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Abstract

transmitted diseases.

Background: The foraging behavior of blood-sucking arthropods is the defining biological event shaping the
transmission cycle of vector-borne parasites. It is also a phenomenon that pertains to the realm of community
ecology, since blood-feeding patterns of vectors can occur across a community of vertebrate hosts. Although great
advances in knowledge of the genetic basis for blood-feeding choices have been reported for selected vector
species, little is known about the role of community composition of vertebrate hosts in determining such patterns.

Methods & Results: Here, we present an analysis of feeding patterns of vectors across a variety of locations,
looking at foraging patterns of communities of mosquitoes, across communities of hosts primarily comprised of
mammals and birds. Using null models of species co-occurrence, which do not require ancillary information about
host abundance, we found that blood-feeding patterns were aggregated in studies from multiple sites, but
random in studies from a single site. This combination of results supports the idea that mosquito species in a
community may rely primarily on host availability in a given landscape, and that contacts with specific hosts will
be influenced more by the presence/absence of hosts than by innate mosquito choices. This observation stresses
the importance of blood-feeding plasticity as a key trait explaining the emergence of many zoonotic mosquito

Discussion: From an epidemiological perspective our observations support the idea that phenomena promoting
synchronization of vectors and hosts can promote the emergence of vector-borne zoonotic diseases, as suggested
by observations on the linkages between deforestation and the emergence of several human diseases.

Background

One of the goals of evolutionary ecology is to understand
the ecological niche of species as a product of changing
environments and their evolutionary background [1,2].
Patterns of similarity in resource use across species in a
community led to the proposal of guilds as a conceptuali-
zation of the interactions of species within the same
trophic level [3]. One of the ways to understand patterns
of resource use by consumers belonging to a given guild
is to assume that genetic components influence feeding
preferences, as proposed for mosquitoes [4,5]. This
approach is based in a conservative view of niches, the
notion that the evolutionary history of a consumer taxon
limits the resources it exploits [6,7]. However, as thor-
oughly accounted by Southwood [8], the niche of a spe-
cies is primarily shaped by the environment where its life
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history takes place. As shown by MacArthur [9], related
species can forage across all the available and suitable
resources, but will tend to specialize in space or time to
forage, thus rendering co-existence possible through
niche partitioning. Although well grounded in field
observations, MacArthur’s conclusions came from the
observation of a group of organisms, warblers, whose life
history keeps the same niche through development.
However, a wide variety of organisms have niche shifts
during their ontogenetic development, and the adaptive
usage of different resources during the different life his-
tory stages can lead to ecological patterns that deviate
from the expectation of boundaries in resource use. Mos-
quitoes are one of many groups that have major shifts in
resource exploitation directly related to their holometa-
bolism, by which they change from aquatic (pre-adult
stages) to terrestrial (adult) habitats; they are of particular
importance for their role as both vectors of pathogens
and nuisance [10].
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It is well known that for aquatic mosquito larvae, spa-
tio-temporal heterogeneities in larval habitats play a key
role in shaping the community structure [11,12], with
different degrees of co-existence regulated by the
dynamics of the external environment, e.g., climatic
variability [13-15]. Co-existence of mosquito species lar-
vae is also supported by differences in traits related to
foraging on different resources [16]. However, for adults,
mouthparts for blood sucking are similar enough to
enable blood-feeding foraging across most vertebrate
hosts [17,18]. Thus, the extent to which blood-feeding
patterns of mosquitoes are shaped by the availability of
blood-feeding resources, i.e., vertebrate hosts, versus
innate feeding choice specificity, is a relevant question.
From an applied perspective, understanding adult mos-
quito blood-foraging patterns on a community of hosts
is essential for the identification of species that could be
involved in the transmission of vector-borne pathogens
in nature (see Additional file 1: Biodiversity and zoopro-
phylactic effects). In principle, zooprophylaxis has the
potential to reduce human risk for vector-borne patho-
gen transmission in settings with increased vertebrate
biodiversity (see Additional file 2: Zooprophylaxis and
dilution effect: the same natural history seen with differ-
ent glasses). 1dentification of reservoirs/amplifying hosts
also can guide effective targeting of species to be mana-
ged (by culling or vaccination) for disease control [19].

