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1 Introduction
Fractional-order models can be found to be more adequate than integer-order models in
some real-world problems since fractional derivatives provide an excellent tool for the de-
scription of memory and hereditary properties of various materials and processes. Indeed,
we can find numerous applications in viscoelasticity, neurons, electrochemistry, control,
porous media, electromagnetism, et cetera (see [–]). As a consequence, the subject of
fractional differential equations is gaining more importance and attention.

In the past decade, many results on the existence and multiplicity of solutions to nonlin-
ear fractional differential equations were obtained by using techniques of nonlinear anal-
ysis, such as fixed point theory [], topological degree theory [], and comparison method
[]. For more papers on fractional differential equations, see [–] and the references
therein. Recently, the equations including both left and right fractional derivatives are also
discussed [–]. Apart from their possible applications, equations with left and right
fractional derivatives are an interesting and new field in fractional differential equations
theory.

We should note that critical point theory has also turned out to be a very effective tool
in determining the existence of solutions of integer-order differential equations with vari-
ational structures [–]. The idea behind is trying to find solutions of a given boundary
value problem by looking for critical points of a suitable energy functional defined on an
appropriate function space. We refer the readers to the books [, ] and the references
therein.
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In recent paper [], for the first time, the authors showed that critical point theory is an
effective approach to tackle the existence of weak solutions of fractional boundary value
problems (FBVPs) of the form

⎧
⎨

⎩

tDα
T (Dα

t u(t)) = ∇F(t, u(t)), a.e. t ∈ [, T],

u() = u(T) = .

We note that it is not easy to use critical point theory to study FBVPs since it is often very
difficult to establish suitable function spaces and variational functionals for FBVPs.

Motivated by the above-mentioned classical works, we want to contribute with the de-
velopment of this new area on fractional differential equations theory. More precisely, we
study the existence of weak solutions of the following FBVP:

⎧
⎨

⎩

tDα
Tφp(Dα

t u(t)) = f (t, u(t)), t ∈ [, T],

u() = u(T) = ,
(.)

where Dα
t and tDα

T are the left and right Riemann-Liouville fractional derivatives of order
α ∈ (, ] respectively, φp : R →R is the p-Laplacian defined by

φp(s) = |s|p–s if s �= , φp() = , p > ,

and f : [, T] ×R →R satisfies the following condition:

(H) f ∈ C
(
[, T] ×R,R

)
.

Note that p-Laplacian φp introduced by Leibenson [] often occurs in non-Newtonian
fluid theory, nonlinear elastic mechanics, and so forth. Moreover, when p = , the nonlin-
ear operator tDα

Tφp(Dα
t ) reduces to the linear operator tDα

T Dα
t .

The rest of this paper is organized as follows. Section  contains some necessary no-
tation, definitions, and properties of fractional calculus. In Section , we introduce the
function space and energy functional for FBVP (.). In Section , based on some critical
point theorems due to Mawhin and Willem [] and Rabinowitz [], we establish two
theorems on the existence of weak solutions of FBVP (.).

2 Fractional calculus
For the convenience of the reader, we introduce some basic definitions and properties of
the fractional calculus, which can be found, for instance, in [, ].

Definition . (Left and right Riemann-Liouville fractional integrals [, ]) Let x be
a function defined on [a, b]. The left and right Riemann-Liouville fractional integrals of
order γ >  for x, denoted by aD–γ

t x(t) and tD–γ

b x(t), respectively, are defined by

aD–γ
t x(t) =


�(γ )

∫ t

a
(t – s)γ –x(s) ds,

tD–γ

b x(t) =


�(γ )

∫ b

t
(s – t)γ –x(s) ds,

provided that the right-hand side integrals are pointwise defined on [a, b].
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Definition . (Left and right Riemann-Liouville fractional derivatives [, ]) Let x be
a function defined on [a, b]. The left and right Riemann-Liouville fractional derivatives of
order γ >  for x, denoted by aDγ

t x(t) and tDγ

b x(t), respectively, are defined by

aDγ
t x(t) =

dn

dtn aDγ –n
t x(t),

tDγ

b x(t) = (–)n dn

dtn tDγ –n
b x(t),

where n –  ≤ γ < n and n ∈N.

