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Abstract By using a recently obtained set of Lambda frac-
ture functions, we present predictions for Lambda produc-
tion in the target fragmentation region of semi-inclusive deep
inelastic scattering in CLAS@12 GeV kinematics, supple-
mented with a conservative error estimate. We discuss a num-
ber of observables sensitive to the assumptions of the under-
lying theory and many of the assumptions of the proposed
phenomenological model.

1 Introduction

Hadron production in Semi-Inclusive Deep Inelastic Scatter-
ing (SIDIS) is usually described in terms of universal parton
distributions and fragmentation functions. Thanks to the fac-
torisation theorem, hadronic cross sections are obtained by
convoluting short-distance partonic cross sections, calcula-
ble in perturbation theory, with such distributions. To lowest
order in the strong coupling, this mechanism is expected to
describe hadron production in the so-called current fragmen-
tation region, i.e. the phase space region in which the struck
parton hadronises. In order to obtain a global description of
the particle production spectrum, and in particular of hadron
production in the target fragmentation region, the introduc-
tion of new non-perturbative distributions is mandatory. This
issue was early realised in Ref. [1] where the concept of
fracture functions was introduced. The latter parametrise the
hadronisation into the final-state hadron of the coloured spec-
tator system which results from the removal of the scat-
tered parton from the initial-state hadron. For this reason,
their flavour and energy dependecies are expected to be
significantly different from fragmentation functions which
parametrise the fragmentation of a single parton into the
observed hadron. Fracture functions, by construction, simul-
taneously encode information both on the parton partici-
pating the hard scattering and on the fragmentation of the
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spectator system into the observed hadron. Therefore they
constitute the connection between forward particle produc-
tion at small transverse momentum (i.e. target fragments)
and high momentum transfer processes (i.e. DIS). Although
intrinsically of non-perturbative nature, the scale dependence
of such distributions can be predicted by perturbative QCD
[1]. Fracture functions obey, in fact, DGLAP [2–4] inho-
mogeneous evolution equations which result from the struc-
ture of collinear singularities in the target fragmentation
region [1,5]. Moreover, a dedicated factorisation theorem
[6,7] guarantees that fracture functions are universal distri-
butions, at least in the context of SIDIS. Among baryons,
Lambda hyperons are predominantly produced in the SIDIS
target fragmentation region and show a significant leading
particle effect, i.e. they carry a significant fraction of the
incoming proton momentum. For such reasons they have
been used as a case study and a first attempt to determine
Lambda fracture functions has been recently presented in
Ref. [8] by performing a simultaneous QCD fit to a variety of
semi-inclusive Lambda production data collected in lepton–
nucleon scattering. In the present paper, by using this model,
we present predictions for Lambda observables in the target
fragmentation region of neutral-current (NC) deep inelastic
scattering (DIS) focusing on CLAS@12 GeV kinematics.
The paper is organised as follows. In Sects. 2 and 3 we first
briefly review the inclusive and semi-inclusive DIS cross sec-
tions in lepton–nucleon scattering. In Sect. 4 we review some
details of the modelisation of Lambda fracture functions. In
Sect. 5 we present and discuss a number of observables sen-
sitive to the assumptions adopted in the model which can be
used to further constrain it. Finally, in Sect. 6 we summarise
our results.

2 Inclusive DIS

The deep inelastic scattering cross section of a lepton l off a
proton p,
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l(k) + p(P) → l(k′) + X, (1)

with four-momenta k and P , respectively, is usually described
in terms of the invariants:

xB = Q2

2P · q , y = P · q
P · k = Q2

(s − m2
p)x

, Q2 = −q2,

(2)

where k′ and q = k − k′ are the outgoing lepton and virtual
boson four-momenta, respectively, s = (P+k)2 is the centre
of mass energy squared and W 2 = sy(1 − x) + m2

p is the
invariant mass squared of the hadronic final state, with mp

the proton mass. The leading order NC DIS cross section for
the scattering of an electron of energy Ee on a proton target
then reads

d2σ ep→eX

dxBdQ2 = 2πα2
em

Q4 (1 + (1 − y)2)

×
∑

q

e2
q [ fq/p(xB, Q2) + fq̄/p(xB, Q2)],

(3)

where the sum runs over active quarks q with electric charge
eq . The differential cross section in Eq. (3) is evaluated
by using free-nucleon, leading order, parton distributions
fq/p(xB, μ2

