·) the desired equality
d̃1(0) = d̃2(0) holds.

Apply Lemma 1 to each disc Fj (t, ·) with t ∈ I , j = 1,2. We obtain a unique lift F̃j (t, ·)
of each of the discs to G̃. As in the proof of Lemma 8 for fixed j the lifts of the discs depend
continuously on the parameter t . For j = 1,2 the curve F̃j (t,0) is a lift to G̃ of the same
curve in X2, namely, of the curve of the common centers F1(t,0) = F2(t,0) of the pairs.
Since by assumption the lifts of the centers coincide for t = 0, by uniqueness the lifts of the
whole curve coincide. The lemma is proved. �

Proof of Proposition 2 Take for each equivalence class of G-discs a representative and con-
sider the lift of its center to the envelope of holomorphy G̃, (see Lemma 1). By Lemma 2
this point does not depend on the choice of the representative but only on the equivalence
class. This defines a continuous mapping ρ : Ĝ → G̃ which respects projections: P̃ ◦ρ = P̂ .
Hence ρ is locally biholomorphic.

This map maps the set î(G) to ĩ(G) so that P̃ ◦ρ = P̂ on î(G). The analytic continuation
of functions from ĩ(G) to the envelope of holomorphy G̃ determines analytic continuation
of functions from î(G) to Ĝ. The statement of the proposition follows. �

5 Pseudoconvexity of the Riemann domain Ĝ

We come to the most subtle part of the proof of the theorem, namely the proof of Proposi-
tion 3. In this section we reduce Proposition 3 to a lemma with which it is more convenient
to work.

Our goal is to prove that the Riemann domain Ĝ is p∗
7 -convex in the sense of Docquier

and Grauert (see [1], p. 105/106). Docquier and Grauert proved that this convexity notion is
the weakest of the equivalent conditions for pseudoconvexity of a Riemann domain over a
Stein manifold.

Recall the notion of p∗
7 -convexity for convenience of the reader. Denote by CD

2 the set

D
2 ∪ (D × ∂D). This subset of the closed bidisc is obtained by removing from D

2
its “open

face” ∂D×D. Following Grauert we denote by ∂̃Ĝ the “boundary of Ĝ in the sense of ends”
defined by filters ([1], p. 104, [6], p. 100). The notion of p∗

7 -convexity uses the definition
of an R-mapping. An R-mapping into the Riemann domain Ĝ is a continuous mapping φ

from the closed unit bidisc D
2

into the closure Ĝ ∪ ∂̃Ĝ of the Riemann domain Ĝ that has
the following properties.

(I) φ(D
2
) �⊂ Ĝ,

(II) φ(CD
2) ⊂ Ĝ

(III) The mapping P̂ ◦ φ extends to a biholomorphic mapping of a neighbourhood of the

closed bidisc D
2

into X2.
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According to the definition of Docquier and Grauert Ĝ is p∗
7 -convex, equivalently

pseudoconvex, if each end p ∈ ∂̃Ĝ of Ĝ has a neighbourhood U(p) in Ĝ ∪ ∂̃Ĝ such
that no R-mapping with image in U(p) exists. We will prove that any mapping satisfy-
ing (II) and (III) will violate (I). More precisely, denoting the extension of the mapping
P̂ ◦ φ to a neighbourhood of the closed bidisc (see (III)) by � and the mapping φ ex-
tended to a neighbourhood of CD

2 in C
2 by �̂ , Proposition 3 reduces to the following

statement.

Proposition 3′ Let � be a biholomorphic mapping from a neighbourhood N (D
2
) ⊂ C

2

of the closed bidisc onto a subset of X2. Suppose the restriction of � to a neighbourhood
N (CD

2) of CD
2 lifts to a biholomorphic mapping �̂ onto a subset of Ĝ such that P̂ ◦ �̂ = �

on N (CD
2). Then the mapping � lifts to a biholomorphic mapping, again denoted by �̂ ,

from a neighbourhood of the closed bidisc onto a subset of Ĝ, such that P̂ ◦ �̂ = � on this
neighbourhood.

To prove Proposition 3′ we have to show that for any point p in the face ∂D × D

(= D
2 \ CD

2) of the bidisc there is a neighbourhood U of p and a lift of the mapping
� | U to Ĝ which coincides with �̂ on U ∩ D

2. After rotation in the first variable we may
assume that p ∈ {1} × D.

Consider the intersections of the closed bidisc, respectively of the set CD2, with the
set [0,1] × D. The first intersection is equal to C = [0,1] × D, the second equals c =
([0,1) × D) ∪ ([0,1] × ∂D).

It will be enough to prove Proposition 3′ for N (D
2
) replaced by a neighbourhood of C

and N (CD
2) replaced by a neighbourhood of c. Moreover, since lifting is an open property

it is enough to prove the following proposition.

Proposition 3′′ Suppose � : C → X2 is a continuous mapping which is fiberwise a holo-
morphic immersion (of a neighbourhood of the closed disc D in C into X2). Suppose �|c
lifts to a continuous mapping �̂ : c → Ĝ with P̂ ◦ �̂ = � . Then the mapping � on the whole
set C admits a lift to Ĝ.

Recall the following reformulation of the property to admit a lift to Ĝ.
A mapping � from a set E ⊂ C into X2 lifts to a mapping �̂ : E → Ĝ iff for each point

(t, z) ∈ E there exists a G0-disc d(t,z) with center at �(t, z) which represents the equivalence
class �̂(t, z) = d̂(t,z) and, moreover, the equivalence classes d̂(t,z) depend continuously on
(t, z).

Let � : C → X2 be a mapping for which the restriction to c lifts to a continuous mapping

into Ĝ. Write �t(·) def= �(t, ·) and let �̂t (·) be the lifted mapping where it is defined.
The following simple lemma allows to modify the family �t to obtain a family with a

stronger property of the initial disc: Namely, one can assume that the initial disc has small
diameter and is embedded into G instead of assuming that through each of its points there
is a G0-disc.

Lemma 11 Under the conditions of Proposition 3′′ there is a continuous family of analytic
discs �t = �(t, ·), � : C = [0,1] × D → X2, which coincides for t close to 1 with the
family of the previous discs, i.e. �(1, z) = �(1, z) for z ∈ D and t close to 1, and has the
following properties:
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(1) � | c lifts to a mapping �̂ : c → Ĝ.
(2) The lift �̂0 : D → Ĝ of the disc �0 is embedded into î(G). Its projection �0(D) =

P̂ ◦ �̂0(D) is an analytic disc of small diameter embedded into G.

Proof We will extend the family �(t, z) for negative values of t and reparametrize in the
parameter t to obtain property (2).

The extension is constructed as follows. According to the conditions the disc �0 =
�(0, ·) lifts to a mapping �̂0 : D → Ĝ.

For t ∈ [−1,0] we define a mapping �̂t as a contraction of �̂0 along the radius. More

precisely, choose a small enough positive number σ and define �̂t (z)
def= �̂0(ρ(t)z), z ∈ D,

for an orientation preserving diffeomorphism ρ : [−1,0] → [σ,1].
Connect the center �̂0(0) of the lifted disc �̂0 with a point on î(G) by a curve

ĥ : [−2,−1] → Ĝ. Associate to the curve a continuous family of analytic discs �̂t : D → Ĝ,
t ∈ [−2,−1], such that the curve of centers �̂t (0) coincides with ĥ(t), t ∈ [−2,−1] and the
analytic disc �̂−1 coincides with the previous analytic disc z → �̂0(σz). If σ > 0 is small
enough such a family can be found. Indeed, one can take small analytic discs embedded
into Ĝ with center ĥ. Moreover, this family can be chosen so that �̂−2 is an embedding into
î(G). Projecting to X2 gives a family �t = P̂ ◦ �̂t , t ∈ [−2,−1], which is a continuous
extension of the family �t , t ∈ [0,1].

The mapping � is obtained by changing the parameter t by an orientation preserving
diffeomorphism of the interval [−2,1, ] onto [0,1] which is the identity near 1. �

Lemma 13 below will be the key for proving Proposition 3′′. We will state the lemma
after formulating the weaker Lemma 12 which considers a single analytic disc instead of
a family of discs. Lemma 12 is easier to state than Lemma 13. Later we will formulate a
more elaborate version of Lemma 12 which will be used in the proof of the corollaries (see
Lemmas 17 and 18 below).

Lemma 12 Let � : D → X2 be an analytic disc such that its boundary lifts to Ĝ. Then
through each point �(z), z ∈ D, passes a G-disc (but maybe, not a G0-disc).

Lemma 13 Let � : C → X2 be a continuous family of analytic discs that satisfy conditions
(1) and (2) of Lemma 11. Then the mapping � lifts to a mapping �̂ : C → Ĝ.

Lemmas 11 and 13 imply Proposition 3′′. In the following sections we will prove Lem-
mas 12 and 13.

6 Neurons

This section is based on the key observation stated in Lemma 14 below. Start with the fol-
lowing definition.

Definition 7 1) Let α be a piecewise smooth curve in the plane. (It may be a mapping
of a closed interval or of the circle). We call a piecewise smooth curve α∗ in the plane an
excrescence of α if α∗ is obtained by cutting α at finitely many points and pasting each time
on the “right” of α (according to its orientation) the punctured pellicle of a planar rooted
tree. We require that the trees are pairwise disjoint and meet α exactly at their roots.
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Fig. 4 (a) An excrescence of an
interval and (b) a generalized
disc and a surrounding curve that
approximates the pellicle

2) Let σ be a continuous mapping of the image of α into X2 which has a continuous lift
σ̂ to Ĝ, P̂ ◦ σ̂ = σ .

Suppose there is an excrescence α∗ and extensions σ ∗ and σ̂ ∗ of σ and σ̂ defined on the
image of α∗, P̂ ◦ σ̂ ∗ = σ ∗, with the following property. There is a halo α̊∗ of α∗ for which
P̂0 ◦ α̊∗ = σ̂ ∗ ◦ α∗.

Then we say that α has an excrescence α∗ with halo α̊∗ associated to σ̂ .

Lemma 14 Let α be a piecewise smooth curve in the plane such that small shifts to the
right of compact subsets of the smooth parts do not meet the curve. Let σ be a continuous
mapping from its image into X2 which admits a lift σ̂ to Ĝ. Then there exists an excrescence
α∗ with halo α̊∗ associated to σ̂ .

Proof Let α be a mapping of the unit circle into X2. (For mappings of an interval the proof
is the same.) Cover the circle by a finite number of closed arcs with pairwise disjoint interior
so that on each arc one can choose a continuous family of G0-discs representing σ̂ ◦ α. At
each common endpoint of two of the closed arcs we obtain two equivalent G0-discs d−

j and
d+

j (limits from the left, respectively from the right of the point). Consider for each of the
discontinuity points tj a tree Tj rooted at α(tj ) and corresponding to the respective pairs
of equivalent G0-discs by Lemmas 4. Realize the trees as pairwise disjoint subsets of the
plane, each attached to the curve on its “right” side and meeting the curve exactly at the
root. Associate to each tree Tj the structure of a dendrite with halo m̊Tj

such that m̊Tj
takes

the value d−
j at the initial point and the value d+

j at the terminating point of the punctured
pellicle of the tree Tj . Cut the curve at each discontinuity point and paste the punctured
pellicle of the respective tree. Denote the obtained curve by α∗. Extend σ and σ̂ by the
mappings �Tj

and �̂Tj
(see Lemma 5) to each of the trees and hence to each punctured

pellicle and denote the extended mappings by σ ∗ and σ̂ ∗. By the choice of the dendrites the
mapping σ ∗ ◦ α∗ lifts to G0. The lift is the required halo α̊∗. �

Lemma 14 will be applied, in particular, to boundaries of analytic discs. We need the fol-
lowing terminology. It will be convenient to consider analytic discs up to reparametrization
by conformal mappings of simply connected planar domains to the unit disc.

Definition 8 1) (Generalized disc) Let D be a relatively compact simply connected domain
in the complex plane with smooth boundary. Let Tj be a finite collection of pairwise disjoint
planar trees. Suppose the trees have pairwise different root on ∂D and meet the closure D of
the domain exactly at the root. Denote by T the union

⋃
Tj of the trees. The set ν = D ∪ T

is called a generalized disc, the set ν \ D is called the boundary of the generalized disc ν
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and the excrescence of ∂D (traveled counterclockwise) determined by the union of the trees
is called the pellicle of the generalized disc ν and is denoted by m.

2) (Preneurons) Suppose, moreover, that there is a continuous mapping � : ν → X2 that
is analytic on D. Then the triple (ν,m,�) is called a preneuron. We will call � ◦ m the
pellicle of the preneuron.