Remark .
(i) For n ∈N, if γ becomes an integer n – , according to Definition ., we recover the

usual definitions, namely

aDn–
t x(t) = x(n–)(t),

tDn–
b x(t) = (–)n–x(n–)(t),

where x(n–) is the usual derivative of order n – .
(ii) If x ∈ ACn([a, b],R), following [], we know that the Riemann-Liouville fractional

derivative of order γ ∈ [n – , n) exists a.e. on [a, b], where AC([a, b],R) is the space
of functions that are absolutely continuous on [a, b], and ACk([a, b],R) (k = , , . . .)
is the space of functions x such that x ∈ Ck–([a, b],R) and x(k–) ∈ AC([a, b],R).

Definition . (Left and right Caputo fractional derivatives []) Let γ ≥  and n ∈N. If
n –  < γ < n and x ∈ ACn([a, b],R), then the left and right Caputo fractional derivatives
of order γ for x, denoted by c

aDγ
t x(t) and c

t Dγ

b x(t), respectively, exist almost everywhere on
[a, b] and are represented by

c
aDγ

t x(t) = aDγ –n
t x(n)(t),

c
t Dγ

b x(t) = (–)n
tDγ –n

b x(n)(t).

If γ = n –  and x ∈ ACn–([a, b],R), then c
aDn–

t x(t) and c
t Dn–

b x(t) are represented by

c
aDn–

t x(t) = x(n–)(t),
c
t Dn–

b x(t) = (–)n–x(n–)(t).

The Riemann-Liouville fractional derivatives and the Caputo fractional derivatives are
connected with each other by the following relations.

Property . ([, ]) Let n ∈ N and n –  < γ < n. If x is a function defined on [a, b] for
which the Caputo fractional derivatives c

aDγ
t x(t) and c

t Dγ

b x(t) of order γ exist together with
the Riemann-Liouville fractional derivatives aDγ

t x(t) and tDγ

b x(t), then

c
aDγ

t x(t) = aDγ
t x(t) –

n–∑

j=

x(j)(a)
�(j – γ + )

(t – a)j–γ
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and

c
t Dγ

b x(t) = tDγ

b x(t) –
n–∑

j=

x(j)(b)
�(j – γ + )

(b – t)j–γ .

In particular, when  < γ < , we get

c
aDγ

t x(t) = aDγ
t x(t) –

x(a)
�( – γ )

(t – a)–γ , (.)

c
t Dγ

b x(t) = tDγ

b x(t) –
x(b)

�( – γ )
(b – t)–γ . (.)

Now we present the rule for fractional integration by parts.

Property . ([, ]) We have the following property of fractional integration:

∫ b

a

(
aD–γ

t x(t)
)
y(t) dt =

∫ b

a
x(t)tD–γ

b y(t) dt, γ > ,

provided that x ∈ Lp([a, b],R), y ∈ Lq([a, b],R), and p ≥ , q ≥ , /p + /q ≤  + γ or p �= ,
q �= , /p + /q =  + γ .

3 Fractional derivative space and variational structure
In order to establish the variational framework that will enable us to reduce the existence
of solutions of FBVP (.) to the problem of finding critical points of the corresponding
functional, it is necessary to introduce an appropriate function space. In the following, we
cite some results from [].

Definition . ([]) Let  < α ≤  and  < p < ∞. The fractional derivative space Eα,p
 is

defined by

Eα,p
 =

{
u ∈ Lp([, T],R

)|cDα
t u ∈ Lp([, T],R

)
, u() = u(T) = 

}

with the norm

‖u‖α,p =
(‖u‖p

Lp +
∥
∥c

Dα
t u

∥
∥p

Lp
) 

p , ∀u ∈ Eα,p
 , (.)

where ‖u‖Lp = (
∫ T

 |u(t)|p dt)/p is the norm of Lp([, T],R).