F ) of Ref. [9], setting the factorisation scale to
μ2
F = Q2. In order to provide a minimal quark-flavour sep-

aration, we consider both electron scattering on proton and
deuteron targets. Cross sections on the latter are obtained
by averaging cross sections on proton and neutron targets.
The latter are obtained applying isospin symmetry, i.e. by
exchanging u ↔ d and ū ↔ d̄ parton distributions in Eq. (3).
We set the electron beam energy Ee to 12 GeV. The label �

stands for a set of temptative cuts which define the NC DIS
selection:

0.2 < y < 0.8, Q2 > 1 GeV2, W 2 > 5 GeV2. (4)

The resulting phase space coverage is shown in the (xB, Q2)

plane in Fig. 1. In order to reduce the dependences on higher
order corrections, all predictions presented in the follow-
ing are normalised, if not otherwise stated, to the inclusive
NC DIS cross section, σDIS

� , which is obtained integrating
Eq. (3) over the phase space region � defined by constraints
in Eq. (4).

3 Semi-inclusive DIS

We consider the semi-inclusive process

l(k) + p(P) → l(k′) + �(h) + X, (5)

where, beside the scattered lepton, an additional Lambda
hyperon is detected in the final state with four-momentum

DIS phase space
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Fig. 1 Kinematic coverage at CLAS@12 GeV after cuts in Eq. (4)

h. Final-state hadrons produced in SIDIS are generally
described by using the Lorentz-invariant variable

zh = P · h
P · q = E∗

h

E∗
P (1 − xB)

1 + cos θ∗

2
. (6)

The last equality holds in the photon–hadron centre-of-mass
frame, with the photon momentum aligned in the +z direc-
tion and θ∗ the hadron production angle with respect to the
photon direction. Hadrons produced collinearly to the spec-
tator system have θ∗ � π , so that, in terms of the zh variable
defined in Eq. (6), they overlap with soft ones (for which
instead E∗

h � 0 irrespective of the production angle) and
both accumulate at zh � 0. The zh variable defined in Eq. (6)
is therefore well suited to described hadron production in the
current region, but presents an ambiguity in dealing with
hadrons produced by target fragmentation. In order to avoid
this problem, cross sections can be evaluated in terms of the
energy fraction zG [5] defined by

zG = E∗
h

E∗
P (1 − xB)

= 2E∗
h

W
, ζ = E∗

h

E∗
P

, (7)

where E∗
p(1 − xB) = W/2 is the spectator energy in the

photon–hadron centre-of-mass frame. Adopting such a def-
inition, higher order corrections can be systematically taken
into account, both in the current and in the target fragmenta-
tion region [5] so that different hadron production mech-
anisms are distinguished only by their peculiar zG spec-
trum. Adopting these definitions, the neutral-current semi-
inclusive lowest order cross section for producing an unpo-
larised Lambda off a proton in the target fragmentation region
reads [5]
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d3σ ep→e�X

dxBdQ2dζ
= J

2πα2
em

Q4 (1 + (1 − y)2)

×
∑

q

e2
q [Mq/p(xB, ζ, Q2) + Mq̄/p(xB, ζ, Q2)]. (8)

The cross section has been expressed for later convenience
in terms of the ζ variable (xB + ζ < 1) in Eq. (7), and the
jacobian J = ζ [(1−xB)|xF |]−1 has been explicitly indicated
[10]. The latter reduces to unity in the high-energy limit and
it is therefore often omitted in the literature. In Eq. (8) the
production of unpolarised Lambdas in the remnant direction
is described by fracture functions M�

i/p(xB, ζ, μ2
F ) [1]. These

distributions express the probability to find a parton of flavour
i with fractional momentum xB at virtuality μ2

F in the proton
conditional to the detection of a target Lambda with a fraction
ζ of the incoming proton momentum. As for inclusive parton
distributions, we set the factorisation scale to μ2

F = Q2. In
order to obtain cross sections on isoscalar target we proceed
as in the inclusive DIS case, exploiting isospin symmetry
of the initial conditions. More details as regards this point
may be found in Sect. 4. Distributions in a given kinematic
variable v = v(xB, Q2, ζ ) are then calculated integrating the
SIDIS cross section in Eq. (8) as follows:

	σ�
i

	vi
= 1

	vi

∫

�′
dxB dQ2 dζ

d3σ�

dxB dQ2 dζ

×
(v − vi )
(vi+1 − v), (9)

where the index i labels the i th bin, vi+1 and vi indicate
the experimental bin-edges, 	vi = vi+1 − vi stands for the
bin-size and �′ is a subset of the DIS selection, �′ ⊆ �.