Mosquito blood foraging can be studied by direct
observation [20,21], the use of baited traps [22] or by
the analysis of blood contents in the mosquito gut [23].
Blood in a mosquito gut can be identified using a range
of tools, which have evolved through time. These
approaches have benefited from advances in the fields of
immunology and molecular biology. From techniques
based on immunological reactions [24,25] to PCR-based
DNA identification [26,27] mosquito feeding patterns
can be tested against a set of suspected hosts and across
different landscapes (see Additional file 3: Mosquito
blood-feeding analysis: from precipitin tests to DNA fin-
gerprinting). Traditional approaches to analyzing host
choice by vectors include the computation of the host
utilization rate [28,29], which is the percent of blood-
meals belonging to a focal host species (used as a pro-
portion in models); the forage ratio [29] which is the
host utilization rate divided by the proportional abun-
dance of the focal host species; and the feeding index
[30] which is defined as the proportion of feeds on one
host with respect to another divided by the expected
proportion of feeds on these two hosts based on factors
affecting feeding, such as host abundance and size.
Some of these indices require information on the com-
position of the vertebrate host community which is
often very difficult to gather. The lack of information on
host community composition renders impossible the
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testing for randomness in blood-feeding patterns of
adult mosquitoes. However, the qualitative information
produced by patterns of presence/absence of specific
host utilization across different mosquito species in a
given setting, or across habitats for a given mosquito
species, can be used to study feeding patterns without
information on the host community composition, since
resulting patterns are similar to those studied in com-
munity ecology, especially those used to study rules of
community assemblage [31]. Specifically, the number of
species pairs that never co-occur, or ‘checkerboards’
[32], can be used to test hypotheses about segregation
in the blood-feeding patterns of a community of vectors
through the use of null-model tests. The Additional file
4: A Primer of null model testing of blood-feeding pat-
terns illustrates the logic behind null model testing of
vector blood-feeding patterns.

Null-model tests are tools originally proposed to test
the randomness in community assemblages [33]. Nowa-
days, null-models are considered pattern-generating
models based on randomization of ecological data or on
random sampling from a known or arbitrary distribution
[34]. Here, we analyze presence/absence patterns using
data from published studies on mosquito blood-feeding
patterns. Null-models are used to test whether mosquito
foraging occurs randomly, i.e., revealing no host-specifi-
city, or if mosquitoes obtain bloodmeals only from cer-
tain host species, either with a strong segregation of
host species choice or the aggregation around at least
one host. Each hypothesis can be respectively supported
by random, segregated patterns (some host species fed
upon only by some mosquito species), and aggregated
(same host species fed upon by all mosquito species).

Methods

We searched PubMed http://www.ncbi.nlm.nih.gov
(1966 to October 2008), ISI Web of Science http://www.
isiknowledge.com (1916 to October 2008), the American
Journal of Tropical Medicine and Hygiene, AJTMH
http://www.ajtmh.org (1921 to February 2009) and Jour-
nal of Medical Entomology, JME (1964 to January 2009)
to identify field studies on blood-feeding patterns of
mosquito communities across a range of hosts. We used
the following key-words for our search: mosquito and
blood or host and feeding or foraging. We did not search
in journals not indexed in the above referred databases
and limited our search to articles in English, French,
Spanish, Portuguese, Italian, Vietnamese and Hebrew,
the languages dominated by the authors. We discarded
articles that were focused on only one mosquito species,
studies that were focused on multiple bloodmeals with-
out reference to the ecological context of mosquito sam-
pling and studies where mosquito collection was done
with cue-specific baits, i.e., animals. We kept studies
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showing results on the feeding patterns of a community
of mosquito species on a community of vertebrate hosts,
where samples came from resting boxes, aspirators,
gravid and light traps, i.e., host-independent sampling
methods. We did a more thorough search in the
AJTMH and JME after realizing that most of the articles
with all conditions for inclusion in our study came from
these two journals. Some of the manuscripts had uni-
dentified bloodmeal sources that were ignored for the
analyses. We focused on mosquito communities because
only at this level of complexity can comparisons be
made in order to determine if there is a strong segrega-
tion (segregated pattern) of host species by vector spe-
cies that could forage across a community of vertebrate
hosts. Studies were also characterized as single or multi-
ple site, depending on the adjacency of sampling sites.
Null-model analyses were performed using the C-
score [35,36]. The best alternative is the number of
checkerboards, which is the count of pairs of species
that never co-occur (feed) in an ensemble of host spe-
cies [32]. However, in some cases mosquito species can
have some overlap in their feeding patterns though they
share such overlap only for a small subset of potential
hosts. To overcome this limitation the C-score was pro-
posed, which is computed by the following equation:

B 2 (Si—Qij)(Sj-Qjj)
B ( R(R-1) ) (1)
2

Where, for the case of our analysis S; and S; are the
total number of host species for mosquito species i and
j» Qi the number of times mosquito species i and j
share a host, and R the total number of mosquito spe-
cies. This metric measures species segregation but does
not require perfect checkerboards [36]. An additional
reason to choose the C-score is the superior statistical
qualities of this index that make it a more reliable indi-
cator of co-occurrence patterns when compared with
less flexible indexes like the checkerboards [34]. The
tools described here are also useful for studying patterns
of blood feeding for individual species across habitats
and hosts.