Remark . For any u ∈ Eα,p
 , according to (.) and (.) and in view of u() = u(T) = ,

we have c
Dα

t u(t) = Dα
t u(t), c

t Dα
T u(t) = tDα

T u(t) for t ∈ [, T].

Lemma . ([]) Let  < α ≤  and  < p < ∞. The fractional derivative space Eα,p
 is a

reflexive and separable Banach space.

Lemma . ([]) Let  < α ≤  and  < p < ∞. For u ∈ Eα,p
 , we have

‖u‖Lp ≤ Tα

�(α + )
∥
∥c

Dα
t u

∥
∥

Lp . (.)
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Moreover, if α > /p and /p + /q = , then

‖u‖∞ ≤ Tα– 
p

�(α)((α – )q + )

q

∥
∥c

Dα
t u

∥
∥

Lp , (.)

where ‖u‖∞ = maxt∈[,T] |u(t)| is the norm of C([, T],R).

Remark . According to (.), we know that the norm (.) is equivalent to the norm of
the form

‖u‖α,p =
∥
∥c

Dα
t u

∥
∥

Lp . (.)

Hence, in what follows, we can consider Eα,p
 with the norm (.).

Lemma . ([]) Let  < α ≤  and  < p < ∞. Assume that α > /p and the sequence {uk}
converges weakly to u in Eα,p

 , that is, uk ⇀ u. Then uk → u in C([, T],R), that is,

‖uk – u‖∞ → , k → ∞.

For v ∈ Eα,p
 , by Remark . and Definition . we have

∫ T



[
tDα

Tφp
(

Dα
t u(t)

)]
v(t) dt =

∫ T



[
tDα

Tφp
(c

Dα
t u(t)

)]
v(t) dt

= –
∫ T


v(t) d

[
tDα–

T φp
(c

Dα
t u(t)

)]

=
∫ T



[
tDα–

T φp
(c

Dα
t u(t)

)]
v′(t) dt.

Thus, from Property . and Definition . we have

∫ T



[
tDα

Tφp
(

Dα
t u(t)

)]
v(t) dt =

∫ T


φp

(c
Dα

t u(t)
)

Dα–
t v′(t) dt

=
∫ T


φp

(c
Dα

t u(t)
)c

Dα
t v(t) dt.

So we can define the weak solutions of FBVP (.) as follows.

Definition . By a weak solution to FBVP (.) we mean a function u ∈ Eα,p
 such that

f (·, u(·)) ∈ L([, T],R) and the following equation holds:

∫ T


φp

(c
Dα

t u(t)
)c

Dα
t v(t) dt =

∫ T


f
(
t, u(t)

)
v(t) dt, ∀v ∈ Eα,p

 .

Next, we shall introduce a functional for FBVP (.) on Eα,p
 . Also, we will show that the

critical points of that functional are weak solutions of FBVP (.).
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Define the functional I : Eα,p
 →R by

I(u) =

p

∫ T



∣
∣c
Dα

t u(t)
∣
∣p dt –

∫ T


F
(
t, u(t)

)
dt, (.)

where F(t, s) =
∫ s

 f (t, τ ) dτ .

Remark . By Lemma . we get that the functional u → ∫ T
 F(t, u(t)) dt is weakly con-

tinuous on Eα,p
 . Hence, as the sum of a convex continuous functional and a weakly contin-

uous one, I is a weakly lower semicontinuous functional on Eα,p
 with α > /p. Moreover,

following [], we can show that I ∈ C(Eα,p
 ,R), and we have

〈
I ′(u), v

〉
=

∫ T


φp

(c
Dα

t u(t)
)c

Dα
t v(t) dt

–
∫ T


f
(
t, u(t)

)
v(t) dt, ∀v ∈ Eα,p

 . (.)