4 Model details

Lambda fracture functions appearing in Eq. (8) have been
determined through a global QCD fit to a variety of semi-
inclusive Lambda production data in Ref. [8]. In that analysis
we assumed that, at an arbitrarily low but still perturbative
scale Q2

0, fracture functions factorise into the product of ordi-
nary parton distributions fi/p(xB, Q2

0) and what we address
as spectator-fragmentation functions D̃�

i/p(zG):

(1 − xB) M�
i/p(xB, ζ, Q2

0) = M�
i/p(xB, zG , Q2

0)

= fi/p(xB, Q2
0)D̃

�
i/p(zG), i = q, q̄, g. (10)

Such an assumption, supported by the fit, is motivated by con-
sidering the relevant timescales in the process. The hard scat-
tering, controlled by parton distributions, occurs in fact on
timescales O(1/Q0) much shorter than the typical timescale
of the fragmentation process, O(1/�QCD), controlled by
spectator fragmentation functions. These initial conditions
for fracture functions at Q2

0 are then evolved to scales relevant
for the experiments and the parameters controlling D̃�

i/p(zG)

Dqs/p

Ddv/p

Duv/p

zG

D
Λ i/

p
(z

G
)
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Fig. 2 Spectator-fragmentation functions D̃�
i/p(zG) for valence u

(green), d (red) and sea (yellow) quarks extracted from the fit of Ref.
[8]. The bands represent the propagation of experimental uncertainties
according to the 	χ2 = 1 criterion

extracted by performing a fit to available data. The scale
Q2

0 is fixed in the fit to 0.5 GeV2. As discussed in Ref. [8],
the latter were essentially able to constrain only a subset of
the initial conditions in Eq. (10), in particular the spectator-
fragmentation functions of valence u and d quarks and that
of sea quarks, for which a, flavour-independent, common
function was assumed:

M�
uv/p(xB, zG , Q2

0) = fuv/p(xB, Q2
0)D̃

�
uv/p(zG),

M�
dv/p(xB, zG , Q2

0) = fdv/p(xB, Q2
0)D̃

�
dv/p(zG),

M�
qs/p(xB, zG , Q2

0) = fqs/p(xB, Q2
0)D̃

�
qs/p(zG),

qs = us, ds, ūs, d̄s, s, s̄. (11)

Such distributions are shown in Fig. 2 as a function of zG :
the fragmenting spectrum of the ud-spectator into Lamb-
das, D̃�

uv/p, is harder with respect to the uu-one, D̃�
dv/p

. The

leftover spectator system, D̃�
qs/p

, associated with the hard
scattering occurring on sea quarks, has higher Fock compo-
nents and shows a softer spectrum. The fit was insensitive to
any reasonable choice of gluon spectator fragmentation func-
tion, so the latter was fixed to be equal to the sea-quark one,
D̃�
g/p(zG) = D̃�

qs/p
(zG). The structure of the initial condi-

tions allows one to evaluate valence-quark fracture functions
at any Q2 as the difference between M�

q/p and M�
q̄/p. The

cross sections on a neutron target requires the knowledge of
neutron-to-Lambda fracture functions, M�

i/n . We relate the

latter to M�
i ′/p assuming the following relations:
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M�
dv/n(xB, zG , Q2) = M�

uv/p(xB, zG , Q2),

M�
uv/n(xB, zG , Q2) = M�

dv/p(xB, zG , Q2), (12)

M�
q ′
s/n

(xB, zG , Q2) = M�
qs/p(xB, zG , Q2),

q ′
s = us, ds, . . . qs = ds, us, . . . .

The first one in Eq. (12) appears to be natural as the quark
content (ud) of the leftover spectator system is the same on
the left and right hand side. The second assumption implies
that the dd-spectator has the same fragmenting spectrum as
the uu-one and it does not have any physical motivation other
than reducing the number of free parameters in the fit. The
third one relies on the particular flavour-symmetric choice
for D̃q�

s
(zG) in Eq. (11). Following the method outlined in

Refs. [11,12] we provided, beside the best fit parametrisa-
tion, additionally 14 Lambda fracture functions alternative
parametrisations satisfying the 	χ2 = 1 criterion. In this
way experimental uncertainties can be propagated to any
other observable by computing it for each given alternative
set and then adding in quadrature the displacements with
respect to best fit result. This method has been used to obtain
the error bands associated with the spectator-fragmentation
functions in Fig. 2 and will be used in the following to esti-
mate experimental uncertainties for the relevant cross sec-
tions. We close this section mentioning that, at least in prin-
ciple, we would be interested in promptly produced Lamb-
das. It is well known, however, that a fraction of the mea-
sured Lambda yield comes from the decay of heavier res-
onance into Lambdas, the so-called feed-down effect. The
subtraction of these fractions from the Lambda yields was
not clearly stated or even technically achievable in many of
the experimental analyses whose data have been used in the
fit of Ref. [8]. We assumed therefore that the quoted yields
referred to an unsubtracted Lambda sample. These produc-
tion mechanisms are taken into account by the Lambda frac-
ture function set of Ref. [8], via effective modifications of the
spectator-fragmentation functions returned by the fit. Such an
assumption must be kept in mind when comparing predic-
tions based on the present model with forthcoming data.

5 Predictions

Cross section differential in the energy ratio zG defined in
Eq. (7) characterises the full particle production spectrum.
The latter is given by the sum of the target fragmentation
contribution, given in Eq. (8), and the current one, in which
fracture functions appearing in Eq. (8) are replaced by appro-
priate products of parton distribution and fragmentation func-
tions. As discussed in Sect. 3, different hadron production
mechanisms are then distinguished only by their peculiar zG
spectrum and target fragmentation can be quantified with-
out imposing any arbitrary kinematical cuts. So far, unfortu-

nately, experimental data have not been presented in terms
of this variable. Even in that case, however, the extraction of
fracture functions with such a procedure requires an accu-
rate knowledge of the current fragmentation contribution at
low scales, whereas fragmentation functions are generally
constrained at much higher scales than the ones involved in
SIDIS experiments. In order to circumvent this problem we
assumed in Ref. [8] that current and target fragmentation
give their dominant contributions in distinct regions of space
phase. Within this context it proves useful to introduce the
Feynman variable

xF = ±
(
z2
G − 4εm2

T

W 2

) 1
2

, (13)

defined in the photon–proton centre-of-mass frame. The
parameter ε will be used in the following to estimate the sen-
sitivity of the predictions to Lambda-mass corrections and
it is fixed to ε = 1. We assumed that the current and target
contributions can be kinematically separated in terms of this
variable with target fragmentation giving its contribution for
xF < 0 and current fragmentation for xF > 0. We stress
again that the choice of xF = 0 as a sharp separation point
is arbitrary and frame dependent. Moreover, it is reasonable
to expect that there will be an overlap region in which both
fragmentation mechanisms will contribute, as suggested by
the O(αs) calculation of Ref. [5]. This strategy was adopted
in Ref. [8] in the extraction of Lambda fracture functions and
we shall consider it as an operative choice to be tested against
forthcoming data. We have introduced in Eq. (13) the Lambda
transverse mass, m2

T = p2
�,⊥ + m2

�, defined in terms of its
transverse momentum and mass squared. Since it is exper-
imentally known [13] that 〈p2

�,⊥〉 � m2
�, we approximate

m2
T ∼ m2

� with m� = 1115.683 MeV [14]. Lambda-mass
effects, introduced via Eq. (13), are sizeable at low ener-
gies and, moreover, not compatible with the pQCD factori-
sation theorem. As described in Ref. [15], such corrections
are applied to the Lambda leptoproduction cross sections σ�

Table 1 Predicted Lambda yields and cross section for xF < 0 on
proton and deuteron targets. Quoted errors represent the propagation
of experimental uncertainties from the fit [8] (exp), the expected sensi-
tivities to mass corrections (mass) and to factorisation scale variations
(scale)

Target/observable 〈n(�)〉

Proton 0.038 ± 0.003(exp)+0.004
−0.004(mass)+0.002

−0.001(scale)

Deuteron 0.032 ± 0.002(exp)+0.003
−0.004(mass)+0.001

−0.001(scale)

Target/observable σ� [pb]

Proton 2382 ± 170(exp)+247
−269(mass)+159

−125(scale)

Deuteron 1758 ± 102(exp)+196
−206(mass)+119

−92 (scale)
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Fig. 3 Normalised single-differential cross sections as a function of
xF . Cross sections on proton (H) and deuteron (D) targets are shown.
From top to bottom the error bands represent the propagation of experi-

mental uncertainties from the fit [8], sensitivity to mass corrections and
to factorisation scale variations

123



69 Page 6 of 10 Eur. Phys. J. C (2016) 76 :69

W 2 [GeV2]