Points on the circle which are not roots of attached trees are called regular points.
3) (Halo of a preneuron) If the pellicle � ◦ m of the preneuron admits a continuous lift

m̊ to G0 then the preneuron together with the mapping m̊ is called a preneuron with a halo.
4) (Main body) The restriction of the mapping � to the closure of the domain,

� : D → X2, is called the main body of the preneuron.
5) (Axon and neuron) A non-empty dendrite whose tree consists of a single edge with

leaf mapped into G (or consists of a single leaf mapped into G) is called an axon. A pre-
neuron with an axon attached is called a neuron. A halo of a neuron is a lift m̊ of the mapping
� ◦ m to G0 with the additional property that the value of m̊ at the leaf of the axon is a small
disc embedded into G.

6) (Continuity) We will say that a family νt of generalized discs depends continuously
on the real parameter t if suitable parametrizations mt of their pellicles are continuous func-
tions in all parameters. A family of (pre)neurons (νt ,mt ,�t ) is continuous if in addition
the mapping �t ◦ mt is continuous in all parameters. For continuity of a family of neurons
with halo we have to add the condition that the mappings m̊t are continuous in all parame-
ters.

With this terminology, any analytic disc in X2 is a preneuron, but it admits the structure of
a neuron only if some part of its boundary is contained in G. In the latter case any boundary
point contained in G can be chosen to serve a one-vertex (or degenerate) axon. There are
many ways to extend the unit disc to a generalized disc and to give it the structure of a
preneuron whose main body is the original disc. If the generalized disc has non-empty trees
attached and � maps at least one leaf of certain tree into G the preneuron can be given the
structure of a neuron. This is always the case if a non-empty tree of the generalized disc
together with the mapping � form a dendrite related to a pair of equivalent discs according
to Lemma 5. Any edge of its tree that is adjacent to a leaf may serve as the tree of an
axon. Notice that the notion of the halo of a neuron is stronger than that of the halo of a
preneuron.

The main reason for constructing neurons out of analytic discs is the following fact:
If an analytic disc is performed into the main body of a neuron with halo then the neuron
structure may be used for obtaining G-discs which approximate the original disc uniformly
along compacts (see below the proof of Lemma 12; for a refinement of this assertion see the
proof of Lemma 13).

The following lemma extends Lemma 14 to preneurons.

Lemma 15 Suppose the pellicle of a preneuron n = (ν,m,�), � ◦ m → X2, has a lift
m̂ to Ĝ. Then there is a neuron with halo n∗ = (ν∗,m∗,�, m̊∗) whose generalized disc ν∗
contains ν with the following properties. The pellicle m∗ of ν∗ is an excrescence of the
pellicle m of ν such that the halo m̊∗ of m∗ is associated to m̂. The values of m̊∗ over each
leaf of a tree contained in ν∗ \ν (not only over the leaf of the axon) is a small disc embedded
into G.

The lemma can be rephrased as follows. If the boundary of a preneuron lifts to Ĝ then
after further attachment of dendrites a neuron is obtained with the following property.
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There is a closed curve γ : ∂D → La
0 meeting the set of small discs contained in G and

such that the curve described by the centers of the discs γ (ζ ), ζ ∈ ∂D, coincides with the
pellicle of the neuron.

Proof Apply Lemma 14 to the pellicle m of the generalized disc ν. We obtain an excres-
cence m∗ which is the pellicle of a generalized disc ν∗, which is obtained from ν by attaching
further trees (either with root at the circle or with root at a tree of ν). Moreover, m∗ is cho-
sen so that the mappings � and �̂ extend to the image of m∗ in such a way that � ◦ m∗
lifts to a halo m̊∗ with P̂0 ◦ m̊∗ = �̂ ◦ m∗. We may assume that ν∗ differs from ν by at
least one non-trivial tree corresponding to a pair of equivalent discs. We obtained a neuron
n∗ = (ν∗,m∗,�, m̊∗) with halo. The second assertion of the lemma is clear. �

Let n = (ν,m,�, m̊) be a neuron. Parametrize the pellicle m of ν by the unit circle ∂D.

Consider the evaluation mapping of the halo m̊: m̊(ζ, z)
def= m̊(ζ )(z), ζ ∈ ∂D, z ∈ D which

is the value at z of the analytic disc-mapping m̊(ζ ). This evaluation mapping is a continuous
mapping from the set ∂D × D into X2 which is holomorphic on the disc fibers. (Recall that
the mapping m̊ is a continuous mapping of ∂D into the space A1(D) of holomorphic map-
pings from the unit disc into X2 that have C1 extension to the closed unit disc.) Let m(ζ0)

be the tip of the axon tree of the neuron. Consider the (image of the) disc fiber m̊(ζ0)(D) and
the union of all (images of the) circle fibers

⋃
ζ∈∂D

m̊(ζ )(∂D). The union of the two sets,

κn
def= ⋃

ζ∈∂D
m̊(ζ )(∂D) ∪ m̊(ζ0)(D), is a compact subset of G associated to the neuron n.

The idea of the proof of Lemma 12 in case X2 = C2 is the following (see below Sect. 8
for details).

Let � : D → C
2 be an analytic disc with boundary lifting to Ĝ. Lemma 15 produces

a neuron n with halo whose main body coincides with the analytic disc �. Associate
the set κn ⊂ G to this neuron. A neuron can be considered as a degenerate analytic disc.
Mergelyan’s Theorem allows uniform approximation of the neuron by a true analytic disc
(“fattening of dendrites”, see below Sect. 7).

The domain of definition of the disc is a simply connected smoothly bounded domain D,
whose closure contains the generalized disc of the neuron and approximates it.

If the original neuron had a halo the approximating disc-neuron may be given a halo. De-
note the new disc-neuron with halo by (D,mD,�D, m̊D). Here mD just denotes the bound-
ary curve of the domain D. In other words, the disc-neuron is an analytic disc �D : D → X2

with a halo m̊D : ∂D → G0. The halo defines the (image of a) torus
⋃

ζ∈∂D m̊D(ζ )(∂D) con-
sisting of the union of the boundaries of G0-discs. Call them meridians of the torus. Denote
by ξ0 ∈ ∂D the point which is the degenerate axon tree of the disc neuron. The union of the
torus with the (image of) the disc fiber m̊D(ξ0)(D) is a compact subset of G contained in a
small neighbourhood of κn.

We will construct a new analytic disc fD with boundary in a neighbourhood of κn that
approximates �D in the following sense. Let � be a small closed arc in ∂D around ξ0 such
that the disc fibers

⋃
ζ∈� m̊D(ζ )(D) are contained in a small neighbourhood of κn (hence

in G). Denote by Int� its interior. For a compact set K ⊂ D ∪ Int� we require that the
value maxK |fD −�D| is small compared to the distance of κn to the boundary of G. Hence,
for each point in �D(K) a small perturbation of the disc fD : D → X2 produces a G-disc
through this point.

The idea of construction of the disc fD is the following. Take an open arc �̊ whose
closure is contained in the interior Int� such that K ∩ ∂D ⊂ �̊. Consider the (restriction
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of the) evaluation mapping m̊(ζ, z), ζ ∈ ∂D \ �̊, z ∈ D. The mapping m̊ : ∂D \ �̊ × D →
X2 together with the original analytic disc �D : D → X2 define a continuous mapping JD

from S(∂D\�̊)

def= ∂D \ �̊ × D ∪ D × {0} into X2 which is holomorphic on all analytic discs
contained in this set. The mapping JD can be uniformly approximated by a holomorphic
mapping from a neighbourhood U of S(∂D\�̊) in D × D into X2.

Notice that the approximation can be considered as an analog of the Weierstraß approxi-
mation on the arc ∂D \ �̊ for continuous mappings with values in the space of analytic discs
in X2.

The approximating mapping H has the following property. It maps the union Q of the
following three sets, the union of circle fibers ∂D \�×∂D, the union of disc fibers � \ �̊×D

and the arc �̊ of ∂D, into a small neighbourhood of κn. Consider a continuous function g on
D which is analytic on D with the following values of |g| on ∂D: |g| = 1 on ∂D \�, |g| = ε

on �̊ for a small enough positive constant ε, and ε ≤ |g| ≤ 1 on � \ �̊. For small enough
ε > 0 the graph of g over ∂D is contained in a small neighbourhood of Q and |g| ≤ εwK on
K for a positive constant wK depending on K (the minimum of the harmonic measure of �̊

with respect to D computed at points of K). Hence, for the approximating mapping H the

analytic disc fD(ζ )
def= H(ζ, g(ζ )), ζ ∈ D, has the requested property. For more detail see

below Sect. 8.
Notice that a slightly different proof of the Lemma 12 can be given in the following way.

Consider as above the torus determined by the halo. Squeeze the meridians corresponding
to the arc � along the analytic discs bounded by them to obtain a new torus, and consider
approximate solutions of the Riemann-Hilbert boundary value problem for this torus, as
constructed in [5]. Using the above arguments one can realize the construction in such a
way that one obtains the required G-discs.

The proof of Lemma 13 is more subtle. Under the conditions of Lemma 13 there is a
homotopy of the disc �1 to an analytic disc �0 where �0 is embedded into G and lifts to
î(G). The homotopy consists of analytic discs �t whose boundaries lift to Ĝ. We have to
take a G-disc related to �1 as constructed by Lemma 12 and find a G-disc homotopy to an
analytic disc embedded into G.

The key point is to obtain a continuous family φt of neurons with continuously changing
halo and continuously changing axons such that for t in neighbourhoods of 0 and of 1 the
main bodies of the φt coincide with the analytic discs �t .

Indeed, the scheme of proof of Lemma 12 applies not only for an individual neuron with
halo but also for continuous families of such neurons. This observation allows to obtain from
the aforementioned continuous family of neurons a homotopy of G-discs. The homotopy of
G-discs joins the given G-disc obtained in Lemma 12 to a disc embedded into G. The
conclusion is that each point in �1(D) is contained in the projection of Ĝ. The existence of
a continuous lift of �1 to Ĝ follows from Lemmas 7 (see below Sect. 9 for details).

The first step towards the construction of the continuous family of neurons φt (see be-
low Lemma 19) is to convert the continuous family of analytic discs �t : D → X2 into a
piecewise continuous family of preneurons with the following property. To each of the pre-
neurons an axon can be attached and the axons can be chosen continuously depending on
the parameter t .

The tips of the axons form a curve that is mapped into G. Fatten the axons continuously
depending on t (see Sect. 7 below). We obtain a piecewise continuous family �t of neurons
and a fixed arc � of the circle mapped into G by all �t . More precisely, the mapping (t, z) →
�t is a continuous mapping from [0,1] × � into G. We may assume that 1 ∈ �.
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The mapping � , �(t, ζ )
def= �t(ζ ), restricted to the set [0,1] × � lifts to G0. Indeed, any

continuous mapping �̊ into the set of small discs embedded into G such that the center of
�̊(t, ζ ) equals �(t, ζ ) may serve.

Attaching further dendrites we associate with each of the thus obtained neurons a new
neuron nt which has already a halo. We do it in such a way that the halo on [0,1]×� equals
the above chosen one and the family nt is piecewise continuous.

From the piecewise continuous family we get a continuous family of neurons in the
following way. Let t0 be a discontinuity point of the family nt . Let n−

t0
, and n+

t0
respectively,

be the limit neurons at t0 from the left and, from the right respectively. We show that we can
attach a dendrite Tt0 to n+

t0
at a point of � in such a way that n+

t0
∪ Tt0 has a halo and there is

a homotopy of neurons with halo joining n−
t0

with n+
t0

∪ Tt0 . A continuously changing copy
of the dendrite Tt0 will be attached to all neurons nt with t > t0. We proceed in this way
with each discontinuity point of the family nt .

The most subtle part of the aforementioned proof is the construction of the homotopy
joining n−

t0
with n+

t0
∪ Tt0 (see below Lemma 20). This construction will be a procedure

which preserves the main body (which is common for n−
t0

and n+
t0

) and can be considered as
continuously “peeling off the halo of the left neuron n−

t0
” starting at a point in � and letting

“grow the halo of the right neuron n+
t0

on the peeled places and symmetrically on the inside
of the removed peel”.

7 Partial fattening of dendrites

Here we describe in detail the procedure of “fattening dendrites” which is used in the proof
of Lemmas 12 and 13. In the proof of Lemma 12 the procedure is applied to a single neuron.
In the proof of Lemma 13 it is applied to a family of neurons. We will describe the version
for families.

Consider a single generalized disc ν = D ∪ ⋃
Tj . For each tree Tj we consider a con-

nected open (in the topology induced on Tj by C) subset Sj ⊂ Tj which contains the root
of Tj . The closure Sj of Sj is again a tree with root coinciding with that of Tj . Each set Sj

contains together with each point the path on Tj connecting it with the root of Tj . A rooted
tree Sj obtained in this way is called a subtree of Tj .

