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1 Introduction

Many extensions of the Standard Model (SM) predict a massive, electrically neutral,

color singlet gauge boson (in general called Z ′) at the TeV scale or higher. Examples

include grand unified theories [1–6], string theoretical models [7–10], extra-dimensional

models [11–16], theories of new strong dynamics [17, 18], little Higgs models [19–21], and

various Stueckelberg extensions [22–25]. For reviews on Z ′ phenomenology see [26–29].

For this reason, the ATLAS and the CMS collaborations have searched for Z ′ bosons in

various channels, including at the 13 TeV LHC [30–34]. No confirmation or hint of a Z ′ has

been found so far. Nevertheless, an excess at a mass of around 2 TeV in diboson resonance

searches by the ATLAS collaboration [35] garnered excitement for some time.

In many of these experimental searches it is assumed that Z ′ has a sequential-type

“model independent” parametrization of its couplings. For example, CMS has obtained

a lower limit of 3.15 TeV on the mass of Z
′

in the dilepton channel, assuming a sequen-

tial Z ′ [32]. A similar mass limit of 3.4 TeV on a sequential Z ′ is obtained by ATLAS
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using 13 TeV dilepton resonance search data [33]. There are also strong field theoretical

requirements such as anomaly cancellation and perturbativity that can severely restrict the

parameter space of various Z ′ models.

In this paper we investigate the possible parameter space of a class of minimal U(1)

extensions of the SM that predict a Z ′ gauge boson, by considering anomaly cancellation,

electroweak precision constraints and direct collider limits. The assumptions of our ap-

proach are (i) the existence of an additional U(1) gauge group which is broken by the

vacuum expectation value (VEV) of a complex scalar, (ii) the SM fermions are the only

fermions that are charged under the SM gauge group, (iii) there are three generations of

right-handed neutrinos which are SM singlets but charged under the new U(1), (iv) the

right-handed neutrinos obtain masses via a Type-I seesaw scenario, (v) the gauge charges

are generation independent, and (vi) the electroweak symmetry breaking (EWSB) occurs

as in the SM. The cancellation of the gauge anomalies places a strong theoretical con-

straint on the theory. If they are not canceled, the theory will not necessarily be unitary

or renormalizable, and will have to be considered as an effective theory.

This paper is organized as follows: in section 2, we briefly review the gauge, scalar and

fermion sectors of a generic U(1) extension of the SM; in section 3 we discuss the anomaly

cancellation conditions and charge assignments of various fields under the new U(1) gauge

group; in section 4 we briefly discuss a few specific U(1) extended models and introduce a

generic anomaly-free U(1) model parametrization. In section 5 we present the analytical

formulas for various decay modes of Z ′ and show branching ratios (BRs) for some specific

models. In section 6 we discuss the exclusion limits on model parameters from experimental

constraints and electroweak precision tests (EWPT). Finally, we present our conclusions

in section 7.

2 A brief review of the U(1) extension

In this section, we review the gauge, scalar and fermion sectors of a generic U(1) extension

of the SM, following mostly the notations and conventions of ref. [36]. In general, when

a gauge theory consists of several U(1) gauge groups, kinetic mixing becomes possible.

However, this mixing can be rotated away at a given scale. Hence, we can employ a

framework where kinetic mixing is not present at tree-level, but which has to be properly

taken care of at loop-level.

A priori there are two options for the gauge group structure and the subsequent

symmetry breaking pattern. One option is to start from the group SU(3)C × SU(2)L ×
U(1)Y × U(1)z and to break the U(1)z group at a high scale while breaking SU(3)C ×
SU(2)L×U(1)Y at the EWSB scale as in the SM. Another option is to consider the gauge

group SU(3)C × SU(2)L ×U(1)1 ×U(1)2, and to first break U(1)1 ×U(1)2 down to U(1)Y
at a high scale, and then proceed with the standard EWSB. However, it turns out that

these possibilities of symmetry breaking are equivalent. It is always possible by redefining

the gauge fields and rescaling the gauge couplings to make the U(1)1 × U(1)2 group look

like U(1)Y ×U(1)z (see ref. [36] for a discussion on this point).
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Being equivalent, both symmetry breaking patterns result in the usual SM gauge

bosons with an additional electrically and color neutral heavy gauge boson, which we

denote as Z ′. If the high scale symmetry breaking occurs at the TeV scale we expect the

mass of Z ′ to be at the TeV-scale, and hence it might be observed at the LHC. With-

out any loss of generality we present our model setup by considering the gauge structure

SU(3)C × SU(2)L ×U(1)Y ×U(1)z as a template for a minimal U(1) extension of the SM.