Remark . By Definition . and (.), if u ∈ Eα,p
 is a solution of the Euler equation

I ′(u) = , then u is a weak solution of FBVP (.).

4 Existence of weak solutions of FBVP (1.1)
For finding the critical points of the functional I defined by (.), we need to use some
critical point theorems, which can be found, for example, in [, ]. For the reader’s con-
venience, we present some necessary definitions and theorems of critical point theory.

Let X be a real Banach space, and let C(X,R) denote the space of continuously Fréchet-
differentiable functionals on X.

Definition A Let ϕ ∈ C(X,R). If any sequence {uk} ⊂ X for which {ϕ(uk)} is bounded and
ϕ′(uk) →  as k → ∞ possesses a convergent subsequence, then we say that ϕ satisfies the
Palais-Smale condition (P.S. condition for short).

Theorem A ([]) Let X be a real reflexive Banach space. If the functional ϕ : X → R is
weakly lower semicontinuous and coercive, that is, lim‖z‖→∞ ϕ(z) = +∞, then there exists
z ∈ X such that ϕ(z) = infz∈X ϕ(z). Moreover, if ϕ is also Fréchet differentiable on X, then
ϕ′(z) = .

Theorem B (Mountain pass theorem []) Let X be a real Banach space, and ϕ ∈ C(X,R)
satisfy the P.S. condition. Suppose that

(C) ϕ() = ,
(C) there exist ρ >  and σ >  such that ϕ(z) ≥ σ for all z ∈ X with ‖z‖ = ρ ,
(C) there exists z ∈ X with ‖z‖ ≥ ρ such that ϕ(z) < σ .

Then ϕ possesses a critical value c ≥ σ . Moreover, c can be characterized as

c = inf
g∈�

max
z∈g([,])

ϕ(z),

where � = {g ∈ C([, ], X)|g() = , g() = z}.
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First, we use Theorem A to consider the existence of weak solutions of FBVP (.).

Theorem . Let /p < α ≤  and (H) be satisfied. Assume that

(H) there exist a ∈ (, (�(α + ))p/pTαp) and b ∈ L([, T],R+) such that

∣
∣F(t, x)

∣
∣ ≤ a|x|p + b(t), ∀t ∈ [, T], x ∈ R.

Then FBVP (.) has at least one weak solution that minimizes I on Eα,p
 .

Proof According to Lemma ., Remark ., and Theorem A, we only need to prove that
I is coercive on Eα,p

 .
For u ∈ Eα,p

 , it follows from (H) that

I(u) =

p
‖u‖p

α,p –
∫ T


F
(
t, u(t)

)
dt

≥ 
p
‖u‖p

α,p – a
∫ T



∣
∣u(t)

∣
∣p dt –

∫ T


b(t) dt

=

p
‖u‖p

α,p – a‖u‖p
Lp – ‖b‖L ,

which, together with (.), implies

I(u) ≥
[


p

–
aTαp

(�(α + ))p

]

‖u‖p
α,p – ‖b‖L .

Thus, noting that a ∈ (, (�(α + ))p/pTαp), we have

lim‖u‖α,p→∞ I(u) = +∞,

that is, I is coercive. The proof is complete. �

Next, we use Theorem B to discuss the existence of mountain pass solutions of FBVP
(.).

Theorem . Let /p < α ≤  and (H) be satisfied. Assume that

(H) there exist constants μ ∈ (, /p) and M >  such that

 < F(t, x) ≤ μxf (t, x), ∀t ∈ [, T], x ∈R with |x| ≥ M,

(H) for t ∈ [, T] and x ∈ R, we have

lim sup
|x|→

F(t, x)
|x|p <

(�(α + ))p

pTαp .