Any connected component of Tj \ Sj is also a tree (if the set is not empty). A vertex of
such a component may belong to Sj . Since Tj is a tree there is exactly one such point in
each connected component. (This point may be a multiple vertex.) With this point chosen as
root the connected component becomes a rooted tree. Note that a connected component of
Tj \ Sj may consist of several trees adjacent to this root.

Provide a “cutting of trees”: replace each tree Tj by Sj . Denote by S the union of trees⋃
Sj and consider the generalized disc νS = D ∪ S. For a positive number τ0 we associate

to νS a family Eτ
S , τ ∈ (0, τ0, ], of bounded smoothly bounded simply connected domains

with the following properties.

(1) The sets Eτ
S \ D, τ ∈ (0, τ0], are contained in a small neighbourhood of S (i.e. Eτ

S \ D

are fattenings of S).
(2) For each τ ∈ (0, τ0] the set Eτ

S contains D ∪ ⋃
Sj . Moreover for each τ and each j all

leaves of Sj are on the boundary of Eτ
S and Eτ

S does not intersect
⋃

(Tj \ Sj ).
(3) The family decreases, i.e. E

τ1
S ⊂ E

τ2
S for 0 < τ1 < τ2 ≤ τ0. Moreover, the family is con-

tinuous and the closures Eτ
S converge to νS for τ → 0. We put E0

S

def= νS (= limτ→0 Eτ
S).
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Fig. 5 Partial fattenings of trees
of a generalized disc

Consider the set ντ def= Eτ
S ∪⋃

Tj for τ ∈ [0, τ0]. Note that ν0 = ν. The ντ are generalized
discs. The trees of ντ correspond to the connected components of Tj \ Sj .

The described procedure is a “partial fattening of trees”. The sets Eτ
S \D are the fattenings

of S. We always assume that the connected components Eτ
S,j of Eτ

S \ D are in a one-to-one
correspondence with the trees Sj .

Note that for a continuous family νt , t ∈ [0, τ0], of generalized discs and continuous
families of unions of subtrees

⋃
(Sj )t of

⋃
(Tj )t the “partial fattening of trees” can be

arranged continuously depending on the parameter t . In other words, it can be made so
that it leads to a family ντ

t which is continuous in both parameters t and τ .
In the following lemma we consider neurons. The lemma extends the procedure of partial

fattening of trees to a “partial fattening of dendrites”. For each t the generalized disc is the
union of the closed unit disc with attached trees.

Lemma 16 Suppose nt = (νt ,mt ,�t ), t ∈ [0,1], is a continuous family of neurons. Let
St = ⋃

(Sj )t be a continuous family of unions of subtrees of the trees of their generalized
discs Tt = ⋃

(Tj )t . Let ντ
t = Eτ

t ∪ ⋃
(Tj )t , t ∈ [0,1], τ ∈ [0, τ0], be a continuous family of

generalized discs obtained from the νt by fattening the trees constituting St . Then there is a
continuous family of mappings �τ

t : ντ
t → X2, t ∈ [0,1], τ ∈ [0, τ0], that are holomorphic

on the interior of ντ
t such that �0

t = �t . If the restriction of � to
⋃

t∈[0,1]{t} × (νt \ D)

has a lift �̂ to Ĝ then the restrictions of �τ to
⋃

t∈[0,1]{t} × ∂Eτ
t , τ ∈ [0, τ0], have lifts �̂τ

depending continuously on τ .
Let mj,t be the punctured pellicle of (Tj )t and mτ

j,t the arc of the pellicle of ντ
t

whose image is contained in ∂Eτ
S,j

⋃
(Tj \ Sj ). If for some j all dendrites (Tj )t =

((Tj )t ,mt,j ,�t |(Tj )t ), t ∈ [0,1], have punctured halo m̊j,t associated to �̂ that depends
continuously on t then (possibly after decreasing τ0) also the curves mτ

j,t have a halo m̊τ
j,t

associated to �̂τ that depends continuously on t and τ and converges to m̊j,t for τ → 0.

Proof In case X2 = C
2 the first assertion of the lemma is a standard approximation lemma

for the coordinate functions of the mappings �t . The idea of proof of this approximation
lemma is to extend for each t the function �t to a continuous function in the whole plane C

and to smoothen the extension (in dependence on τ ) in such a way that the ∂-derivative is
small near points of (νS)t and vanishes on a big compact subset of D. For details we refer to
the book [20] (see the proof of Theorem 20.5). The construction can be made continuously
depending on t and τ . The approximating function �τ

t is obtained by correcting the extended
and smoothened function by the solution of a ∂-equation related to the interior of ντ

t .
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Prove the second assertion for the case X2 = C
2. For suitable parametrizations of mt,j

and mτ
t,j by s ∈ [0,1] we have uniform convergence mτ

t,j → mt,j for τ → 0, hence the arc
�τ

t,j ◦mτ
t,j in X2 converges to the arc �t,j ◦mt,j for τ → 0. It remains to make for s ∈ [0,1]

and small τ the following choice for m̊τ
j,t . Take the parallel translation in C

2 of the G0-disc
m̊t,j (s) for which the center equals �τ

t,j ◦ mτ
t,j (s).

For general Stein surfaces X2 we consider a holomorphic embedding F : X2 → C
4.

The approximation of F ◦ �t works as in the proof of the first assertion for C
2. Given the

halo
◦

F ◦ mt,j on F ◦ mt,j , the halo on the approximating arcs in C
4 can be chosen by using

small translations. It remains to compose all constructed mappings (they all have image in
a small tubular neighbourhood of F(X2)) with a holomorphic projection from the tubular
neighbourhood onto F(X2). The assertions of the lemma are proved in the case of general
Stein surfaces. �

8 Proof of Lemma 12

The proof of Lemma 12 is based on the following approximation lemmas which will be
needed also in Sect. 12 below. Let D be a bounded, smoothly bounded simply connected

domain in the complex plane and let � ⊂ ∂D be an arc. Put S∂D
def= (D × {0}) ∪ ((∂D) ×

D). Notice that suitable neighbourhoods of S∂D are usually called Hartogs figures. In other
words, S∂D is the core of Hartogs figures. Denote the compact subset (∂D × ∂D) ∪ (� × D)

of S∂D by Q� .
Recall that for defining a metric on X2 we fixed a holomorphic embedding of X2 into

C
4 and pulled back the Euclidean metric. ε-approximation of mappings into X2 refers to

this metric. Note that the second part of Lemma 17 below concerns continuous families of
mappings and is needed in the proof of Lemma 13.

Denote by AX2(D × D) the space of continuous mappings from D × D into X2 that are
holomorphic on the interior D × D.

Lemma 17 Let JD : S∂D → X2 be a continuous mapping that is analytic on D × {0} and
fiberwise analytic on ∂D × D. Let � ⊂ ∂D be a closed arc.

Then for each positive number ε and each neighbourhood V of JD(S∂D) in X2 there
exists a mapping H ∈ AX2(D × D), such that

(1) H|D × {0} = JD|D × {0},
(2) H(∂D × ∂D) is contained in an ε-neighbourhood of JD(Q�).
(3) the image of H is contained in V , moreover, for each compact subset K of D ∪ �

the mapping H can be chosen so that for each ζ ∈ K the whole fiber H({ζ } × D) is
contained in an ε-neighbourhood of JD(ζ,0).

Suppose Dt , t ∈ [0,1], is a continuous family of simply connected bounded and smoothly
bounded planar domains. Let At be continuously changing closed arcs, At ⊂ ∂Dt . Let fur-
ther Kt , t ∈ [0,1], be a family of compact subsets of Dt ∪At depending continuously on the
parameter t (hence

⋃
t∈[0,1]{t} × Kt is a compact subset of R × C). Consider the continu-

ously changing family of sets S∂Dt and Qt def= (∂Dt × ∂D) ∪ (At × D).
Suppose J t

Dt
: S∂Dt → X2, t ∈ [0,1], is a continuous family of mappings, each of it being

analytic on all analytic discs contained in S∂Dt .
Then for any number ε > 0 there exists a continuous family of mappings Ht ∈ AX2(Dt ×

D), such that each Ht , t ∈ [0,1], satisfies conditions (1), (2) and (3) above with respect to
the objects specified for the number t .
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Fix K . Let �̊ be as in Sect. 6 an open arc, �̊ � Int�, K ⊂ D ∪ �̊, and let, as above,
S(∂D\�̊) = (D × {0}) ∪ (∂D \ �̊ × D). The proof of Lemma 17 is based on the following

variant of the Weierstraß Approximation Theorem for the arc ∂D \ �̊.

Lemma 18 For any positive number ε and any neighbourhood V of JD(S∂D) there exists
a neighbourhood U of S(∂D\�̊) in D × D and a continuous mapping H : U → V ⊂ X2 that

is holomorphic on the interior IntU of U such that H|D × {0} = JD|D × {0} and H is
uniformly ε-close to JD on (∂D \ �̊) × D.

Proof In case X2 is different from C
2 we compose the mapping JD with the holomorphic

embedding F of X2 into C
4. Denote the composition by JD . The target space for this map-

pings is C
4. In case X2 = C

2 the target space was C
2 from the beginning. For unifying

notation we use the fat letter JD for the mapping JD in this case as well. So in any case JD

is a mapping into some C
n (either n = 2 or n = 4).

Notice that for r ∈ (0,1), r → 1, the mappings JD,r , JD,r (ζ, z)
def= JD(ζ, rz),

ζ ∈ ∂D \ �̊, z ∈ D, converge uniformly to JD(ζ, z), ζ ∈ ∂D \ �̊, z ∈ D.
Write the mapping JD|(∂D \ �̊) × D in form of power series:

∞∑

k=0

ak(ζ )zk, ζ ∈ ∂D \ �̊, z ∈ D.

Choose a number r < 1 sufficiently close to 1 and a big enough number N so that the
mapping

JD,r,N (ζ, z)
def=

N∑

k=0

ak(ζ )rkzk, ζ ∈ ∂D \ �̊, z ∈ D,

approximates the mapping JD sufficiently well on (∂D \ �̊) × D. Note that both mappings,
JD and JD,r,N coincide on ∂D \ �̊×{0} with JD . Approximate each of the coefficients ak(ζ ),
k = 1, . . . ,N , uniformly for ζ ∈ ∂D \ �̊ by holomorphic mappings from a neighbourhood
of D to C

n. We obtain a continuous mapping I from D × D into C
n which is holomorphic

on D ×D, approximates the mapping JD uniformly on (∂D \ �̊)×D and coincides with JD

on D × {0}.
Being uniformly close to JD on S(∂D\�̊) the mapping I maps a neighbourhood U of this

set (in D × D) into a small tubular neighbourhood of F(X2). (Recall that JD(S(∂D\�̊)) ⊂
F(X2).) Consider the composition Pr ◦ I of the mapping I with a holomorphic projection
Pr of a tubular neighbourhood of F(X2) onto F(X2) and apply to it the inverse of F. Thus
we obtain a holomorphic mapping H from U into X2 that approximates JD on (∂D \ �̊)×D.
If U is chosen small enough depending on V the image of H is contained in V . �

Proof of Lemma 17 Notice that for each ζ ∈ ∂D \ �̊ the set U of Lemma 18 contains the
fiber {ζ } × D. For ζ ∈ �̊ the set U may not contain the respective fibers but it contains a
small neighbourhood of �̊ ×{0}. We want to shrink the fibers over points in � suitably. Take
a smooth positive function ρ on ∂D that equals 1 outside �, does not exceed 1 everywhere
on ∂D and is as small as needed in a neighbourhood of the closure of �̊.

Consider an analytic function g on D with boundary values having absolute value ρ. The
function g is smooth up to the boundary if ρ is smooth. (Recall that D has smooth boundary.)
Moreover, on the compact subset K of D ∪ �̊ the absolute value |g| of the function does not
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exceed a small constant depending on the compact set K and the function ρ and tending to
0 if the maximum of the function ρ on �̊ tends to 0. This is a consequence of an estimate of
the harmonic measure of �̊ on K .

Define the mapping ϒg , ϒg(ζ, z)
def= (ζ, g(ζ )z) of the closed bidisc D × D onto Ug ,

Ug
def= {(ζ, z) ∈ D × D : |z| ≤ |g(ζ )|}. With a suitable choice of ρ for each fixed z ∈ D the

distance |ϒg(ζ, z) − (ζ,0)| is as close as needed uniformly for ζ ∈ K .
Increasing the compact subset K of D ∪ �̊ we may assume that each point ζ outside the

compact K is as close as needed to ∂D \ �̊. Therefore the choice of the function ρ can be
made in such a way that the set Ug is contained in the small neighbourhood U of S∂D\�̊ in

D × D.
Let H be the composition of the mapping H with the mapping ϒg , ϒg(ζ, z)

def= (ζ, g(ζ )z)

of the closed bidisc D×D onto Ug , H = H◦ϒg . The mapping H has the required properties.
Indeed, since ρ has absolute value 1 on ∂D \ � and absolute value not exceeding 1 on

� \ �̊ the set H(∂D \ �̊ × ∂D) is contained in a small neighbourhood of JD(Q�). (See
Lemma 18 for the properties of H and use the fact that Q� ⊃ (∂D \ �̊ × ∂D)∪ (� \ �̊ ×D).)
If ρ is small enough on �̊ then also H(�̊ × ∂D) is contained in a small neighbourhood of
JD(Q�).