For the datasets we tested the null hypothesis that
mosquito species are equally likely to forage on any host
species. The null models were fixed-equiprobable, i.e.,
row sums of the original matrix are preserved and col-
umn values are the same. The latter means the following
in the context of this research: when a new random
dataset is generated, the probability of a mosquito spe-
cies (rows) feeding on any of the hosts (columns) is the
same, but the number of host species upon which it can
feed is proportional to the number of host species on
which it fed in the original dataset. Once the output of
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all simulations is obtained, which are the C-scores for
each simulated dataset, a distribution is constructed and
the significance of the C-score obtained for the original
dataset is compared to this distribution of simulated
indices, and inference is based on how extreme is the
C-score calculated from the original dataset when com-
pared to the distribution of simulated C-scores. When
the C-score obtained from the data is statistically signifi-
cantly larger than that of the simulations, it means that
mosquito species have strict host-specific feeding (segre-
gated) patterns; when it is not statistically different, it
implies that feeding patterns are random, and when the
C-score from the data is statistically significantly smaller
than that from the simulations, it means that all mos-
quito species share at least one host species in their
bloodmeals from the community of hosts, indicating an
aggregated feeding pattern. We chose the fixed-equi-
probable algorithm, because it provides a robust predic-
tor [34,35], and allows to test the null hypothesis of
equal preference among host species. Simulations were
carried out using the software Ecosim 7.0 [34]. For the
tests we used 5000 randomizations.

Results

We found a total of 48 articles related to blood-feeding
patterns in mosquitoes. A total of 19 articles had data
on mosquito and vertebrate host communities, but only
12 fulfilled the criteria to be analyzed, since only these
articles reported the blood contents of all engorged
mosquito species studied (Table 1). We noticed that stu-
dies from the states of Florida [37-42] and Connecticut
[43,44] in the USA, sampled a geographically restricted
set of sites, with similar communities of hosts, but
reported mosquito host use for selected species sepa-
rately. To investigate the impacts of these potential
biases on the analyses, we performed individual analyses
for both the individual reports and for the full datasets
obtained by joining the data from all the different mos-
quito and host species reported for each state (i.e., Flor-
ida and Connecticut), raising the total number of
analyzed studies to 14 (Table 1). More than 75% of the
studies were done in the US. The regional bias of our
study reflects the fact that most blood-feeding studies
have tended to be narrowly focused on “main vectors”.
For example, several studies on blood feeding patterns
have been carried out in Africa, Asia and Latin America,
but only one from the latter fulfilled the selection cri-
teria of including the vector community (Table 1), while
the rest were focused on the “main vector”. The most
common mammal host species (Additional file 5: Table
S1) were rabbits (81% of the studies with data on mam-
mals), humans (75%) and horses (68%). For birds the
most common across all studies specific to avian species
(Additional file 6: Table S2) were: American Robin
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(100%), Gray Catbird, Northern Cardinal and Brown-
headed Cowbird (each present in 83% of the studies).
The most common mosquito species (Table 2) were
Culex pipiens complex (47.37%), Aedes vexans (36.84%)
and Anopheles quadrimaculatus (36.84%). We also
found a great heterogeneity in the length of studies, ran-
ging from a couple of weeks [26,45], to seasonal (cover-
ing one year of mosquito season [46]), to longitudinal
(spanning in some case as much as at least five years
[37-42]), see Additional file 7: Table S3 for details on
sampling frequency and study length.

Table 3 shows a total of 12 studies with data on verte-
brate classes. Table 4 presents 7 studies with data on
avian species, and Table 5 has results for 11 studies on
mammalian species. These three tables present the
results of the C-score null model tests. At the vertebrate
class level, mosquitoes fed in an aggregated pattern
(Table 3), with most species feeding either on mammal
or avian species (Additional files 5 and 6: Table S1 and
Table S2). In general, studies from multiple locations
had observations that correspond to larger spatial scales,
e.g. counties and states, or metropolitan areas [47],
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when compared to single locations. The feeding patterns
from studies from multiple sites were primarily
aggregated.