1
σ

D
IS

Ω

d
σ

Λ

d
W

2
[G

eV
−

2
]

2015105

0.005

0.004

0.003

0.002

0.001

0

Q2 [GeV2]

1
σ

D
IS

Ω

d
σ

Λ

d
Q

2
[G

eV
−

2
]

1086420

0.03

0.025

0.02

0.015

0.01

0.005

0

y

1
σ

D
IS

Ω

d
σ

Λ

d
y

10.80.60.40.20

0.1

0.08

0.06

0.04

0.02

0

deuteron
proton

xB

1
σ

D
IS

Ω

d
σ

Λ

d
x
B

10.80.60.40.20

0.25

0.2

0.15

0.1

0.05

0

Fig. 4 Normalised single-differential cross sections as a function of leptonic kinematic variables with the additional requirement of detecting a
Lambda with xF < 0. Cross sections on proton and deuteron targets are shown

in Eq. (8) via the extra J factor. We begin our overview of
results presenting in Table 1 predicted yields and absolute
cross sections for the production of Lambdas with xF < 0
within the DIS selection defined in Eq. (4). Results on proton
and deuteron targets are shown. The former are larger than the
latter, since, as already mentioned, our model returns D̃�

uv/p

larger and harder than D̃�
dv/p

. Both the yields and the abso-
lute cross sections are supplemented by errors. The first one
corresponds to the propagation of experimental uncertain-
ties coming from the fit [8] and it is denoted with the label
(exp). It amounts to an average uncertainty of 7 % on the
yields. Among theoretical errors we address the sensitivity
to Lambda-mass corrections and higher order corrections.
The former is assessed by varying, arbitrarily, the parame-
ter ε appearing in Eq. (13) in the range ε ∈ [0.9, 1.1] and
it is indicated with the label (mass) in Table 1. The latter
is assessed, as customary, by varying the factorisation scale
μ2
F both in fracture and ordinary parton distributions in the

range μ2
F ∈ [0.5 Q2, 2 Q2] and it is indicated with the label

(scale) in Table 1. From these numbers it appears that there
is, given the relatively low beam energy of the experiment,
a rather large sensitivity to Lambda-mass corrections. On

the other hand, errors associated to estimated higher order
corrections are smaller than experimental uncertainties. The
yields appears to be particularly stable against scale varia-
tions since the factorisation scale is simultaneously varied
both in the numerator (i.e. fracture functions) and denomi-
nator (i.e. inclusive parton distributions). We stress here that
while the quoted experimental uncertainties have a precise
statistical meaning the other two must be considered as ten-
tative estimations of systematics errors associated with the-
oretical predictions. We present in Fig. 3 the normalised xF
spectrum supplemented by the corresponding uncertainties.

We now turn our attention to the production properties
of backward Lambdas. The averaged values of kinematical
variables for Lambda production in NC DIS with xF < 0
are given by 〈xB〉 = 0.17 (0.18), 〈y〉 = 0.48 (0.45),
〈Q2〉 = 2.0 (1.9) GeV2 and 〈W 2〉 = 11.1 (10.3) GeV2. In
parentheses we have indicated the corresponding values for
the inclusive DIS case. The values for the two processes are
quite close to each other, a feature which should be ascribed to
the factorised ansatz for fracture functions at the lowest scale
in Eq. (10) which is almost preserved by evolution from Q2

0 to
〈Q2〉. In Fig. 4 we present the normalised single-differential
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Fig. 5 Normalised Lambda single-differential cross section as a function of xF integrated in different range of W 2 on proton (H) and deuteron
(D) targets
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Fig. 6 Top left normalised Lambda single-differential cross section as
a function of xF in different range of Q2 on a proton target. Top right
Lambda multiplicities as a function of xF in the ranges of Q2. Bottom

Quark-flavour decomposition of the Lambda single-differential cross
section as a function of xF on a proton (left) and deuteron (right) target
with the additional cut xB > 0.25 imposed
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Fig. 7 Normalised
single-differential cross sections
as a function of xF ,
1/σDIS