2.1 Gauge sector

We consider the spontaneous symmetry breaking of U(1)z by an SM singlet complex scalar

field ϕ that acquires a VEV vϕ. The charge of this scalar under U(1)z can be scaled to

+1 by redefining the U(1)z coupling gz. The Higgs doublet Φ responsible for EWSB can

in general be charged under U(1)z. This leads to a mixing between the Z and Z ′ bosons

after symmetry breaking. With these conventions, the kinetic terms for Φ and ϕ can be

written as ∣∣∣∣(∂µ − ig2Wµ − ig
′

2
Bµ
Y − izH

gz
2
Bµ
z

)
Φ

∣∣∣∣2 +
∣∣∣(∂µ − igz

2
Bµ
z

)
ϕ
∣∣∣2 , (2.1)

where zH is the charge of Φ under U(1)z. The gauge fields associated with SU(2)L, U(1)Y
and U(1)z are Wµ, Bµ

Y and Bµ
z , with gauge couplings g, g′ and gz respectively. Denoting

the VEVs of Φ and ϕ by vH and vϕ respectively, the relevant mass terms (omitting W±)

after EWSB are
v2
H

8

(
gW 3µ − g′Bµ

Y − zHgzBµ
z

)2
+
v2
ϕ

8
g2
zB

µ
zBzµ , (2.2)

where vH ≈ 246 GeV. If zH 6= 0, the diagonalization of the mass matrix will introduce

mixing between the SM Z boson and the new U(1)z Z
′ boson, characterized by a mixing

angle θ′. Defining tz ≡ gz/g, tan θw ≡ g′/g and r ≡ v2
ϕ/v

2
H , the gauge fields (Bµ

Y , W
3µ, Bµ

z )

can, for zH 6= 0, be written in terms of the physical fields as Bµ
Y

W 3µ

Bµ
z

 =

cos θw − sin θw cos θ′ sin θw sin θ′

sin θw cos θw cos θ′ − cos θw sin θ′

0 sin θ′ cos θ′


AµZµ
Z ′µ

 , (2.3)

where θw is the Weinberg angle, and the Z ↔ Z ′ mixing angle θ′ is given by

θ′ =
1

2
arcsin

 2zHtzcw√
[2zHtzcw]2 +

[
(r + z2

H)t2zc
2
w − 1

]2
 . (2.4)

In the above expression, we use the abbreviation cos θw ≡ cw. After symmetry breaking

the photon field Aµ remains massless, while the other two physical fields Z and Z ′ acquire

masses which are given by

MZ,Z′ =
gvH
2cw

[
1

2

{
(r + z2

H)t2zc
2
w + 1

}
∓ zHtzcw

sin 2θ′

] 1
2

. (2.5)

In this paper we are interested in the case MZ′ > MZ and from now on we assume this

is the case. Due to the induced mixing between Z and Z ′, the Z couplings are in general
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different from the SM Z-couplings. Therefore, Z-couplings measurements can place severe

bounds on these models. An observable sensitive to the Z-couplings is its width, which is

very precisely measured. In section 6, we use the value ΓZ = 2.4952 ± 0.0023 GeV taken

from ref. [37] to constrain the parameter space of the U(1)z models.

The gauge sector has, when compared to the SM gauge sector, five new quantities

(gz, zH ,MZ′ , θ
′, vϕ). However, eq. (2.4) and the MZ′ equation in (2.5) can be used to express

two of these parameters in terms of the three remaining free parameters. In principle, it

is also possible to use the MZ-equation in (2.5) to express a third parameter in terms of

MZ (and other SM parameters) and the two remaining free parameters. However, eq. (2.5)

is a tree-level relation and the measured MZ is slightly different from its SM tree-level

prediction. This difference is due to higher-order effects and new physics, if it is present.