For birds (Table 4), the patterns were also primarily
aggregated. The only study that showed random pat-
terns [26] was also at a very local scale from a single
site in the city of New York. A similar pattern of aggre-
gation and randomness was observed for mammals
(Table 5) and differences in patterns inferred with the
C-score and the number of checkerboards likely arose
from the absence of perfect checkerboards.

In summary, all results indicated that feeding patterns
for the mosquito species and localities studied were
aggregated when multiple sites were sampled, but ran-
dom across available choices at the single, probably
more local spatial scale. The above generalizations are
hold for the more comprehensive analysis of the mos-
quito faunas of: (i) Florida, where an increase in sampled
locations led to an aggregate pattern as opposed to the
random pattern observed at the single location; and (ii)
Connecticut, where an increase in the richness of mos-
quito and host species led to a similar aggregated

Table 1 Selected studies, mosquito richness (number of mosquito species), vertebrate classes (Mammal = M,
Amphibian = Am, Reptile = R, Avian = Av), location, number of sampling sites (Site) and collection method

Study Mosquito richness Class (number Location(s) Site Collection method
(see Location) of species)
Edman [37] 13 M(6), Am/R(1), Florida Marsh, USA Single Vehicle mounted aspirator
Av(1)
Apperson et 9 M(6), R(1), Av Borough of Queens, New York city, USA Single Backpack aspirator & hand held
al [26] 1), aspirators
Burkett- 11 M, Am, R, Av* Tuskegee National Forest, Alabama, USA Single CDC Light traps and vacuum
Cadena et al aspirator
[91]
Nasci & 6 M (6) Red maple and white cedar freshwater Single Resting boxes
Edman [92] swamp, Massachusetts, USA
Forattini et al 10 M(5), Am*, Av*  Forest, houses in several locations in Sao  Multiple Aspirator & sweepers
[46] Paulo state, Brazil
Apperson et 11 (NJ), 9(NY) M(10), Am*, R*,  Several locations in the states of New York  Multiple Resting boxes
al [93] Av(18) (NY) and New Jersey (NJ), USA
Savage et al 10 M(9), Am*, R¥, Several locations in Memphis and Shelby ~ Multiple Aspirator
[94] Av(24) county, Tennessee, USA
Molaei et al 23 M(13), Am*, R¥, Several locations in the state of Multiple CO,-baited CDC Light Trap, CDC
[44] Av(12) Connecticut, USA gravid trap
Molaei et al 3 M (11), Av(35) 31 locations in 6 counties of Connecticut, ~ Multiple ~ CO,-baited CDC Light Trap, CDC
[43] USA gravid trap, mosquito magnet trap
Hamer et al 9 M(8), Am*, Av 26 locations in suburban Chicago, USA Multiple CO,-baited CDC Light Trap, CDC
[47] (33) gravid trap, Backpack aspirator
Kay et al [23] 10 M(7), Av(1) 9 locations in urban/suburban Brisbane, Multiple CO,-baited CDC Light Trap
Australia
Fyodorova et 10(u), 7(r), 6(f) M(7), Av(1) Several locations: urban (u), rural(r), livestock Multiple Backpack aspirator
al [45] farms(f) in/around Volgograd, Russia
Connecticut 26 M(13), Am*, R*, 31 locations in 6 counties of Connecticut, ~ Multiple CO,-baited CDC Light Trap, CDC
[43,44] Av(37) USA gravid trap, mosquito magnet trap
Florida [37-42] 31 M(9), Am*, R(3), Several locations in Florida, USA Multiple  Vehicle mounted aspirator; Resting
Av(1) boxes, light trap Collections

* Only presented as Class
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Table 2 Mosquito communities (species recorded in the

studies)

Study

Bloodfed Species

Florida [37-42], *indicates
Edman [37] Table 6, Area 2

Connecticut [43,44], *
indicates Molaei et al [43]

Apperson et al [26]

Burkett-Cadena et al [91]

Nasci & Edman [92]

Forattini et al [46]

Apperson et al [93]

Aedes atlanticus * Aedes fulvus pallens*,
Aedes infirmatus * Aedes mitchellae,
Aedes sollicitans, Aedes taeniorhynchus *,
Aedes triseriatus, Aedes vexans*,
Anopheles crucians *, Anopheles
quadrimaculatus *, Culex erraticus, Culex
iolambdis, Culex opisthopus, Culex
peccator, Culex pilosus, Culex
quinquefasciatus, Culex salinarius, Culex
territans, Culex restuans, Culex nigripalpus,
Culiseta melanura, Culiseta inornata,
Coquillettidia perturbans*, Deinocerites
cancer, Mansonia titillans*, Psorophora
ciliata *, Psorophora confinnis¥,
Psorophora ferox * Psorophora howardii*,
Wyeomyia vanduzeei, Wyeomyia mitchellii