Then FBVP (.) has at least one nontrivial weak solution on Eα,p
 .
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Proof We will verify that I satisfies all the conditions of Theorem B.
First, we show that I satisfies the P.S. condition. Since F(t, x) – μxf (t, x) is continuous,

there exists c ∈R
+ such that

F(t, x) ≤ μxf (t, x) + c, t ∈ [, T], |x| ≤ M.

Thus, from (H) we get

F(t, x) ≤ μxf (t, x) + c, t ∈ [, T], x ∈R. (.)

Let {uk} ⊂ Eα,p
 be such that

∣
∣I(uk)

∣
∣ ≤ K , I ′(uk) →  as k → ∞.

According to (.), we have

〈
I ′(uk), uk

〉
= ‖uk‖p

α,p –
∫ T


f
(
t, uk(t)

)
uk(t) dt,

which, together with (.), yields

K ≥ I(uk)

=

p
‖uk‖p

α,p –
∫ T


F
(
t, uk(t)

)
dt

≥ 
p
‖uk‖p

α,p – μ

∫ T


f
(
t, uk(t)

)
uk(t) dt – cT

=
(


p

– μ

)

‖uk‖p
α,p + μ

〈
I ′(uk), uk

〉
– cT

≥
(


p

– μ

)

‖uk‖p
α,p – μ

∥
∥I ′(uk)

∥
∥

–α,q‖uk‖α,p – cT ,

where q is a constant such that /p + /q = . Since I ′(uk) → , there exists N ∈ N such
that

K ≥
(


p

– μ

)

‖uk‖p
α,p – ‖uk‖α,p – cT , k > N.

It follows from μ ∈ (, /p) that {uk} is bounded in Eα,p
 . Since Eα,p

 is a reflexive space, up
to a subsequence, we can assume that uk ⇀ u in Eα,p

 . Hence, we have

〈
I ′(uk) – I ′(u), uk – u

〉

=
〈
I ′(uk), uk – u

〉
–

〈
I ′(u), uk – u

〉

≤ ∥
∥I ′(uk)

∥
∥

–α,q‖uk – u‖α,p –
〈
I ′(u), uk – u

〉

→ , k → ∞. (.)
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Moreover, by (.) and Lemma . we obtain that uk is bounded in C([, T],R) and ‖uk –
u‖∞ →  as k → ∞. Then we get

∫ T



(
f
(
t, uk(t)

)
– f

(
t, u(t)

))(
uk(t) – u(t)

)
dt → , k → ∞. (.)

Note that

〈
I ′(uk) – I ′(u), uk – u

〉

=
∫ T



(
φp

(c
Dα

t uk(t)
)

– φp
(c

Dα
t u(t)

))(c
Dα

t uk(t) – c
Dα

t u(t)
)

dt

–
∫ T



(
f
(
t, uk(t)

)
– f

(
t, u(t)

))(
uk(t) – u(t)

)
dt.

Thus, from (.) and (.) we have

∫ T



(
φp

(c
Dα

t uk(t)
)

– φp
(c

Dα
t u(t)

))(c
Dα

t uk(t) – c
Dα

t u(t)
)

dt →  (.)

as k → ∞.
Following [], we obtain that there exist c, c >  such that

∫ T



(
φp

(c
Dα

t uk(t)
)

– φp
(c

Dα
t u(t)

))(c
Dα

t uk(t) – c
Dα

t u(t)
)

dt

≥
⎧
⎨

⎩

c
∫ T

 |cDα
t uk(t) – c

Dα
t u(t)|p dt, p ≥ ,

c
∫ T


|cDα

t uk (t)–c
Dα

t u(t)|
(|cDα

t uk (t)|+|cDα
t u(t)|)–p dt,  < p < .

(.)

When  < p < , we have

∫ T



∣
∣c
Dα

t uk(t) – c
Dα

t u(t)
∣
∣p dt

≤
(∫ T



|cDα
t uk(t) – c

Dα
t u(t)|

(|cDα
t uk(t)| + |cDα

t u(t)|)–p dt
) p



·
(∫ T



(∣
∣c
Dα

t uk(t)
∣
∣ +

∣
∣c
Dα

t u(t)
∣
∣
)p dt

) –p


.