Property (3) is a consequence of the properties of ϒg .
The proof of the respective assertion for continuous families of mappings J t

Dt
is straight-

forward.
Lemma 17 is proved. �

Proof of Lemma 12 Let � : D → X2 be an analytic disc whose boundary lifts to a mapping
�̂ : ∂D → Ĝ. Lemma 15 produces a neuron n = (ν,m,�) which has halo m̊ associated to
�̂ and has the disc as main body. Apply Lemma 16 (“fattening of dendrites”) for the single
neuron n, its halo and the set of all trees of its generalized disc ν, so that we obtain a true
analytic disc with halo (D,mD,�D, m̊D). We assume that �D is an ε-approximation of �

and m̊D is an ε-approximation of m̊. The evaluation mapping of the halo m̊D defines a con-
tinuous mapping from the set ∂D × D into X2 which is fiberwise holomorphic. Moreover,
m̊D(ζ )(0) = �D(ζ ) for all ζ ∈ ∂D. Thus, �D : D → X2 and m̊D : ∂D × D → X2 define a
continuous mapping JD from the set S∂D = (D × {0}) ∪ ((∂D) × D) into X2.

Let �D : � → X2, where � ⊂ ∂D is a closed arc of the pellicle of D that is close
enough to the tip of the axon tree of the original neuron. Then for the subset Q� =
(∂D × ∂D)∪ (� × D) of S∂D the set JD(Q�) is contained in a 2ε-neighbourhood of κn ⊂ G

(see the definition of κn after the proof of Lemma 15). An application of Lemma 17 with the
same number ε and with a compact subset K of D∪ �̊ provides a mapping H ∈ AX2(D×D),
such that H(∂D × ∂D) is contained in an ε-neighbourhood of JD(Q�) and for each fixed
ζ ∈ K the fiber H({ζ } × D) is ε-close to �D(ζ ) on K .

For each z ∈ ∂D the disc f z(ζ ) = H(ζ, z), ζ ∈ D, has its boundary in a 3ε-
neighbourhood of κn ⊂ G. The family f rz, r ∈ [0,1], provides a homotopy joining �D(·) =
JD(·,0) and f z. If H is chosen to satisfy (3) for given K ⊂ D∪� then maxK |�D −f rz| < ε

for each r ∈ [0,1]. Choose the point z ∈ ∂D. An ε-approximation of f z provides an im-
mersed analytic disc, hence a G-disc provided ε is small.

In case X2 = C
2 a suitable translation of the disc passes through �(p) and has boundary

contained in a 5ε-neighbourhood of κn.
In the case of general Stein manifolds X2 translations can be replaced by diffeomor-

phisms close to the identity from a suitable relatively compact subset of X2 onto another
subset of X2. Such diffeomorphisms are defined as compositions of the holomorphic em-
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bedding F of X2 into C
4, a small translation in C

4, a holomorphic projection of a tubular
neighbourhood of F(X2) to F(X2) and the inverse of the mapping F.

We proved that through each point of �D(K) passes a G-disc. Given ζ ∈ D the compact
set K can be chosen to contain ζ . Lemma 12 is proved. �

9 A piecewise continuous family of neurons with continuously changing axon

This paragraph is a preparation for the proof of Lemma 13.
Let �t : D → X2, t ∈ [0,1], be a continuous family of analytic discs enjoying proper-

ties (1) and (2) of Lemma 11. The following lemma allows a further improvement of the
properties of the family of analytic discs without changing the discs �0 and �1.

Lemma 19 There is a continuous family of analytic discs �t : D → X2, t ∈ [0,1], coincid-
ing with the previous family �t for t close to 0 and close to 1 such that conditions (1) and
(2) of Lemma 11 hold and the following additional condition is satisfied.

The curve α(t) = (t,1), t ∈ [0,1], in [0,1] × ∂D ⊂ c has the following property: the
mapping �t(α(t)), t ∈ [0,1], admits a lift α̊ to G0 such that P̂0 ◦ α̊ = �̂t (α(t)).

Proof Consider the mapping �(t, z)
def= �t(z), t ∈ [0,1], z ∈ D, with values in X2. By

the condition (1) of Lemma 11 the restriction of this mapping to [0,1] × ∂D lifts to Ĝ,
hence the mapping � ◦ α(t), t ∈ [0,1], lifts to Ĝ. The curve α is contained in the cylinder
[0,1] × ∂D. It can therefore be considered as a planar curve and Lemma 14 applies. It will
be convenient to realize the excrescence of α in a slightly different way. Namely, consider a
tree and its punctured pellicle which participate in the construction of the excrescence of α

in the cylinder. Let the root of the considered tree be the point (ti ,1) of the cylinder. We may
assume that all points ti are contained in the open interval (0,1). We take another realization
of the tree and its pellicle, namely, we consider a tree Ti in the complex plane with root at
the point 1 that meets the closed disc D exactly at the root and which is a homeomorphic
copy of the tree in the cylinder. Call the product of the one-point set {ti} with the punctured
pellicle of the tree Ti ⊂ C the punctured pellicle of {ti} × Ti . Cut α at the point (ti ,1) and
paste the punctured pellicle of the tree {ti} × Ti . Doing this with all trees we obtain the
realization of the excrescence α∗ we will work with.

The trees Ti define a piecewise continuous family of generalized discs νt , t ∈ [0,1], given

by the relation νt
def= D, if t is not equal to one of the tj , and νt

def= D ∪ Tj , if t = tj . The
new curve α∗ has values in

⋃
t∈[0,1]{t} × νt . By Lemma 14 there are continuous extensions

of the mappings � and �̂ to the image of α∗ such that the curve � ◦ α∗ has a lift to G0

that is associated to �̂. Take a C0-small deformation of the curve α∗ which fixes the punc-
tured pellicles of the trees and provides small changes of the original part α of the curve
α∗ so that the image of the deformation of the part α of α∗ is the union of finitely many
vertical segments of the form Iz × {z} for an interval Iz ⊂ [0,1] and a point z ∈ ∂D, and
finitely many horizontal arcs of the form {tj } × βj for one of the aforementioned points
tj ∈ [0,1] and an arc βj in the unit circle. We may assume that the perturbed curve coincides
with the previous one near the points (0,1) and (1,1) and has non-decreasing t -coordinate.
Denote the approximating curve again by α∗. Still, � ◦ α∗ has a lift to G0 that is associ-
ated to �̂.

Consider the piecewise continuous family of generalized discs νt , t ∈ [0,1], that was
defined above. Notice that the image of α∗ is contained in

⋃
t∈[0,1]{t} × (νt \ D) and the
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Fig. 6 Fattening of trees of a
family and deformation of the
excrescence

mappings � and �̂ extend continuously to the union {t} × (νt \ D) of the boundaries of the
generalized discs.

Replace the family of generalized discs νt by a continuous family of generalized discs
ν∗

t in the following way. Choose small disjoint intervals Ij ⊂ (0,1) around tj and define
a continuous family of trees T (t), t ∈ [0,1], with root 1 such that T (tj ) = Tj and T (t) is
equal to a one point (degenerate) tree for t close to the endpoints of the Ij and outside the Ij .

This is possible since each rooted tree is contractible to its root. Put ν∗
t

def= νt ∪ T (t).
The intervals and the contractions of the trees can be chosen in such a way that the map-

pings � and �̂ extend continuously to
⋃

t∈[0,1]{t}× (ν∗
t \D). Denote the extended mappings

again by � and �̂.
Lemma 16 provides fattenings of the dendrites Tt depending continuously on the

parameter t . This yields a continuous family of simply connected domains Dt , t ∈ [0,1],
and a continuous mapping ψ : ⋃

t∈[0,1]{t} × Dt → X2 which is holomorphic on each
{t} × Dt , approximates � uniformly on

⋃{t} × νt and coincides with � for values
of t close to 0 and close to 1. Moreover, the restriction of the mapping ψ to the set⋃

t∈[0,1){t} × Dt ∪ ⋃
t∈[0,1]{t} × ∂Dt lifts to a mapping ψ̂ into Ĝ which coincides with �̂

for t close to 0 and close to 1.
Deform the arcs of α∗ contained in the set t = tj into arcs that are C0-close to the previous

ones and run along the boundary {tj } × ∂Dtj . Denote the deformed curve by α0.
Provide a further deformation of the curve so that its t -coordinate is strictly increasing.

Parametrize the thus obtained curve by the t -coordinate of its image and denote it again
by α0. The mapping ψ ◦ α0 admits a lift to G0 which is associated to ψ̂ .

Choose a continuous family of conformal mappings ϕt : D → Dt (which extend to a
continuous family of homeomorphisms between the closed unit disc and the closures of the

domains) that map the point 1 ∈ ∂D to the point α0(t) ∈ ∂Dt . The mappings �t
def= ψt ◦ ϕt

(with ψt(z) = ψ(t, z) for t ∈ [0,1] and z ∈ D) have the desired property. �

Choose an arc � of the unit circle containing the point 1 so that the mapping (t, ζ ) →
�(t, ζ ) = �t(ζ ), (t, ζ ) ∈ [0,1] × �, lifts to a continuous mapping m̊ : [0,1] × � → G0 for
which P̂0 ◦ m̊ = �̂ . In other words, the analytic discs �t have continuously changing halo
on � that is associated to �̂t .

According to Lemma 15 by attaching dendrites each disc �t : D → X2 can be performed
into a neuron with halo associated to the lift �̂t |∂D. This can be done so that the halo of the
neuron on � coincides with m̊(t, ·), t ∈ [0,1]. In particular, for each t the arc � consists of
regular points for the neuron. Further, the attaching of dendrites may be done in such a way
that the neurons depend piecewise continuously on the parameter t .
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Consider the constructed neurons as preneurons and attach for each t ∈ [0,1] an axon
Tax

t to the respective (pre)neuron such that the root of its tree is the regular point 1. The
trees T ax

t of the axons Tax
t are chosen to depend continuously on t , for t close to 1 being

equal to the edge T ax
t = [1,2] which is orthogonal to the unit circle, and degenerated to

a point for t close to 0. In particular, the tips of the axon trees, at depend continuously
on t . Since the restrictions of the halo of the (pre)neurons to � depend continuously on
the parameter, the halo of the axon Tax

t may be chosen to depend continuously on t . We
define it in the following way. Let mTt (τ ), τ ∈ [0,1], parametrize the punctured pellicle
of T ax

t . The parametrization is chosen symmetric with respect to the sides of the edge T ax
t ,

i.e. mTt (τ ) = mTt (1 − τ), τ ∈ [0,1]. For the halo on the first side, m̊Tt (τ ), τ ∈ [0,1/2], we
choose a G0-homotopy of the disc m̊t (0) to a disc embedded into G which is the value of
the halo over the tip of the axon. The halo on the second side is chosen symmetrically.

We obtain a piecewise continuous family of neurons with halo, which we denote by
nt = (νt ,mt ,�t , m̊t ), t ∈ [0,1]. The neurons have a continuously changing axon attached
whose halo at the tip is a small analytic disc embedded into G. For t close to 0 the neuron
coincides with the original analytic disc which is embedded into G. For t close to 1 the main
body of the neuron coincides with the original disc.

In the next section we obtain from this family a continuous family of neurons with halo
with a continuously changing axon attached.

10 A continuous family of neurons. “Peeling”

This section is the key of the proof of Lemma 13.
Let t0 be the first discontinuity point of the constructed family nt of neurons with

halo. Denote by n±
t0

= (ν±
t0
,m±

t0
,�±

t0
, m̊±

t0
) the respective limits from the left and from the

right. Note that the main bodies �±
t0

: D → X2 of the neurons n±
t0

coincide. Moreover, the
values of m̊±

t0
coincide on �.

There may be no homotopy joining the neurons n−
t0

and n+
t0

. The following lemma shows
that there is such a homotopy after attaching a special dendrite to n+

t0
.

Lemma 20 There is a dendrite Tt0 with punctured halo and a neuron with halo n0
t0

=
n+

t0
∪ Tt0 obtained in the following way. The tree of Tt0 is attached to the generalized disc

ν+
t0

of n+
t0

at a point ζ ∗ ∈ �. The pellicle (respectively, the halo) of the neuron n+
t0

punctured
at ζ ∗ and the punctured pellicle (respectively, the punctured halo) of Tt0 match and define
the pellicle (respectively, the halo) of the neuron n+

t0
∪ Tt0 . Moreover, there is a homotopy of

neurons with halo joining the neuron n−
t0

with the neuron n0
t0

= n+
t0

∪ Tt0 .