Aedes abserratus, Aedes aurifer, Aedes
canadensis, Aedes cantator, Aedes
cinereus, Aedes communis, Aedes
excrucians, Aedes japonicus, Aedes
sollicitans, Aedes sticticus, Aedes
stimulans, Aedes taeniorhynchus, Aedes
thibaulti, Aedes triseriatus, Aedes
trivittatus, Anopheles barberi, Anopheles
punctipennis, Anopheles quadrimaculatus,
Anopheles walkeri, Coquilletidia
perturbans, Culex territans, Culex pipiens
* Culex restuans * Culex salinarius *,
Psorophora ferox, Uranotaenia sapphirina

Aedes cinereus, Aedes vexans,
Ochlerotatus cantator, Ochlerotatus
sollicitans, Ochlerotatus triseriatus,
Coquillettidia perturbans, Culex salinarius,
Culex restuans, Culex pipiens

Anopheles crucians, Anopheles
punctipennis, Anopheles quadrimaculatus,
Coquillettidia perturbans, Culiseta
melanura, Culex erraticus, Culex peccator,
Culex quinquefasciatus, Culex restuans,
Culex territans, Ochlerotatus sticticus

Aedes abserratus, Aedes aurifer, Aedes
canadensis, Aedes cantator, Aedes
cinereus, Aedes vexans

Aedes scapularis, Aedes serratus,
Anopheles cruzii, Coquillettidia
chrysonotum, Coquillettidia venezuelensis,
Coquillettidia coronator, Culex riberiensis,
Culex sacchettae, Psorophora albigenus,
Psorophora ferox

New Jersey

Aedes vexans, Anopheles bradleyi,
Anopheles crucians bradleyi, Anopheles
punctipennis, Anopheles quadrimaculatus,
Culiseta melanura, Culex pipiens, Culex
restuans, Culex salinarius, Ochlerotatus
sollicitans, Ochlerotatus thibaulti

New York

Aedes cinereus, Aedes vexans, Coquilletidia
perturbans, Ochlerotatus canadensis,
Ochlerotatus japonicus, Ochlerotatus
taeniorhynchus, Ochlerotatus triseriatus,
Ochlerotatus trivittatus, Psorophora ferox
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Table 2: Mosquito communities (species recorded in the
studies) (Continued)

Savage et al [94] Anopheles punctipennis, Anopheles
quadrimaculatus, Culex pipiens complex
restuans, Culex pipiens complex, Culex
pipiens pipiens, Culex pipiens
quinquefasciatus, Culex pipiens
quinquefaciatus hybrids, Culex restuans,
Culex erraticus, Culex territans

Hamer et al [47] Aedes vexans, Anopheles
quadrimaculatus, Culex pipiens, Culex
restuans, Culex salinarius, Culiseta
inornata, Coquillettidia perturbans,
Ochlerotatus triseriatus, Ochlerotatus

trivittatus

Kay et al [23] Aedes notoscriptus, Aedes procax, Aedes
vigilax, Aedes vittiger, Culex annulirostris,
Culex australicus, Culex quinquefasciatus,
Culex sitiens, Coquillettidia linealis,

Coquillettidia xanthogaster

Urban

Anopheles claviger, Anopheles messeae,
Aedes caspius, Aedes cinereus, Aedes
vexans, Coquillettidia richiardii, Culex
modestus, Culex pipiens pipiens, Culiseta
annulata, Uranotaenia unguiculata

Rural

Anopheles messeae, Aedes caspius, Aedes
flavescens, Aedes vexans, Culex modestus,
Culex pipiens pipiens, Uranotaenia
unguiculata

Livestock farms

Anopheles messeae, Aedes caspius, Aedes
vexans, Coquillettidia richiardii, Culex
modestus, Culex pipiens pipiens

Fyodorova et al[45]

pattern as the one observed for the split mosquito com-
munity sampled across multiple locations.