� dσ�/dxF , in various
bins of xB and Q2. Distributions
for hydrogen and deuteron
targets are presented and
correspondingly normalised
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cross sections as a function of scattered lepton variables with
the additional requirement of detecting a Lambda in target
region, xF < 0. Such distributions show a qualitatively sim-
ilar shape irrespective of the target considered, either proton
or deuteron. The xB distributions peaks at the lowest acces-
sible values of xB , given by the boundary in Fig. 1. The bulk
of the cross section resides, as expected, at very low values
of Q2 and W 2 invariants. The combined study of such dis-
tributions together with the corresponding ones in inclusive
DIS can potentially highlight correlations between the hard
scattering and the spectator fragmentation into target Lamb-
das. In Fig. 5 we present the Lambda single-differential cross
section as a function of xF , integrated in the ranges of W 2.
The very backward production regime (at large and nega-
tive xF ) is accessed only at highest values of W 2. This is the
combined effect of hadron mass corrections, via Eq. (13), and
the energy spectrum of the spectator fragmentation functions
D̃�
i/p shown in Fig. 2. In the top left panel of Fig. 6 we show

the xF dependence of the cross section in the ranges of Q2.
As already seen in Fig. 4, the bulk of the cross section is

at low Q2, although it remains non-negligible to the high-
est accessible Q2. The measurement of the semi-inclusive
cross section in the target region as a function of Q2 can val-
idate the leading twist nature of particle production in this
region of phase space, as assumed by fracture functions for-
malism. In the top right panel of the same figure we present
Lambda multiplicities in the ranges of Q2 as a function of
xF . In this case distributions are normalised to σDIS

�i
, where

the additional index i = 1, 2, 3 stands for the corresponding
Q2 range indicated on the plot which supplements the DIS
selection �. A mild rise of the multiplicity can be observed
as Q2 increases, which can be possibly ascribed to the QCD
evolution of fracture functions. It would be extremely inter-
esting to compare these distributions with the correspond-
ing one in photoproduction regime in order to determine to
which extent the transition to the non-perturbative regime
in Q2 affects the Lambda spectrum in the target region. In
the bottom row of Fig. 6 we show the quark-flavour decom-
position of the single-differential cross sections as a func-
tion of xF normalised to σDIS

�′ , where �′ stands for the DIS
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Fig. 8 Normalised Lambda
single-differential cross section
on a proton target as a function
of Q2 in different bins of xB and
integrated in the range xF < 0
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selection � supplemented with the cut xB > 0.25. Assum-
ing that the experiment can be performed both on proton
and deuteron targets, the plots show that such a selection
can provide an optimal valence quark-flavour discrimination
for Lambda fracture functions. In the proton target case the
Lambda spectrum is dominated by scattering on valence u-
quarks with maximal sensitivity to the fragmentation of the
ud-spectator system into Lambdas. In the deuteron case, the
generalised isospin relations in Eq. (12) allow the extraction
of the uu-spectator-fragmentation functions. In Fig. 7 the
normalised single-differential cross sections as a function of
xF are presented in xB and Q2 bins. This way of present-
ing the data is probably the more exhaustive and it might
be valuable for the determination of Lambda fracture func-
tions in forthcoming global fit analyses. We conclude this
section presenting in Fig. 8 the normalised Lambda single-
differential cross sections on a proton target as a function of
Q2 in four different bins of xB . The final-state Lambda is
required to have xF < 0. The Q2-differential cross section
deserves special attention since this observable may provide
crucial test for the predicted evolution of fracture functions
and validate the key assumptions of the underlying theory.
Given the relatively low values of W 2 accessed by the exper-
iment, the Q2 spectrum shows significant hadron mass cor-
rections, as can be inferred comparing default predictions

with the one in which the Lambda mass has been set to zero.
Their effect is to suppress the cross section as xB increases.
In view of these results, the genuine Q2 dependence of the
cross section and mild logarithmic effects generated by QCD
evolution of fracture functions can get obscured by hadron
mass corrections. Therefore the interpretation of forthcom-
ing data will require a proper modelisation of the latter either
with the basic method described in this paper or with more
refined treatment as the one discussed in Ref. [16].

6 Conclusions

In this paper we have considered Lambda production in the
target fragmentation region of electron–proton deep inelastic
scattering. We have presented, based on a recently obtained
set of Lambda fracture functions, predictions for a number
of relevant observables supplemented with a conservative
error estimates. In a future perspective, the subdivision of
xF spectra in bins of Q2 and xB can be a valuable input for
forthcoming fits. Given the energy range of the considered
experiment, the possibility to use different light targets offer
an additional handle on Lambda fracture functions quark-
flavour separation in the valence region. The study of the Q2

dependence of the cross sections can be valuable to test and
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validate the key feature of the underlying theory and many of
the assumptions of the proposed phenomenological model.
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