Proof In the proof we will skip everywhere the index t0.
To ease reading we will first work out the proof in simple but typical situations before

giving the formal proof in the general situation.
Step 1 of the proof. Peeling for n+-regular points ζ . Let ζ0 = exp(iθ0), θ0 > 0, be a point

in � (counterclockwise from 1). We let a one-edge dendrite grow out of n− at the point
ζ0 and let its root run counterclockwise along the circle. More precisely, let ζ = exp(itζ ),
tζ > θ0, be a point on the unit circle situated counterclockwise from ζ0. Let γζ be the arc
between ζ0 and ζ , γζ = {γζ (t) = exp(it) : θ0 ≤ t ≤ tζ }. Assume that all points of γζ are
regular for the neuron n+. Let eζ be a closed straight line segment attached to ∂D at the
endpoint ζ of γζ which is transversal to ∂D and meets D exactly at ζ .
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Consider the generalized disc νζ
def= ν− ∪ eζ . Give it the structure of a neuron nζ =

(νζ ,�ζ ,mζ , m̊ζ ) with halo in the following way.
Remove the point ζ0 from the unit circle and close up the arc by adding two points over ζ0.

We refer to this set as the punctured circle (punctured at ζ0). In the same way we define the
pellicle of ν− punctured at ζ0. Denote by Oζ the union of the closed arc ∂D \ γζ of the circle
with the “outer” side of eζ (i.e. the “right” side of the edge eζ with orientation towards the
root, in other words, the second side when surrounding the edge counterclockwise starting
from the root). This side is pasted to ∂D \ γζ at the point ζ .

Consider the excrescence E − of the punctured circle which is equal to the pellicle of n−

punctured at ζ0. Let Aζ be a homeomorphism of E − onto an excrescence O∗
ζ of Oζ . Suppose

Aζ is the identity on ∂D\γζ , maps γζ onto eζ and fixes ζ . Moreover, assume that Aζ is affine
on each segment of E − that is contained in an edge of an n−-tree.

Assign a halo to O∗
ζ in the following way. Let for some interval I the mapping mE −(t),

t ∈ I, be a parametrization of E −. Then mO∗
ζ
(t)

def= Aζ ◦mE −(t), t ∈ I, parametrizes O∗
ζ and

we put m̊O∗
ζ
(t)

def= m̊E −(t), t ∈ I .
Assign to the arc t → γζ (t), t ∈ [θ0, tζ ], the n+-halo: choose the parametrization m+(t) =

γζ (t), t ∈ [θ0, tζ ], for the arc of the pellicle of n+ and put m̊γζ
(t) = m̊+(t), t ∈ [θ0, tζ ].

Finally, parametrize the “inner” (i.e. “left”) side el
ζ of eζ by el

ζ (t) = Aζ ◦ m+(t),
t ∈ [θ0, tζ ], and define the halo on el

ζ by m̊el
ζ
(t) = m̊+(t), t ∈ [θ0, tζ ]. Note that the halo

on el
ζ is “Aζ -symmetric” (i.e. symmetric with respect to the homeomorphism Aζ ) to the

halo on γζ .
The three arcs O∗

ζ , γζ and el
ζ cover the pellicle of the generalized disc νζ . The values

of the halo match at the common endpoints of the arcs. Indeed, they match at the tip of eζ

because this point is the image of ζ0 ∈ � under the map Aζ and for points in � the n+-halo
takes the same value as the n−-halo. They also match at the point ζ because Aζ fixes this
point.

We obtained a neuron nζ with halo. It has a distinguished attached dendrite eζ .
The construction proceeds as long as no n+-dendrite is attached to the interior of the

arc γζ . It is arranged so that it provides a family of neurons nζ that depend continuously on
the parameter ζ so that the values of the halo of each of it is contained in the union of the
set of values of the halo of n+

t0
and n−

t0
. Notice that the parametrization of the pellicle of n+

can be chosen so that the arc t → m+(t), t ∈ [θ0, tζ ], of the pellicle of the generalized disc
ν+ is identical to the arc t → γζ (t) of the circle.

Step 2. Reaching edge-like dendrites of n+. Suppose the construction of step 1 has been
made up to a point ζ ∈ ∂D. We obtained a continuous family of neurons joining n− with a
neuron nζ = (νζ ,�ζ ,mζ , m̊ζ ). Recall that no n+-neuron is attached to the interior Int(γζ )

so that γζ = m+([θ0, tζ ]) ⊂ ∂D for a parameter tζ .
Suppose that ζ is the root of a tree Tζ of the neuron n+. Hence tζ parametrizes the initial

point of the pellicle of the tree Tζ . Let t ′ζ parametrize the terminating point of the pellicle
of Tζ .

Denote by Bζ the (closed) ray that bisects the angle between γζ and the edge eζ obtained
at step 1 (more precisely, the angle between the tangent ray to γζ at ζ and eζ ; we mean the
angle which is covered moving in counterclockwise direction around the point ζ .) Choose
a closed convex cone Uζ with vertex ζ and non-empty interior which is symmetric with
respect to reflection in the symmetry ray Bζ , (hence, it contains Bζ ) and is contained in the
sector between γζ and eζ .

Suppose the tree Tζ of the n+-dendrite Tζ attached at ζ consists of a single edge.
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Our goal is to construct a continuous family of neurons which differ only by a dendrite
whose tree is attached at ζ and situated inside the cone Uζ . The family is constructed so that
it joins the neuron nζ with a neuron n′

ζ so that n′
ζ has the following property. The pellicle

of its generalized disc ν ′
ζ contains an arc that coincides with t → m+(t), t ∈ [θ0, t

′
ζ ] (i.e. the

arc is constituted by γζ together with the punctured pellicle of Tζ ).
For defining the family of neurons it is enough to describe the family of dendrites.
Realize Tζ as a straight line segment in the plane in the direction of Bζ meeting the

generalized disc νζ exactly at ζ . Reparametrize the punctured pellicle mTζ
of Tζ by the

interval [0,1] and symmetrically with respect to its sides. More precisely, denote by mTζ
:

[0,1] → Tζ the (reparametrized) punctured pellicle of Tζ . We require that this mapping
has the following symmetry property: for each t ∈ [0,1] the points mTζ

(t) and mTζ
(1 − t)

are at different sides of the pellicle over the same point. The halo m̊Tζ
is reparametrized

accordingly by the interval [0,1].
Construct a continuous family of dendrites Ts

ζ , s ∈ [0,1], with punctured halo, the tree
T s

ζ of which has root ζ and such that

• for each s the tree T s
ζ is contained in Uζ and meets the boundary of Uζ exactly at ζ ;

• for each s the values of the punctured halo of Ts
ζ at the initial and terminating point

coincide and are equal to m̊Tζ
(0); the dendrites are mirror symmetric with respect to

reflection in the symmetry ray Bζ ;
• T0

ζ is a one-point dendrite;
• T1

ζ consists of the union of two dendrites attached at ζ (“dendrite twins”). The first of
the two dendrites (i.e. its underlying tree, its punctured pellicle and punctured halo) is
a homeomorphic copy of Tζ and is (by a slight abuse) denoted again by Tζ . Its tree is
placed in the closed part U−

ζ of the cone Uζ which is clockwise from Bζ , and meets the
boundary of U−

ζ exactly at ζ ;
The second dendrite is mirror symmetric to the first one with respect to reflection in the
symmetry ray Bζ and is denoted by Tref

ζ .
The value of the punctured halo of the dendrite T1

ζ at the point that lies over ζ between
the dendrite twins coincides with the value at the terminating point of the pellicle of Tζ .

We call this procedure “growing of dendrite twins” (see below Lemma 21 for the
general case).

The construction is the following. For s = 0 we obtain a one-point dendrite T0
ζ . The

procedure of attaching this dendrite T0
ζ does not change nζ .

For s ∈ (0,1/2] the tree T s
ζ of the dendrite Ts

ζ is an edge and consists of the points
mTζ

([0, s]).
Parametrize the pellicle of the tree T s

ζ by the interval [0,2s] and symmetrically with

respect to the sides of the tree: take mT s
ζ
|[0, s] def= mTζ

|[0, s] (parametrization of the first

side of the tree), and symmetrically, mT s
ζ
(τ )

def= mTζ
(2s − τ) for τ ∈ [s,2s] (parametrization

of the second side of the tree).

Respectively, the halo of the dendrite Ts
ζ is defined by the relations m̊T s

ζ
|[0, s] def=

m̊Tζ
|[0, s] on the first side, and symmetrically, m̊T s

ζ
(τ )

def= m̊T s
ζ
(s − τ), τ ∈ [s,2s], on the

second side of the dendrite.
For s ∈ (1/2,1] the tree T s

ζ of the dendrite becomes a letter “Y” which is symmetric with
respect to the symmetry ray.

Describe the tree T s
ζ . Denote by as

ζ the segment mT s
ζ
([0,1 − s]) of Tζ which is adjacent

to ζ (note that the number 1− s is less than 1
2 ). Denote the remaining segment bs

ζ

def= Tζ \ as
ζ .
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Fig. 7 “Peeling” in case of a
single n+-edge at ζ

The segment as
ζ ⊂ Bζ is the “trunk” of the letter Y. The “first branch of the letter Y”

is the image Rs
ζ (b

s
ζ ) of bs

ζ under a rotation Rs
ζ around the common endpoint mT s

ζ
(1 − s)

of as
ζ and bs

ζ . The rotation is chosen so that the rotated segment Rs
ζ (b

s
ζ ) is placed in U−

ζ and
meets the boundary of U−

ζ exactly at mT s
ζ
(1 − s). The rotations Rs

ζ are chosen continuously
depending on s.

The second branch of the letter Y is chosen symmetric to the first one with respect to
mirror reflection in the symmetry ray Bζ .

Describe the punctured pellicle ms
ζ of the tree T s

ζ and the halo of the dendrite Ts
ζ . The part

of the pellicle of T s
ζ corresponding to the first side of as

ζ coincides with the corresponding
part of the pellicle of Tζ : ms

ζ (τ ) = mζ (τ) for τ ∈ [0,1 − s]. Respectively, for the halo the

relation m̊s
ζ (τ )

def= m̊ζ (τ ) for τ ∈ [0,1 − s] holds.
For τ in the interval [1− s, s] the relation is ms

ζ (τ ) = Rs
ζ ◦mζ (τ). This part of the pellicle

ms
ζ surrounds Rs

ζ (b
s
ζ ). The halo of Ts

ζ for those parameters τ is defined by the halo of Tζ :
we put m̊s

ζ (τ ) = m̊ζ (τ ) for τ ∈ [1 − s, s].
The remaining part of the punctured pellicle and punctured halo of the dendrite Ts

ζ is
mirror symmetric to the just described part.

For s = 1 we arrive at a mirror symmetric pair of dendrites with the properties described
above. The construction for this case is completed.

Step 3. The general case. Let ζ0 be as above a point in � situated counterclockwise from
the root 1 of the axon. Suppose ζ ∈ ∂D \ � is reached by moving counterclockwise from ζ0

and γζ is the closed arc of the circle between ζ0 and ζ (counterclockwise traveling). Let m+
parametrize the pellicle of n+ punctured at ζ0, m+(θ0) = ζ0.

If ζ is a regular point for n+ then there is a unique parameter tζ in the pellicle of n+
for which the equality m+(tζ ) = ζ holds. If ζ is not regular for n+ then there is a finite
collection of increasing parameters t1

ζ , . . . , t lζ for which m+(t
j

ζ ) = ζ . Here t1
ζ parametrizes

the initial point of the n+-tree attached at ζ and t lζ parametrizes its terminating point. The

points t
j

ζ and t
j+1
ζ parametrize the initial, respectively the terminating, points of the simple

trees constituting the tree at ζ .
The plan is the following. Let ζ ∈ ∂D \ � be any point counterclockwise from ζ0 and let

tζ denote one of the parameters for which m+(tζ ) = ζ . Assume a neuron ntζ is constructed
such that the pellicle of its tree contains the arc τ → m+(τ ), τ ∈ [θ0, tζ ]. We will construct
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Fig. 8 “Peeling”: The
generalized disc νtζ

a neuron such that an arc of its pellicle coincides with τ → m+(τ ), τ ∈ [θ0, t], for some
parameters t > tζ .

Here is the precise description of the induction hypothesis.
Suppose a neuron ntζ is constructed with the following properties. Its generalized tree νζ

has an edge eζ attached at ζ . Let as in step 2 Bζ be the (closed) ray that bisects the angle
between γζ and the edge eζ . The main property of ntζ is the following. The pellicle of νζ

(considered as a curve parametrized by the unit circle ∂D) has a partition into three parts
each reparametrized by an interval.