Discussion

Our results show that in studies where data were gath-
ered from multiple sites, mosquito species showed an
aggregated feeding pattern which indicated that most
mosquito species shared at least one host species. This
aggregated pattern could arise from host choice based
on host availability as reported elsewhere [48,49]. For
example, in the datasets we studied the most conspicu-
ous example of aggregation around a given host was
documented in Connecticut, USA [44], where all mos-
quito species fed on deer. Deer in New England, (which
includes Connecticut) although not the most abundant
vertebrate in terms of individuals, are a readily available
source of blood to vectors [50]. The latter has been
shown for adult ticks, with deer size and perhaps the
lack of host defensive, anti-biting behavior, given as pos-
sible explanations [51]. Another complementary expla-
nation may be the increased species richness in the
meta-community of mosquitoes across multiple loca-
tions, as observed in Florida (Table S3), which is
expected from the increase in the sampling of different
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Table 3 Patterns of vertebrate class host co-feeding.
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Source Site C-score Mean + Variance p < exp p > exp Pattern
Edman [37] Table 5 Single 0.058 0478 + 0.002 < 0.0001 1 Aggregate
Forattini et al [46] Table 3 Multiple 0.089 1214 + 0.0463 < 0.0001 1 Aggregate
Apperson et al [93] Table 1 (New York) Multiple 0.967 0.858 + 0.010 0.9332 0.0918 Random
Apperson et al [93] Table 1T (New Jersey) Multiple 0.061 0464 + 0.009 0.0002 1 Aggregate
Savage et al [94] Table 1 Multiple 0.044 0.213 £ 0.004 00314 0.9816 Aggregate
Burkett-Cadena et al [91] Table 1 Single 0.509 0.526 + 0.008 04196 0.6934 Random
Molaei et al [44] Table 1 Multiple 0.000 0.792 + 0.003 < 0.0001 1 Aggregate
Hamer et al [47] Table 1 Multiple 0.000 0415 £ 0.008 0.0006 1 Aggregate
Connecticut [43,44] Multiple 0.000 0.848 + 0.002 0 1 Aggregate
Florida [37-42] Multiple 0.028 0.635 + 0.001 < 0.0001 1 Aggregate

Source indicates the article and table within such article used for data extraction. Site describes single (adjacent) or multiple (non-adjacent) sampling sites in a
given location. Values of the estimated C-score are the values calculated from the data, and Mean + Variance are the results from the simulations. The values of
p < exp and p > exp indicate the probability that the C-score value is significantly smaller (indicating aggregated pattern) or larger (segregated pattern) than
that expected by random, with a p-value < 0.05 indicating statistical significance. When none of the p-values is below the threshold of 0.05 the pattern is

random. Column “pattern” indicates the interpretation of the pattern.

mosquito habitats with multiple locations when com-
pared to the coarser habitats of vertebrate hosts. For
example, in Connecticut while deer are common in any
natural area [44], the larval and resting habitats for dif-
ferent mosquito species are conditioned by vegetation
and soil type [52].

By contrast to studies with multiple sites, studies with
a single sampling location showed that feeding patterns
did not deviate significantly from random, as can be
expected given that restricted habitats offer limited
resources [53]. The result of aggregation of bloodmeals
in at least one vertebrate class or one host species by
the community of mosquitoes is suggestive in the sense
that it supports the critical role that synchronization in
the encounter of host and blood-feeding insects plays in
mosquito foraging [10]. This spatio-temporal co-occur-
rence is a more general requirement for any trophic
interaction between a resource and a consumer [53].
This synchronization could also explain the absence of
dilution effects in urban environments [54], since spe-
cies also get more crowded in patches of habitat follow-
ing habitat transformation and fragmentation [55],
which are not always associated with biodiversity loss
[56]. This finding contradicts the generalization that
physiological factors are the major determinant of blood

Table 4 Patterns of bird species host co-feeding.

host choice by vectors, which postulates that close asso-
ciation with a narrow range of hosts would select for
specialization in vector physiology that would limit the
range of hosts that a species can exploit [18]. While this
may be the case for fleas [57] and kissing bugs [58] it is
important to note that these groups exploit a unique
resource throughout their life histories, unlike female
mosquitoes that shift from exploitation of aquatic
resources, where they are often very specialized in terms
of habitat choice [11], to blood feeding from terrestrial
hosts.

In mosquitoes it has been argued that some species
have strong predilection for specific bloodmeal sources,
the best example being Aedes aegypti and its preference
for humans [59,60]. However, blood-meal analyses for
Ae. aegypti have shown that choices can be plastic, since
bloodmeals can come from several species besides
humans [60,61]. Ae. albopictus, another major dengue
vector shows plasticity with regard to blood foraging: in
Thailand, mosquitoes sampled from endemic dengue vil-
lages had fed exclusively on humans [60]; in North
America where mosquito contact with humans is less
likely to occur (given the generalized anti-mosquito
screening of houses), this species was catholic in its
feeding repertoire, with bloodmeals coming from very

Source Site C-score Mean + Variance p < exp p > exp Pattern
Apperson et al [26] Table 3 Single 5.000 4775 + 1.879 0573 0449 Random
Apperson et al [93] Table 3 Multiple 8333 21.034 + 1.391 0 1 Aggregate

