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Abstract

Background: Hantzsch 1,4-dihydropyridines (Hantzsch1,4-DHP) have been extensively utilized as the analogs of
nicotinamide adenine dinucleotide (NADH) coenzyme to study the mechanism and various redox processes. During
the redox processes 1,4-DHP systems undergo transformation into the corresponding pyridine derivatives through
oxidation. Consequently, the interest in this aromatization reaction, investigation of a wide range of 1, 4-DHPs
continues to attract the attention of researchers. Herein, we report the preparation of pyridine derivatives and the
crystal structures determined by X-ray crystallographic methods.

Results: The crystal structures and conformational studies of two organic compounds, namely ethyl 2-methyl-4-
phenyl-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate (I) and ethyl 2-methyl-4-(4 chlorophenyl)-5-oxo-5H-indeno
[1,2-b] pyridine-3-carboxylate (II) are reported. The terminal ethyl group of the compound I is disordered over two
positions with the refined occupancies of 0.645 & 0.355 and C8 one dimensional zig-zag chain running along 101
direction through C-H…O type of intermolecular interactions. In the compound II, C-H…O interactions connect the
molecules to form an R22 (16) dimer running along 011 direction.

Conclusion: The crystal structures ethyl 2-methyl-4-phenyl-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate and ethyl
2-methyl-4-(4 chlorophenyl)-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate have been investigated in detail. The
terminal ethyl group of compound I is disordered. In compound II, the substitution of Cl atom in the phenyl ring
alters the configuration of carboxylate group with respect to the pyridine indane ring.
Background
Hantzsch 1,4-dihydropyridines (Hantzsch1,4-DHP) have
been extensively utilized as the analogs of nicotinamide
adenine dinucleotide (NADH) coenzyme to study the
mechanism and the synthetic potential of various redox
processes [1,2]. Hantzsch 1,4-DHP based drugs such as
nifedipine and niguldipine are widely used as calcium
channel blockers for the treatment of cardiovascular
disorders including angina, hypertension and cardiac ar-
rhythmias [3]. During the redox processes and in the
course of drug metabolism [4], 1,4-DHP systems are
oxidatively transformed into the corresponding pyridine
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derivatives. Consequently, this aromatization reaction
continues to attract the attention of researchers to es-
tablish a general protocol applicable to a wide range of
1,4-dihydropyridines. A number of methods and re-
agents have been reported recently in the literature for
this purpose [5-14].
Some of these methods suffer from disadvantages such

as the use of strong or toxic oxidants, the requirement
of severe conditions or need excess of the oxidants.
Other drawbacks are the long reaction times, production
of by-products, the lower yields of products and/or the
requirement of tedious work-up procedures.
N-Bromosuccinimide (NBS) is a versatile reagent

for the oxidation of primary and secondary alcohols,
α-hydroxycarboxylic acids [15], α-hydroxycarboxylic esters
[16], hydrazines and hydrazones [15]. In addition, NBS is
preferred for allylic bromination. While hydroxy acids like
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Scheme 1 Synthesis scheme of the dihydropyridines.
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malic acid, tartaric acid, citric acid etc. are converted
to aldehydes and ketones, polyhydric alcohols (glycol,
glycerol and hexitols) are quantitatively decomposed
to carbon dioxide and water [17] with NBS. NBS also
promotes reactions of sterically hindered cresols via
p-benzoquinone methide [18].
Having synthesized a number of 1, 4-dihydropyridines

derived from indane-1,3-dione, we have dehydroge-
nated them to the corresponding pyridines. The re-
agent of the choice for effecting dehydrogenation is
NBS in methanol (Schemes 1 and 2). This reagent was
earlier employed to effect dehydrogenation of simple
dihydropyridines [19].

Experimental
The title compounds reported in the present work were
prepared by the following procedure [19,20].

Preparation of 4a-b
To an alcoholic solution (50 mL) of indane-1,3-dione
2 (0.01 mol), appropriate aromatic aldehydes 1a-b
(0.01 mol), ethyl acetoacetate 3 (0.01 mol), ammonium
acetate (0.02 mol) and a drop of piperidine were added
and the mixture was refluxed for 1 hr. The reaction
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Scheme 2 Synthesis scheme of the compounds I and II.
mixture was concentrated to half of its original volume
and allowed to cool in an ice-chest. The solid 4a-b
thus separated was filtered, washed with ice cold
aqueous ethanol and crystallized from petroleum ether
(60–80°C)-chloroform (1: 1) (Scheme 1).