(1) The first part is the excrescence O∗
ζ of Oζ . Its halo is defined by E − as in step 1.

(2) The second part is the excrescence γ ∗
ζ (t)

def= m+(t), t ∈ [θ0, tζ ], of γζ . We assume the
excrescence is chosen so that its image m+([θ0, tζ ]) is situated clockwise from Bζ and
meets Bζ exactly at the points m+(t

j

ζ ) = ζ , j = 1, . . . , i, where t iζ = tζ . The halo on the
second part is defined by m̊+(t), t ∈ [θ0, tζ ].

(3) To define the third part we consider an extension of the homeomorphism Aζ from E −

to the image m+([θ0, tζ ]) such that Aζ is affine on each straight line segment contained
in m+([θ0, tζ ]). Moreover, the image Aζ ◦ m+([θ0, tζ ]) is contained in the closed angle
between Bζ and eζ (i.e. counterclockwise from Bζ ) and meets Bζ exactly at the points
m+(t

j

ζ ) = ζ , j = 1, . . . , i.
The third part is the excrescence (el

ζ )
∗(t) = Aζ ◦ m+(t), t ∈ [θ0, tζ ]. The halo is defined

by m̊e(lζ )∗(t) = m̊+(t), t ∈ [θ0, tζ ].
Two possibilities may arise.

(a) Points in the pellicle of n+ parametrized by t > tζ and close to tζ are regular points
contained in ∂D.

(b) tζ is the initial point of one of the simple trees that constitute the n+-tree attached at ζ .
We denote this tree for short by Tζ and the respective dendrite by Tζ . (Notice that the
structure of the whole n+-dendrite that is attached at ζ does not play a role in the proof.)
Let t ′ζ parametrize the terminating point of the pellicle of Tζ . So m+(t ′ζ ) = ζ and the arc
t → m+(t), t ∈ [tζ , t ′ζ ], of the pellicle of ν+ is the punctured pellicle of the tree Tζ .
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Here are the constructions in cases (a) and (b). In the first case (a) we proceed like in
step 1 of the proof. We change the root of the main edge eζ in counterclockwise direction
along the circle and let the edge grow. More precisely, let ζ ′ ∈ ∂D be counterclockwise
of ζ and let the arc between ζ and ζ ′ consist of regular points. At ζ ′ we attach an edge
eζ ′ and equip it with the following structure. For a segment of eζ ′ adjacent to the leaf we
take an excrescence on each of the sides of the edge (and the respective halo on it) that is
homeomorphic to the respective one for eζ . For the remaining segment of eζ ′ that is adjacent
to the root ζ ′ we proceed as in step 1.

In the second case (b) we will construct a continuous family of neurons that connects
nζ with a neuron n′

ζ so that the final neuron n′
ζ has the following properties. As for the

original neuron the pellicle of n′
ζ has a decomposition into three parts satisfying properties

(1), (2) and (3) with tζ replaced by tζ ′ . Thus, the pellicle of n′
ζ contains the arc t → m+(t),

t ∈ [θ0, t
′
ζ ]. (Recall that t → m+(t), t ∈ [tζ , t ′ζ ], is the punctured pellicle of Tζ ).

To construct the family of neurons it is enough to construct the respective family of
dendrites attached to nζ at the point ζ . The following lemma provides this construction.

Lemma 21 (On growing of dendrite twins) Let γζ , eζ and Bζ be as above. Let Uζ be a
closed convex cone with vertex ζ which is symmetric with respect to reflection in Bζ and
contained in the sector between γζ and eζ . Denote by U−

ζ the closed part of Uζ which is
situated clockwise from Bζ . Let T = (T ,mT ,�T , m̊T ) be a dendrite with halo. Suppose the
pellicle of the underlying tree T is parametrized by [t ′, t ′′].

Consider a point ξ ∈ Bζ and a closed convex cone Uξ ⊂ Uζ with vertex ξ which is sym-
metric with respect to reflection in Bζ .

Then there exists a continuous family of dendrites Ts
ξ , s ∈ [0,1], with root ξ with the

following properties:

(1) For all s ∈ [0,1] the tree of Ts
ξ is contained in the cone Uξ and meets the boundary of

the cone exactly at ξ .
(2) For all s the values of the halo m̊s

Tξ
at the initial point and at the terminating point

coincide and equal m̊+
T (t ′). The dendrites are mirror symmetric for reflection in the ray

Bζ .
(3) The dendrite T0

ξ is a one-point dendrite.
(4) The dendrite T1

ξ is a dendrite twin attached at ξ . The tree of the first labeled twin den-

drite is contained in U−
ξ

def= U−
ζ ∩ Uξ and meets the boundary of U−

ξ exactly at ξ . The
first labeled dendrite (i.e. its underlying tree, its punctured pellicle and punctured halo)
is a homeomorphic copy of T. The second dendrite is mirror symmetric to the first one
with respect to reflection in the symmetry ray. The value of the halo of the dendrite twin
at the point between the twins equals m̊T (t ′′).

Proof If the tree of the dendrite T consists of a single edge the proof was given in step 2.
Prove the lemma by induction on the number of edges of the tree T.

Suppose first that the (planar) tree T is not simple, i.e. it has more than one (non-empty)
edges adjacent to the root. Then the tree is the union of two (planar) trees T ′ and T ′′ with
the same root labeled so that T ′′ is counterclockwise of T ′. Each of the trees T ′ and T ′′ has
less edges than T . By induction hypothesis the required family T′s

ξ , s ∈ [0,1], of dendrites

rooted at ξ exists for the first dendrite T′. The final dendrite T′1
ξ is the union of mirror

symmetric twins. The first of the twins is denoted by T′
ξ (situated clockwise from Bζ ) and

the second twin is denoted by (T′
ξ )

ref (situated counterclockwise from Bζ )).
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Fig. 9 Growing of dendrite
twins

Consider a smaller closed convex cone Ůξ ⊂ Uξ with vertex ξ which is symmetric with
respect to Bζ and meets the trees T ′

ξ and (T ′
ξ )

ref exactly at the point ξ .

An application of the induction hypothesis to the point ξ , the cone Ůξ and the second
dendrite T′′ finishes the proof in this case.

Consider the remaining case when the tree T is simple, i.e. it has a single edge E adjacent
to its root. Realize E as a segment Eξ with initial point ξ on the symmetry ray Bζ (traveled
in positive direction of Bζ ). Associate to the tree Eξ the following dendrite E−

ξ with halo.
The tree of E−

ξ is chosen equal to Eξ . The halo on the first side of Eξ is taken to coincide
with the halo of T along the first side of the edge E of its tree. The halo on the second
side of Eξ is chosen symmetrically. There is a continuous family of dendrites which join the
one-point dendrite with root ξ with the dendrite E−

ξ .
Denote by TE the dendrite obtained by removing E from T. In other words, the tree of

TE equals T E def= T \ E. The halo of the dendrite TE is the restriction of the halo of T.
The tree T E has an edge less than T . The induction hypothesis applied to T E , the end-

point η of the tree Eξ and a closed convex cone Uη ⊂ Uξ symmetric with respect to Bζ gives
a continuous family of dendrites that join the one-point dendrite at η with a dendrite twin
TE

η ∪ (TE
η )ref rooted at η. Here T E

η ⊂ Uη is situated clockwise from Bζ and (T E
η )ref ⊂ Uη

is counterclockwise from Bζ . Cut the punctured pellicle of E−
ξ at the tip η and paste the

punctured pellicle of T E
η ∪ (T E

η )ref .
The punctured halo of the twin dendrite TE

η ∪ (TE
η )ref matches with that of E−

ξ at the
point η. The result of pasting is a dendrite with halo which can be joined with the one-point
dendrite at ξ by a continuous family.

The rest of the construction is based, as in step 2, on splitting the segment Eξ into a
letter Y but with copies of T E

ξ (respectively (T E
ξ )ref ) attached at the tip of the first branch

(respectively, of the second branch) of the letter Y.
It remains to define the halo on the Y. The pellicle of the Y punctured at the bottom point

has a partition into three arcs: the part, seen from the right (the union of the first side of the
steam and the first side of the first branch), the part seen from above (the union of the second
side of the first branch and the first side of the second branch) and the part seen from the
left (the union of the second side of the second branch and the second side of the steam).
The halo on the part seen from the right (respectively seen from the left) is the halo on the
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first side (respectively on the second side) of E−
ξ after a change of variables. The halo on the

part seen from above is defined as in step 2.
We defined a continuous family of dendrites with halo. The final dendrite of the family

is the required twin dendrite. The proof of Lemma 21 is finished. �

To finish step 3 of the proof of Lemma 20 we apply Lemma 21 to the dendrite Tζ , the
point ζ and a closed convex cone Uζ contained in the sector between γζ and eζ which meets
the trees of nζ at most at ζ . The desired continuous family of neurons is obtained by pasting
the constructed family of dendrites obtained in Lemma 21.

The general “peeling”-procedure described in step 3 can be continued until a point ζ ∗ ∈
� ⊂ ∂D situated clockwise (within �) from the point 1 is reached.

By assumption � \ {1} consists of regular points for both, n+ and n−, and the n+-halo
coincides with the n−-halo on � \ {1}. Hence, the obtained neuron nζ∗ has the required
property: it differs from n+ by a dendrite attached at ζ ∗. Lemma 20 is proved. �

Lemma 20 yields a continuous family of neurons with halo that joins the neuron n0 with
the neuron n+

t0
∪ Tt0 . By a change of the t -variables we may assume that the parameter set

is again the interval [0, t0]. For t close to 0 the new neurons coincide with the previous ones
and for t = t0 the new neuron coincides with n+

t0
∪ Tt0 .

For all t > t0 we attach to the neuron nt a dendrite Tt with halo and root ζ ∗ of the
underlying tree. The family of dendrites with halo Tt is chosen continuously depending on
t and converging to Tt0 for t → t0. A continuous choice of the dendrites can be made since
the halo of the neurons on � \ {1} changes continuously.

We obtain a piecewise continuous family of neurons with halo. Moreover, the family of
neurons has one discontinuity point less than the previous family. Shrink the arc � (keeping
the same notation) so that the arc still contains the point 1 and � \ {1} is free from roots of
attached trees for all t ∈ [0,1].

Consider all (finitely many) discontinuity points tj (in increasing order) of the family nt .
Apply Lemma 20 successively to each nti and attach to the nt , t ≥ ti , dendrites that depend
continuously on t . At each step the arc � is shrinken suitably.

We arrive at a continuous family of neurons with halo. Denote the neurons by Nt =
(ν ′

t , φt ,Mt , M̊t ). All generalized discs ν ′
t coincide with the closed unit disc with a number

of trees attached. In particular, each generalized disc ν ′
t contains the tree T ax

t of an axon
attached at the point 1. For each t there is a number t ′ such that the restricted mapping φt |D
coincides with the original mapping �t ′ from Lemma 13. Moreover, for t close to 1 the
restrictions coincide with the mappings from Lemma 13: φt |D = �t for t close to 1. For t

close to 0 the generalized discs ν ′
t coincide with the unit disc D and the neurons coincide

with the original analytic discs of Lemma 13. They are small discs embedded into G and
the values of their halo are small discs embedded into G. For all t the halo M̊t is associated
to the lift of �t |∂D to Ĝ. In other words, the restriction of the mapping M̂t = P̂0 ◦ M̊t to ∂D

coincides with �̂t |∂D.
In the sequel we need also the following property of the neurons. Choose parame-

trizations Mt(ξ), t ∈ [0,1], ξ ∈ ∂D, of the pellicle of νt which depend continuously
on t . The property is the following. There exists a compact subset κ of G such that⋃

t∈[0,1],ξ∈∂D
M̊t (ξ)(∂D) ⊂ κ . Moreover, let for each t the point Mt(ξ0) be the tip of the axon

tree of νt . Then
⋃

t∈[0,1] M̊t (ξ0)(D) ⊂ κ and, hence, in particular,
⋃

t∈[0,1] φt ◦ Mt(ξ0) ⊂ κ

and φ̂t ◦ Mt(ξ0) ⊂ î(G).
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11 Proof of Lemma 13

Using the continuous family of neurons Nt with halo obtained in the previous section the
proof of Lemma 13 can be completed essentially along the same lines as the proof of
Lemma 12. Here are the details.