Molaei et al [43] Table 3 Multiple 55.000 76423 + 70.769 0.003 0.999 Aggregate
Savage et al [94] Table 3 Multiple 25611 53.021 + 9340 0 1 Aggregate
Molaei et al [44] Table 3 Multiple 2.694 3.704 + 0.061 0.0016 0.998 Aggregate
Hamer et al [47] Table 2 Multiple 49333 71612 + 64.190 0.0006 0.999 Aggregate

Connecticut [43,44] Multiple 8.39%4 14.036 + 1.697 0.0000 1 Aggregate

For heading explanations and interpretations of the p-values see Table 3.
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Table 5 Patterns of mammal species host co-feeding.
Source Site C-score Mean + Variance P < exp p > exp Pattern
Edman [37] Table 6, Area 2 Single 0276 0313 + 0.001 0.163 0.853 Random
Nasci & Edman [92] Table 4 Single 2.067 3092 + 0327 0.053 0.957 Random
Apperson et al [26] Table 2 Single 1.694 2092 + 0.083 0.101 0912 Random
Apperson et al [93] Table 2 (New York) Multiple 0.694 3.125 £ 0.032 0 1 Aggregate
Apperson et al [93] Table 2 (New Jersey) Multiple 0.2 3.879 £ 0.173 0 1 Aggregate
Fyodorova et al [45] Table 4 (Livestock) Multiple 0.466 2581 £ 0.019 0 1 Aggregate
Fyodorova et al [45] Table 4 (Rural) Multiple 0.867 40836 + 03413 0 1 Aggregate
Fyodorova et al [45] Table 4 (Urban) Multiple 1.6 2401 £ 0.090 0.01 0.99 Aggregate
Kay et al [23] Table 1 Multiple 0.822 2695 + 0.127 0 1 Aggregate
Savage et al [94] Table 6 Multiple 1444 2812 +£0.153 0.002 0.998 Aggregate
Molaei et al [44] Table 2 Multiple 1.340 4.847 + 0.042 0 1 Aggregate
Hamer et al [47] Table 3 Multiple 3.000 13.138 £ 3.205 0 1 Aggregate
Connecticut [43,44] Multiple 2033 6.317 £+ 0.060 0 1 Aggregate
Florida [37-42] Multiple 1.069 3813 + 0.025 0 1 Aggregate

For heading explanations and interpretations of the p-values see Table 3.

diverse sources, including several mammal and avian
species [62,63]. In fact, a recent study found wildlife
mammals infected with the dengue virus serotypes cir-
culating in humans during several outbreaks in French
Guiana, suggesting that dengue vectors feeding on
infected humans can also feed on other mammal species
[64]. Examples are not restricted to culicines. In fact,
Anopheles gambiae, the major malaria vector that has
been suggested to be highly anthropophilic [65] and
does have a strong preference for humans even when
given other choices of blood hosts under controlled field
settings, uses cows as its primary blood source in areas
of Burkina Faso where humans, because of the wide-
spread use of bednets, are not available as blood source
[66]. Thus, we propose that mosquito specialization in
resource exploitation is likely to be primarily limited to
pre-adult stages. Although differences in reproductive
fitness of adult female mosquitoes fed over an array of
potential hosts have been reported for some species
[18], trade-offs in fitness performance may select for
generalist behavior in blood-feeding patterns, or for
alternative life history strategies, like autogeny, which is
not uncommon in mosquitoes [49].

The randomness of host-feeding patterns by mosqui-
toes in single locations further reinforces the idea of
non-specialization for blood sources in mosquitoes,
especially when evaluated in conjunction with behavioral
studies on host choices in the laboratory, and from field
studies looking at seasonal changes in feeding patterns.
Classical studies on mosquito blood-feeding behavior
have shown that some mosquitoes can be opportunistic
with regard to their feeding choices [67], and when dif-
ferences have been observed they are related to the ease
with which mosquitoes locate hosts [18,49,68], limita-
tions in access to hosts [49,66], or by a non-heritable

behavioral conditioning [69]. Patterns of blood host shift
are also related to host abundance, as shown for Culex
nigripalpus at subtropical latitudes [48], which fed on
birds when they were the more abundant vertebrate.
Aside from the effect of relative host abundance, the
other major factor that can condition mosquito blood
foraging is the defensive behavior of hosts [70-72]. Stu-
dies have found that defensive behavior can explain site
selection for bites on a given host [73], and that differ-
ences in this behavior can be related to host age [73,74]
and size [20,75]. The use of mechanical barriers such as
bed nets [66,76] also influence mosquito blood foraging,
as can health or stress effects related to pathogen infec-
tion in the host [77]. Thus, although more studies are
required, especially of mosquito communities that com-
prise major vectors assumed to be highly anthropophilic,
behavioral and environmental factors that are indepen-
dent of genetic make-up could regulate mosquito blood
foraging across a community of vertebrate hosts.
Directions for future research and implications