Preparation of 5a-b
To a solution of ethyl 2-methyl-4-aryl-5-oxo-1H,4H-indeno
[1,2-b] dihydropyridine-3-carboxylate 4a-b (0.5 g, 1.87 mmol)
in methanol (10.0 mL), N-bromosuccinimide (0.33 g,
1.87 mmol) was added and the reaction mixture was
stirred at room temperature. The colour of the solution
changes immediately and the reaction proceeds instantan-
eously within five minutes. The course of the reaction was
monitored by TLC. The reaction mixture was diluted with
water (50 mL) and extracted with chloroform (3 × 20 mL).
The organic layer was separated, dried over anhydrous
sodium sulfate and filtered (Scheme 2). Evaporation of the
solvent afforded the products ethyl 2-methyl-4-phenyl-5-
oxo-5H-indeno [1,2-b] pyridine-3-carboxylate (Scheme 3)
or ethyl 2-methyl-4-(4-chlorophenyl)-5-oxo-5H-indeno
[1,2-b] pyridine-3-carboxylate respectively in excellent
yields (Scheme 4). For compound (5a): Yield 96%; M.p.
212˚C. For compound (5b): Yield 89%; M.p. 198˚C.
R=5a (I) =C6H5
R=5b (II) =4-Cl-C6H4
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Scheme 3 Scheme showing the structural formula of
compound I.
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Results and Discussion
In both the compounds, the indenopyridine ring is
almost planar, with r.m.s deviation of 0.035(2) Å [C3]
and 0.087(2) Å [C11] for compounds I and II, respect-
ively. The keto atom O substituted in the indenopyri-
dine in both the molecules are slightly out of plane
[0.048(2) & 0.217(1) Å for I & II]. The substitution of
the Cl atom in the phenyl ring plays a vital role while
packing the molecules in the unit cell and promotes
the change of conformation of the carboxylate group.
This is evidenced from the torsion angle values of
[C10-C11-15-O2] and [C12-C11-C15-O2] 114.5(2)°
& -63.5(2)° for (I) and −74.9(2)° & 114.0(1)° for (II),
respectively. The terminal ethyl group in compound I
is disordered over two positions with refined occupancies
of 0.645 & 0.355. The phenyl ring and indenopyridine
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Scheme 4 Scheme showing the structural formula of
compound II.
rings are oriented by an angle of 67.8(1)˚ in compound
(I) which is almost similar in compound (II) amounting
the value of 55.2(1)˚. The overall conformations in
both the molecules are similar as can be seen from the
superimposed rmsd value 0.154 Å (Figure 1). Both the
structures are stabilized by C-H…O type of intra and
intermolecular interactions. In compound I, molecules
at (x, y, z) and (x + 1/2, −y − 1/2, z + 1/2) are linked
through intermolecular C20-H20…O1 hydrogen bond
to form a C8 zig-zag chain (Figure 2) running along
101 direction [21]. The combination of C5-H5…O3
and C22-H22…O1 intermolecular hydrogen bonds,
lead to the formation of a R2

2 (16) ring motif chain
running along [0 1 1] direction (Figure 3), observed in
compound II.
X-ray Crystallography
Single crystal X-ray intensity data for the compounds
(I) and (II) were collected using a Bruker Kappa APEX
II area-detector diffractometer with MoKα (0.71073 Å)
radiation at room temperature (293 K). The data re-
duction was carried out using the program SAINT
[22]. The absorption corrections were applied using
the Multi-scan method using SADABS program [23].
The structures of both the compounds were solved by
direct methods using SHELXS97 [24] and all the non-
hydrogen atoms were refined anisotropically by full-matrix
least-squares on F2 taking all the unique reflections
using SHELXL97 [24]. The hydrogen attached with
carbon atoms were placed in their calculated positions
and included in the isotropic refinement using the riding
model with C–H= 0.93 Å (−CH) or 0.97 Å (−CH2) Å or
Figure 1 The conformation of both the molecules, as seen from
the superimposition of the planar indenopyridine rings.



Figure 2 Figure showing the intermolecular hydrogen bonds resulting in C8 zig-zag motif in compound (I).