Fix an ε > 0 which is small compared to the distance of κ to the boundary of G. Apply the
procedure of continuous fattening of dendrites (Lemma 16) to all neurons Nt and all attached
dendrites. We obtain a continuous family of analytic discs with continuously varying halo,
denoted by (Dt ,mt ,ψt , m̊t ), t ∈ [0,1], for which maxν′

t
|ψt − φt | < ε and m̊t is ε-close

to the halo M̊t of the respective original neuron. (We abuse notation for the pellicle and
the halo using the same letter as for the objects related to the original family �t ). The
sets Dt are closures of continuously changing bounded simply connected and smoothly
bounded domains in the complex plane. The sets Dt are obtained from the closed unit disc
by attaching “closed thickened trees”. The “closed thickened axons” play a special role.
These are thin closed neighbourhoods of the interiors of the axon trees T ax

t that depend
continuously on t and are pasted to the closed unit disc along an arc of the circle. For each
t the tip at of the axon is the only point of the axon that is located on the boundary of the
respective domain Dt .

Since for each t the inclusion φ̂t (at ) ∈ î(G) holds, there are closed arcs At contained in
∂Dt , at ∈ At , for which ψ̂t (At ) ⊂ î(G), provided ε is small enough. Choose continuously
changing open arcs A0

t which are relatively compact in IntAt with at ∈ A0
t .

Use the same notation as in the proof of Lemma 12: S∂Dt

def= (Dt × {0}) ∪ (∂Dt × D),

S∂Dt \A0
t

def= (Dt × {0}) ∪ (∂Dt \ A0
t × D) and Qt def= (∂Dt × ∂D) ∪ (At × D).

Define, as in the proof of Lemma 12, for each t a mapping Jt on S∂Dt which equals ψt

on the central disc Dt × {0} and is equal to the evaluation map for m̊t on the disc fibers over
∂Dt . The mappings Jt depend continuously on t .

For each neighbourhood V of κ the number ε and the arcs At may be chosen so that⋃
t∈[0,1] Jt (Qt ) ⊂ V .

Let Kt denote the following compact subset of D ∪T ax
t : Kt

def= rD ∪ [r,1] ∪T ax
t . (Recall

that for each t we denote by T ax
t the tree of the axon of the neuron nt .) Note that Kt is a

compact subset of Dt ∪ A0
t . For t close to 1 Kt = rD ∪ [0,2].

By Lemma 17 there is a continuous family of mappings Ht ∈ AX2(Dt × D) such that

for an arbitrary point z ∈ ∂D the mappings f z
t , t ∈ [0,1], f z

t (ζ )
def= Ht (ζ, z), ζ ∈ Dt, de-

fine a continuous family of analytic discs with boundary in V satisfying the inequality
maxKt |ψt −f z

t | < ε for all t ∈ [0,1]. Moreover, by the special choice of ψ0 = �0 Lemma 17
implies that the disc f z

0 (D) is entirely contained in G.
Fix a point z ∈ ∂D. An application of Lemma 9 to the family f z

t produces a family of
immersed discs ft with all above listed properties preserved. In particular the boundaries of
the discs ft (∂D) are contained in V .

Take an arbitrary point p ∈ �1(D). Choosing r close enough to 1 we may assume that
p ∈ �1(K1). Further, we may assume that the family ft is chosen so that p ∈ f1(K1).
(This can be achieved considering, in case X2 = C

2, small translations of the discs of the
family and in the general case by applying compactly defined holomorphic mappings close
to the identity on X2.) We proved that p is contained in the projection P̂(Ĝ).

To choose a standard lift of a neighbourhood of p to Ĝ we reparametrize f1.
More precisely, consider the composition f1 ◦ ϕ1 with a conformal mapping ϕ1 from the
unit disc onto D1 such that f1 ◦ ϕ1(0) = p. For a number r < 1 and close to 1 we con-
sider the function ζ → f1 ◦ ϕ1(rζ ) and denote it by dp . Let d̂p be the equivalence class
represented by dp .
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Consider a standard neighbourhood P̂ : V̂ → Qp of d̂p associated to the representative dp

(see Sect. 4). Here Qp is a neighbourhood of p in X2, P̂ is biholomorphic and for q ∈ Qp

the classes d̂q = (P̂|V̂ )−1(q) are represented by a continuous family of analytic discs dq .
For q = p the disc coincides with the one defined before.

It remains to see that this standard lift of Qp to Ĝ is compatible with the lift �̂ of �.

More precisely, let (t, z′) ∈ [0,1) × D be close to (1, z), so that q
def= �(t, z′) is contained

in Qp . We have to prove the following Lemma 22.

Lemma 22 The equivalence classes d̂q and �̂(t, z′) coincide.

Proof of Lemma 22 Recall that for t close to 1 φ̂t |∂D = �̂t |∂D. For t < 1 close to 1 we

extend φ̂t to D by φ̂t |D def= �̂t . It is enough to find two curves γ̂d and γ̂� in Ĝ with equal
projections P̂ ◦ γ̂d = P̂ ◦ γ̂� such that for the initial points of the curves γ̂d (0) = d̂q and
γ̂�(0) = �̂(t, z′)(= φ̂(t, z′)) and the terminating points of the curves γ̂d and γ̂� coincide.

Each curve will be the sum of two curves. To define the first part of γ̂� we choose a
number a ∈ [0,2) close to 2 and let β : [0,a] → {t}×Kt be a curve that joins the point (t, z′)
with the point (t,a). Recall that for t close to 1 the set Kt has the form rD ∪ [0,2]. Define
the first part of γ̂� by γ̂�(τ ) = φ̂(β(τ )), τ ∈ [0,a]. Hence, as required γ̂�(0) = φ̂(t, z′). For
the projected curve we have P̂ ◦ γ̂�(τ ) = φ(β(τ)), τ ∈ [0,a].

Since for t close to 1 the point 2 is the tip of the axon tree T ax
t the inclusions φ1(2) =

φ(1,2) ∈ κ , φ̂(1,2) = î ◦ φ(1,2) ∈ î(G) hold (see the end of Sect. 10). Hence we may
assume that φ(β)(a) is contained in the neighbourhood V of κ and φ̂(β(a)) = î ◦ φ(β(a))

is in î(G).
To define the first part of γ̂d we find a continuous family of G-discs dτ that are all close

to dq and have center dτ (0) = φ(β(τ)) so that d0 = dq . For this we recall that f1 is 2ε-close
to φ1 on K1 (since it is ε-close to ψ1 on K1 and ψ1 is ε-close to φ1 on ν1) and φ1 = �1 on D.
Also, dp differs from f1 by a reparametrization. Further, if (t, z′) is close to (1, z) then dq is
ε-close to dp on D. Moreover, for t close to 1 maxK1 |φ(t, z) − φ(1, z)| < ε. Hence, in case
X2 = C

2, there are points zτ ∈ D depending continuously on τ ∈ [0,a] and a continuous
family of translations dτ

q of dq such that the relation dτ
q (zτ ) = φ(β(τ)), τ ∈ [0,a], holds

and d0
q = dq . For general X2 instead of translations one can use a continuous family of

compactly defined holomorphic maps close to the identity on X2. Renormalize the discs dτ
q

so that the centers become φ(β(τ))) and let γ̂d (τ ) be the equivalence class represented by

the renormalized disc dτ def= dτ
q ◦ ϕzτ .

For defining the second part of the curves we consider an arc γ : [a,3] → V ⊂ G ⊂
X2 which joins the point φ(β(a))) with a point q1 in the image dp(D) = f1 ◦ ϕ1(rD)

which is close to φ1(2) = φ(1,2) ∈ κ . Define γ̂� on [a,3] to coincide with the lift
î ◦ γ of γ .

To define γ̂d on [a,3] we consider again a continuous family of small perturbations of
dq such that for each τ the respective disc passes through γ (τ), for τ = a the disc coincides
with the disc da

q defined before and for τ = 3 the disc equals dp .
Reparametrize the discs so that the centers become γ (τ), and consider the equivalence

classes represented by the reparametized discs. We obtain a curve γ̂d |[a,3] which is the
second part of γ̂d . Note that γ̂d (3) is represented by a reparametrization of dp for which
the center is the point q1. With a suitable choice of q1 ∈ dp(D) we may assume that the
conditions of Lemmas 7 are satisfied and, hence, γ̂d (3) coincides with the class represented
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by small discs in G centered at γd(3). Since the same is true for φ̂(γ (3)) the proof of
Lemma 22 is completed. �

Lemma 13 and, hence, the theorem are proved. �

12 Proof of the corollaries

Proof of Corollary 1 By Theorem 1 and Lemma 1 for each point p in the envelope of
holomorphy G̃ there exists an immersed analytic disc d̃ : D → G̃ such that d̃(0) = p and
d̃(∂D) ⊂ i(G) ⊂ G̃.

We may assume that d̃ extends to an analytic immersion of (1 + ε)D for some positive
number ε. The mapping can be uniformly approximated on (1 + 1/2ε)D by an immersion
of the disc with only double self-intersection points and transversal self-intersection. This is
a standard Morse-Sard type argument. The obtained disc can be considered as a nodal curve
with boundary, i.e. as a singular Riemann surface with boundary all singularities of which
are nodal singularities. By results of Ivashkovich and Shevchishin on the moduli space of
Riemann surfaces (see [10], Theorem 3.4 and Lemma 3.8) the nodal curve is uniformly close
to a smooth Riemann surface embedded into G̃. �

Remark Theorem 1 (respectively, its analog for dimensions n > 2) implies the result of
[13] that the natural homomorphism ϕ : π1(G) → π1(G̃) induced by inclusion is surjective.
Indeed, by the following argument any closed curve γ in G̃ is homotopic in G̃ to a curve in
i(G). Take an excrescence γ ∗ of γ , γ ∗ : ∂D → G̃, which lifts to a mapping γ̊ ∗ : ∂D → G0.
Note that γ ∗ is homotopic to γ . Let γ̊ ∗(ζ )(z), ζ ∈ ∂D, z ∈ D, be the evaluation mapping.
The curve ζ → γ̊ ∗(ζ )(1) is homotopic in G̃ to γ ∗and contained in i(G).

Proof of Corollaries 2 and 3 Consider the following slightly more general situation which
includes the case of each of the two corollaries. Let S be an orientable compact connected
surface with or without boundary. Let f : S → G̃ be a continuous mapping. If the boundary
∂S is not empty we will assume that f (∂S) ⊂ i(G). In case of a closed surface S we think
about f : S → G̃ representing a homology class in H2(G̃). The case when S = b2 is a
disc corresponds to the homotopy of the loop representing an element in the kernel of the
homomorphism ϕ in Corollary 3. We may always deform the surface so that f (S) contains
the point p. Say p = f (ζ ∗).

Since G̃ = Ĝ and locally each mapping into Ĝ lifts to a mapping into G0 we may consider
a simplicial decomposition of S which is fine enough so that the following properties hold:

(1) On each 2-simplex σj of the decomposition there is a continuous lift f̊j : σj → G0 of

fj
def= f | σj to G0.

(2) Consider an arbitrary edge ek of the simplicial complex. Let σi and σj be the adjacent
2-simplices. For ζ ∈ ek we denote by (f̊i(ζ ), f̊j (ζ )) the equivalent discs corresponding
to the two simplices by property (1). We require that there is a family of dendrites
Ti,j (ζ ) with punctured halo associated to the family (f̊i(ζ ), f̊j (ζ )) of pairs of discs by
Lemma 5, depending continuously on the point ζ and such that the underlying trees of
the dendrites are homeomorphic.

(3) The point ζ ∗ is a vertex of the simplicial decomposition.

We will use now properties (1) and (2) to obtain a homotopy of the mapping f to a new
mapping f 1 : S → G̃ with the following property. There is a tree T ⊂ S such that f 1|S \ T
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lifts to G0. Moreover, the lifted mapping extends continuously to the pellicle of T (the latter
defined in the above sense assuming a simply connected neighbourhood of T in S being
extended to a sphere).

To find a suitable tree T we will color each 1-simplex either white or black in such a way
that the union of black simplices constitutes a (connected) tree which contains each of the
vertices of the triangulation. The coloring is done as follows. Since S is connected the union
of all 1-simplices (edges) of the triangulation is connected. If the boundary ∂S is not empty
then all edges contained in it are colored white. Since for each 2-simplex no more than one
adjacent edge is contained in ∂S the union of uncolored edges is connected and contains
all vertices of the triangulation. If the union of uncolored edges contains a closed loop we
give white color to one of the edges constituting the loop. The union of uncolored edges still
constitutes a connected set and contains all vertices. After finitely many steps the union of
uncolored edges is a connected set without closed loops containing all vertices. Color the so
far uncolored edges black. We obtained a coloring with the desired properties. Denote the
tree constituted by the union of all black edges by T′.

Consider the barycentric subdivision of the simplicial complex. Associate to each edge
ek of the original complex the union σ̃k of those four 2-simplices of the subdivision that
contain a “half” of ek . The σ̃k have pairwise disjoint interior and cover S.