Thus, noting that (s + s)γ ≤ γ –(sγ
 + sγ

 ) where s, s ≥ , γ ≥  (see []), we have

∫ T



∣
∣c
Dα

t uk(t) – c
Dα

t u(t)
∣
∣p dt

≤ c
(‖uk‖p

α,p + ‖u‖p
α,p

) –p


·
(∫ T



|cDα
t uk(t) – c

Dα
t u(t)|

(|cDα
t uk(t)| + |cDα

t u(t)|)–p dt
) p


,



Chen and Liu Boundary Value Problems  (2016) 2016:75 Page 10 of 12

where c = (p–)(–p)/, which, together with (.), implies

∫ T



(
φp

(c
Dα

t uk(t)
)

– φp
(c

Dα
t u(t)

))(c
Dα

t uk(t) – c
Dα

t u(t)
)

dt

≥ cc
– 

p


(‖uk‖p
α,p + ‖u‖p

α,p
) p–

p ‖uk – u‖
α,p,  < p < . (.)

When p ≥ , by (.) we get

∫ T



(
φp

(c
Dα

t uk(t)
)

– φp
(c

Dα
t u(t)

))(c
Dα

t uk(t) – c
Dα

t u(t)
)

dt

≥ c‖uk – u‖p
α,p, p ≥ . (.)

It follows from (.), (.), and (.) that

‖uk – u‖α,p → , k → ∞,

that is, {uk} converges strongly to u in Eα,p
 .

Now we show that I satisfies the geometry conditions of mountain pass theorem.
By (H) there exist ε ∈ (, ) and δ >  such that

F(t, x) ≤ ( – ε)(�(α + ))p

pTαp |x|p, t ∈ [, T], x ∈R with |x| ≤ δ. (.)

Let ρ = �(α)((α–)q+)/q

Tα–/p δ >  and σ = ερp/p > . Then, by (.) we have

‖u‖∞ ≤ Tα– 
p

�(α)((α – )q + )

q
‖u‖α,p = δ, u ∈ Eα,p

 with ‖u‖α,p = ρ,

which, together with (.) and (.), implies

I(u) =

p
‖u‖p

α,p –
∫ T


F
(
t, u(t)

)
dt

≥ 
p
‖u‖p

α,p –
( – ε)(�(α + ))p

pTαp

∫ T



∣
∣u(t)

∣
∣p dt

≥ 
p
‖u‖p

α,p –
 – ε

p
‖u‖p

α,p

=
ε

p
‖u‖p

α,p

= σ , ∀u ∈ Eα,p
 with ‖u‖α,p = ρ.

Hence, condition (C) in Theorem B is satisfied.
By (H) a simple argument using the very definition of derivative shows that there exist

c, c >  such that

F(t, x) ≥ c|x| 
μ – c, t ∈ [, T], x ∈R.
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For any u ∈ Eα,p
 \ {}, ξ ∈R

+, noting that μ ∈ (, /p), we get

I(ξu) =

p
‖ξu‖p

α,p –
∫ T


F
(
t, ξu(t)

)
dt

≤ ξp

p
‖u‖p

α,p – c

∫ T



∣
∣ξu(t)

∣
∣


μ dt + cT

=
ξp

p
‖u‖p

α,p – cξ

μ ‖u‖


μ

L

μ

+ cT

→ –∞, ξ → ∞.

Thus, taking ξ large enough and letting e = ξu, we have I(e) ≤ . Therefore, condition
(C) in Theorem B is also satisfied.

Lastly, noting that I() = , we get a critical point u such that I(u) ≥ σ > . Hence, u is a
nontrivial weak solution of FBVP (.). The proof is complete. �
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