Figure 3 Figure showing the intermolecular hydrogen bonds resulting in R22 (16) ring motifs chain running along 0 1 1 direction in
compound (II).
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Table 1 The crystal data, experimental conditions and structure refinement parameters for the compounds (I) and (II)

Parameters Compound (I) Compound (II)

Empirical formula C22H17NO3 C22H16ClNO3

Formula weight 343.37 377.81

Wavelength 0.71073 Å

Crystal system, space group Monoclinic, P21/n Triclinic, P-1

Unit cell dimensions a = 7.5078(5) Å a = 9.7750(8) Å; α = 113.199(2)˚

b = 21.0935(15) Å b = 9.8262(4) Å; β = 102.572(3)˚

c = 11.5058(3) Å c = 10.8687(5) Å; γ = 99.791(3)˚

β = 104.876(2)˚

Volume 1761.1(2) Å3 897.65(9) Å3

Z, Calculated density 4, 1.295 g/cm3 2, 1.398 g/cm3

Absorption coefficient 0.086 mm−1 0.236 mm−1

F (000) 720 392

Crystal size 0.23 × 0.20 × 0.19 mm3 0.22 × 0.18 × 0.17 mm3

Theta range for data collection 1.93 to 30.48˚ 2.15 to 30.99˚

Limiting indices −10 ≤ h≤ 10, −30≤ k ≤ 30, −15 ≤ l≤ 16 −13 ≤ h≤ 14, −14≤ k ≤ 14, −15 ≤ l≤ 15

Reflections collected/unique 5323/2998 5580/4173

[R (int) = 0.032] [R (int) = 0.0261]

Completeness 99.4% 97.5%

Absorption correction Multi-scan

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 2998/0/238 5580/0/244

Goodness-of-fit on F2 1.008 1.051

Final R indices [I > 2σ (I)] R1 = 0.0574, wR2 = 0.1494 R1 = 0.0464, wR2 = 0.1334

R indices (all data) R1 = 0.1047, wR2 = 0.1819 R1 = 0.0638, wR2 = 0.1470

Extinction coefficient 0.0098(18) 0

Largest diff. peak and hole 0.333 and −0.240 e.Å−3 0.393 and −0.332 e.Å−3
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0.96 Å (−CH3) Å with Uiso (H) = 1.2Ueq (parent C atom).
The crystal data, experimental conditions and struc-
ture refinement parameters for the compounds (I) and
(II) are presented in Table 1. Table 2 gives the geom-
etry of the intra and intermolecular interactions. The
Table 2 The geometry of the hydrogen bonds (Å, ˚)
D-H…A D (D-H) D (H…A) D (D…A) <(DHA)

Compound (I)

C (20) -H (20)…O (1)i 0.93 2.40 3.232(3) 149

Compound (II)

C (14)-H (14A)…O (2) 0.96 2.44 3.132(2) 128

C (5)-H (5)…O (3)ii 0.93 2.60 3.472(2) 157

C (22)-H (22)…O (1)iii 0.93 2.58 3.458(2) 157

C (16) -H (16A)…Cg(3)iv 0.97 2.72 3.566(2) 146

Symmetry transformations used: (i) x + 1/2, −y − 1/2, z + 1/2; (ii) x, y-1, z-1;
(iii) 1-x,-y,-z;(iv) -x,-y,-1-z; Cg3 centroid atom of the ring (C2-C7).
molecular structure of compounds (I) and (II) with the
atom numbering scheme using ORTEP3 [25] are given
in Figure 4 and Figure 5, respectively. The least-squares
plane, geometrical and puckering parameters of both
the compounds were calculated using PLATON software
package [26-28].
Conclusions
The title compounds were synthesized, crystallized
and the crystal structures have been determined by
single-crystal X-ray diffraction methods. The terminal
ethyl group of the compound I is disordered over two
positions with the refined occupancies of 0.645 &
0.355. C-H…O intermolecular hydrogen bond builds
up a one dimensional zig-zag chain running along 101
directions. In compound II, C-H…O hydrogen bonds
connect the molecules to form a R2

2 (16) dimer chain
running along 011 direction.



Figure 4 ORTEP plot of compound (I) showing with atoms ellipsoids are drawn at 40% probability level.

Figure 5 ORTEP plot of compound (II) showing with atoms ellipsoids drawn at 40% probability level.
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