Let ek be a white edge. We describe now a homotopy of the restriction f |σ̃k to a map-
ping f 1|σ̃k which fixes the values at the boundary of σ̃k . Let σi and σj be the 2-simplices
of the original simplicial complex that are adjacent to ek and let Ti,j (ζ ), ζ ∈ ek, be the den-
drites associated to ek according to property 2. Let further mi,j (t, ζ ), t ∈ [0,1], ζ ∈ ek, be a
parametrization of the pellicles of the trees Ti,j (ζ ) depending continuously on ζ .

Cut σ̃k along ek and glue back the union
⋃

t∈[0,1],ζ∈ek
mi,j (t, ζ ) with the natural glu-

ing homeomorphism on the two sides of ek (the point mi,j (0, ζ ) (respectively, the point
mi,j (1, ζ )) is identified with the point on the side of σi (respectively, σj ) over ζ ∈ ek). We
obtain a (singular) closed square σ ∗

k . The mapping f |σ̃k extends to a continuous mapping on
σ̃k ∪⋃

t∈[0,1],ζ∈ek
Ti,j (ζ ), moreover, it extends to a continuous mapping f ∗

k on σ ∗
k which lifts

to G0. Moreover, reparametrize σ ∗
k in the following way. Consider disjoint trees T0 = T k

0 and
T1 = T k

1 , both homeomorphic to the underlying tree of the dendrites Ti,j (ζ ), having their
root respectively at the endpoints ζ0 and ζ1 of the edge ek , being contained in σ̃k and each
meeting the boundary of σ̃k exactly at its root.

Let ϕ be a homeomorphism of the set σ̃k \ (T0 ∪ T1) onto σ ∗
k \ (Ti,j (ζ0) ∪ Ti,j (ζ1)) which

is the identity on the boundary ∂σ̃k . Require, moreover, that ϕ extends continuously to the
pellicle of T0 (T1, respectively) and maps it homeomorphically onto the pellicle of Ti,j (ζ0)

(Ti,j (ζ1), respectively). Put f 1|σ̃k \ (T0 ∪T1)
def= f ∗

k ◦ϕ|σ̃k \ (T0 ∪T1). This mapping extends
to a continuous mapping on σ̃k , also denoted by f 1. Since each rooted tree is contractible to
its root and the construction can be made for subtrees and so that it depends continuously
on the choice of subtrees, the mappings f |σ̃k and f 1|σ̃k are homotopic.

As required, the restriction f 1|σ̃k \ (T0 ∪ T1) lifts to G0. The lift extends continuously to
the punctured pellicle of T0 and T1. Attach the trees T0 = T k

0 and T1 = T k
1 to T′.

Proceed in the same way with each of the white edges. We obtain a new tree T ⊂ S and
a homotopy of f on the whole of S to a mapping f 1. The restriction f 1|S \ T of the final
mapping f 1 admits a lift f̊ 1 to G0 which extends continuously to the pellicle of the tree T.

Approximate the mapping f 1 : T → G̃ of the tree by a true analytic disc f 2 : � → G̃.
Here � denotes a small simply connected neighbourhood of T on S which we endow with
complex structure. Extend the mapping to a continuous mapping f 2 : S → G̃ which equals
f 1 outside a small neighbourhood of the closure �. If f 2 is close to f 1 on S then the two
mappings are homotopic and f 2|S \ � lifts to a mapping f̊ 2|S \ � → G0.
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Note that the (images of the) circle fibers
⋃

ζ∈S\� f̊ 2(ζ )(∂D) are contained in G.
Moreover, there is an open subset U0 of S such that for ζ ∈ U0 the (image of the) whole
disc fiber f̊ 2(ζ )(D) is contained in G. For each k the points in σ̃k which are close to a leaf
of T k

0 or T k
1 belong to U0. If � is a sufficiently small neighbourhood of T its boundary

∂� intersects U0 since T contains the trees T k
0 and T k

1 for each white edge ek . Hence, the
mapping f 2|� is a disc neuron and the restriction f̊ 2|∂� is its halo.

We may consider the lift f̊ 2 of f 2 up to approximating it outside U0 and changing it
on the set U0. More precisely, consider lifts F̊ 2 of f 2 on S \ � such that F̊ 2 is close to
f̊ 2 outside U0 and for all ζ in U0 the property F̊ 2(ζ )(D) ⊂ G holds. We call such lifts F̊ 2

admissible changes of f̊ 2.
Lemma 17 and 18 apply to f 2|� and its halo (and the Stein manifold G̃). Lemma 18 pro-

vides an approximation (take, for instance, the mapping H(ζ, ·) in the notation of Lemma 17)
of f̊ 2(ζ ), ζ ∈ ∂� \ U0, and (the proof of) Lemma 17 states that after changing the ap-
proximating mapping on U0 we obtain a new lift f̊ 3 on ∂� of the same mapping f 2|∂�

such that the Riemann-Hilbert boundary value problem is solvable: There exists a section
∂� � ζ → f̊ 3(ζ )(g(ζ )) ∈ ⋃

ζ∈∂� f̊ 3(ζ )(∂D) which coincides with the boundary values of

an analytic disc in G̃. This disc is a G-disc. Denote it by F(ζ ), ζ ∈ �. The mappings
� � ζ → f̊ 3(ζ )(rg(ζ )) ∈ ⋃

ζ∈∂� f̊ 3(ζ )(D), r ∈ [0,1], provide a homotopy of mappings

into G̃ joining f 2|� with F |�.
Extend f̊ 3 to the whole set S\� as a continuous lift of f 2 such that the extended mapping

equals f̊ 2 outside a neighbourhood of ∂�. Denote the mapping again by f̊ 3. After admissi-
ble changes of the mapping f̊ 3 on U0 it remains to find a section S \ � � ζ → f̊ 3(g(ζ )) ∈⋃

ζ∈S\� f̊ 3(ζ )(∂D) extending the section found before on ∂�. Since U0 intersects σ̃k for
each white edge ek this is always possible. The new mapping F is now defined on S \ �

by this section: F(ζ ) = f̊ 3(g(ζ )), ζ ∈ S \ �, and the homotopy is given by f̊ 3(rg(ζ )),
r ∈ [0,1].

Note that the disc � contains the point ζ ∗. The construction can be made in such a way
that F is close to f in a neighbourhood of ζ ∗. A small perturbation of the surface F : S → G̃

will pass through p.
Corollaries 2 and 3 are proved. �

Proof of Corollaries 4 and 5 The proof uses Corollaries 2 and 3. Let 
 be a strictly pseudo-
convex domain in a Stein surface X2, 
 = {ρ < 0} for a strictly plurisubharmonic function ρ

defined in a neighbourhood of the closure 
 of 
. Let G = {0 < ρ < ε} for a small positive

number ε so that ρ does not have critical points in G. Then G̃ = 
ε
def= {ρ < ε}. Denote by

I a retraction of 
ε onto 
.
Let f : S → 
 be a continuous mapping of an orientable connected compact surface. If

the boundary ∂S is not empty we require that f (∂S) ⊂ 
. Consider f as a mapping into
G̃ = 
ε . If ∂S is not empty we perturb the mapping slightly so that f (∂S) ⊂ G. By the
proof of the Corollaries 2 and 3 there is a homotopy of f (in 
ε) to a mapping F1 : S → 
ε

and a disc � ⊂ S such that F1|� is an analytic disc and F1(S \ �) is contained in G. We
may assume that � is not empty. After a small perturbation of F1 the analytic disc F1(�)

has no self-intersection points on ∂
 and intersects ∂
 transversally. Let �1 be the subset

of � that is mapped into 
: �1
def= {ζ ∈ � : F1(ζ ) ∈ 
}. By the maximum principle for the

function ρ the set �1 is the union of simply connected planar domains. If �1 is connected
then I ◦ F1 is the desired mapping.

If �1 is not connected, let δ1, . . . , δN be its connected components. There are pairwise
disjoint arcs γ1, . . . , γN−1 on � without self-intersections such that γi joins a point in ∂δi
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with a point in ∂δi+1 and does not meet the union of the δi otherwise. After a further (small)
homotopy of the mapping F1|� \ ⋃

δi inside 
ε \ G which fixes the mapping on the union
of the boundaries

⋃
∂δi we may assume that the arcs F1(γi) are contained in ∂
, are pair-

wise disjoint without self-intersection points and meet the union of the F1(∂δi) exactly at
the endpoints of the arcs. After approximating the arcs and the mapping F1 we may assume
that the arcs are Legendrian arcs in ∂
. (It is well-known in contact geometry that arbi-
trary curves in contact manifolds may be C0 approximated by Legendrian curves, for an
elementary proof see, e.g. [7]). We arrived at the union of analytic discs with Legendrian
arcs F1 : ∪δi ∪ ⋃

γi → 
.

Lemma 23 Let E ⊂ C be a connected compact simply connected set consisting of the union
of pairwise disjoint closed discs and pairwise disjoint arcs meeting the discs at most at their
endpoints. Let 
 be a relatively compact strictly pseudoconvex domain in a Stein surface X2

and let f : E → 
 be a continuous mapping for which the restriction to each closed disc in
E is an analytic disc with boundary in ∂
 and each of the arcs is a Legendrian arc in ∂
.

Then the mapping can be approximated by a true analytic disc F : � → 
 with boundary
in ∂
. Here � is a simply connected planar domain with E ⊂ � and � is contained in
a small neighbourhood of E. Moreover, if z is the tip of an arc in E (not contained in
the boundary of any of the closed discs in E) then � can be chosen so that z ∈ ∂� and
F(z) = f (z).

The lemma seems to be folklore but we have no direct reference. After the proof of the
Corollaries we will sketch the proof.

The lemma allows to find a homotopy of F1 to a mapping F2 : S → 
ε such that for a
simply connected domain �2 ⊂ � the restriction F2|�2 is an analytic disc with boundary
in ∂
 and the set F(S \ �2) is contained in 
ε \ 
. Composing F2 with the retraction I

finishes the proof. �

It remains to sketch the proof of Lemma 23. Notice that the lemma also implies the
following fact. The boundary of the disc of Corollary 5 which represents an element of the
fundamental group of ∂
 can be chosen to pass through a given base point p ∈ ∂
.

Sketch of the proof of Lemma 23 Notice that after approximating we may assume that for
each analytic disc f (δj ) contained in f (E) the mapping f extends to an analytic immersion
of a larger disc δ′ ⊃ δ to a neighbourhood of 
 in X2 (keeping the condition f (∂δ) ⊂ ∂
).
Consider a small connected neighbourhood V of f (E \ IntE). (The set f (E \ IntE) is the
union of the boundaries of the analytic discs contained in f (E) and the Legendrian arcs.
Notice that f (E \ IntE) ⊂ ∂
.) With each of the analytic discs fi : δ′

i → X2 we associate
(as in Sect. 4) a Riemann domain Ri over X2 (biholomorphic to δ′

i × εiD for some εi > 0)
to which the disc lifts as an embedded disc. Consider the disjoint union of the Riemann
domains Ri and glue each Ri in a natural way to V along a neighbourhood of the respec-
tive circle f (∂δi). Shrinking the Riemann domains and the domain V suitably we obtain a
(strictly) pseudoconvex Riemann domain R over X2 which is diffeomorphic to a ball (see
[21] where the method of gluing tubular neighbourhoods of arcs to strictly pseudoconvex
domains to obtain strictly pseudoconvex domains appeared first).

Denote by M the lift of V ∩∂
 to R. M is a relatively closed hypersurface in R which is
strictly pseudoconvex from one side. The lifts to R of the analytic discs contained in f (E)

extend to embedded relatively closed analytic discs in R, denoted by Fi(D). Denote the
lifts of the arcs in f (E) by γi . The γi are Legendrian arcs in M . To each γi we associate
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a chain of small analytic discs gk : D → R, k = 1, . . . ,N, so that gk(∂D) ⊂ M , g1(−1) is
an endpoint of γi , gk(1) = gk+1(−1), k = 1, . . . ,N − 1, and gN(1) is the other endpoint of
γi . The discs may be taken to be intersections with the pseudoconvex side of M of complex
lines in suitable coordinates. By further shrinking the Riemann domain we assume that these
discs extend to relatively closed embedded analytic discs in R which meet transversally and
do not meet the Fi(D) except at g1(−1) and possibly gN(1). We may assume that the latter
intersections are also transversal. We obtained a finite collection of relatively closed discs
in R. Since R is diffeomorphic to a ball, each disc is the zero set {Fi = 0} of an analytic

function Fi on R. For a generic choice of a small number η the set Xη
def= {∏ Fi = η} ∩ 


is an analytic disc (see, e.g. [16], Lemma 3.7). If γi is an arc with the second endpoint not
contained in the boundary of any of the analytic discs Fi(∂D) we may adjust the choice of
the last small disc gN and the number η so that the boundary of the disc Xη passes through
the endpoint of γi .

The lemma is proved. �
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