Our study has some limitations related to the scarce
knowledge about mosquito community ecology, and
heterogeneities in the sampling and design of the stu-
dies we analyzed and the analytical tool we used to
study the feeding patterns: a) the variable sampling
techniques for the collection of blood-fed mosquitoes
(whose effects on biasing mosquito species composi-
tion can be very variable[37-42,71]); b) the techniques
for bloodmeal identification changed through time (fol-
lowing the development of molecular techniques); c)
studies were geographically biased for North America;
d) Lack of definition and quantification of the areas
sampled (which precluded a formal definition of spatial
scale); e) lack of definition and quantification of sam-
ple diversity to assess whether blood-fed mosquito
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species were representative of the whole community
(we relied on the expert opinion expressed in the stu-
dies we analyzed) f) probabilities for host choice in the
randomization algorithm were not weighted by the
number of mosquitoes captured within a study that
shared a given blood-meal type or by the abundance
or biomass of potential hosts species. All these issues
can be addressed as new studies focus in communities
of mosquitoes, not only specific vectors. Also, it is
necessary that ecological studies on mosquitoes more
routinely incorporate the evaluation of species richness
with well established quantitative methods, such as the
extrapolation from species accumulation with sampling
effort [78] and leave behind expert opinion as a criter-
ion to support a representative sampling of mosquito
diversity. Weighing can be easily implemented in the
randomization algorithm of the null model tests, and
very likely molecular tools for blood feeding analysis
will evolve well beyond what is currently acknowledged
as the “cutting edge”.

Mosquito blood-feeding also has an additional layer of
complexity, which is added by vector foraging heteroge-
neity on hosts belonging to the same species. For exam-
ple, in a study of Ae. albopictus, 80% of human
bloodmeals came from the same individual [63]. This
finding demonstrates one of the major limitations of
more quantitative tools based on host abundance (fora-
ging ratio, etc), namely the inherent heterogeneity of
sources for vector-feeding across populations of hosts
[79]. This is an issue deserving more studies, taking
advantage of molecular tools, like DNA fingerprinting
[27,63,80]. This fact also leads to a possible mechanism
linking host population size and feeding patterns, since
larger populations have increased likelihoods of bearing
stressed individuals [81], which are more likely to be bit-
ten, primarily because of lack of defensive behaviors
[77]. These same patterns also arise in neglected and
minority populations or endangered species [81] which
further supports the need to look qualitatively at pre-
sence/absence of hosts, since mosquito foraging may
not necessarily be a functional response of host density
[82].

From an applied perspective, and especially in the
context of zoonotic vector-borne diseases, the broad
range of blood hosts that may be fed upon by mosqui-
toes is one of the underpinnings for disease emergence,
as was early recognized by the scientific community
studying arboviral transmission [28,83,84] and has long
been recognized as a regulatory factor for malaria trans-
mission (see Additional file 2). In the mosquito commu-
nities we analyzed, most mosquito species can feed on
at least one common host species independently of their
innate preferences. Synchronization of encounters
between hosts and vectors can promote disease
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emergence by facilitating foraging across a community
of pathogen-susceptible hosts. Anthropogenic changes,
such as deforestation and forest fragmentation can
increase mosquito dispersal and foraging across abun-
dant hosts [85], a pattern observed in other vectors such
as sandflies [86] and ticks [87]. More generally, trans-
mission control strategies such as insecticide treated
nets that target host-vector contact have been the most
successful at stopping the transmission of vector-borne
diseases [88], demonstrating the importance of taking
into account vector foraging [89]. From a theoretical
perspective the explanation for the coupling of foraging
specialization in organisms with niche shifts deserves
further inquiry. The evolution of a life history strategy
with different degrees of foraging specialization across
ontogenetic stages could explain some cases of species
co-occurrence and can be one mechanism for speciation
in mosquitoes.

Finally, our study highlights the potential of mosqui-
toes as a model system to study foraging in organisms
with niche shifts during their life cycle, where several
factors are still unknown, such as the effects of nectar
feeding on blood foraging and pathogen development
[90]. It also illustrates the use of ecological theory and
derived tools to further understanding of patterns that
are of importance in studying and managing human
diseases.
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