We observe that expressing zH (or the product gzzH) by using the (tree-level) MZ-equation

in (2.5) makes zH very sensitive to this difference. Therefore, we cannot use the tree-level

MZ-equation to reduce the number of free parameters from three to two. Instead one

should really use the BSM mass relation of MZ in eq. (2.5) which induces a tree level

contribution to the oblique parameters. In particular, the tree level contribution to the

T -parameter is [36]

αT =
Πnew
ZZ

M2
Z

=
M2
Z − (M0

Z)2

M2
Z

, (2.6)

where MZ is the prediction of the Z mass from equation (2.5), M0
Z = gvH/(2cw) is the

corresponding SM tree-level prediction, and α is the fine-structure constant evaluated at

the Z-pole. There will be additional loop corrections to the T -parameter, but these are

suppressed by the mixing angle and can be neglected. The current measured value of the

T -parameter is 0.05± 0.07 [37] and we use this value in our analysis.

In the end, we have three free parameters, which we take to be {zH , gz,MZ′}. However,

in the observables we consider in our analysis, zH and gz always show up as a product.

Therefore, one can effectively consider {zHgz,MZ′} as the set of free parameters in this

model. We define A(MZ′) ≡ 8c2
wM

2
Z′/(g

2v2
H) for convenience, and find an expression for

vϕ in terms of {zH , gz,MZ′} from eqs. (2.4) and (2.5),

v2
ϕ = v2

HA(MZ′)

{
A(MZ′)− 2− 2c2

wt
2
zz

2
H

}
2c2
wt

2
z {A(MZ′)− 2} ≡ v2

ϕ(zH , gz,MZ′) . (2.7)

We can then employ the parametrization of eq. (2.7) together with eq. (2.4) to express the

mixing angle θ′ as a function of MZ′ , zH and gz; similarly we express MZ in terms of these

parameters. Using this parametrization we place restrictions on the parameter space using

collider data, T parameter constraints and ΓZ constraints in section 6.

2.2 Scalar sector

The new complex scalar field ϕ, introduced in order to break the U(1)z symmetry, leads

to the possibility of a more general scalar potential. The most general gauge invariant and

renormalizable potential can be written in the form

V = −µ2
Φ

(
Φ†Φ

)
− µ2

ϕ |ϕ|2 + λ1

(
Φ†Φ

)2
+ λ2

(
|ϕ|2

)2
+ λ3

(
Φ†Φ

)
|ϕ|2 . (2.8)
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This potential has 5 free parameters. For this potential to be responsible for the symmetry

breaking, it has to be bounded from below, and it must have a global minimum located

away from the origin. To be bounded from below, the parameters of the potential have to

satisfy the following two conditions [29]

λ1, λ2 > 0; 4λ1λ2 − λ2
3 > 0 . (2.9)

For the purpose of minimization it is convenient to work in the unitary gauge, in which

the VEVs of the scalar fields can be written as

〈Φ〉 ≡ 1√
2

(
0

vH

)
; 〈ϕ〉 ≡ vϕ√

2
. (2.10)

By requiring the potential to be minimized away from the origin, for the fields Φ and φ to

acquire their VEVs, the parameters µ2
Φ, µ

2
ϕ in the potential can be expressed in terms of

the VEVs, by the following relations

µ2
Φ = 2λ1v

2
Φ + λ3v

2
ϕ; µ2

ϕ = 2λ2v
2
ϕ + λ3v

2
Φ. (2.11)

Note that the introduction of a new complex scalar field will in general result in mixing

between the SM Higgs boson and the new scalar state. The five parameters introduced in

eq. (2.8) can then be expressed in terms of the VEVs vH and vϕ, the masses of the physical

scalars MH1 and MH2 , and the sine of the mixing angle between H1 and H2 denoted by

sinα. Using eq. (2.11), we obtain the following relations

λ1 =
M2
H1
c2
α +M2

H2
s2
α

2v2
H

; λ2 =
M2
H1
s2
α +M2

H2
c2
α

2v2
ϕ

; λ3 =

(
M2
H2
−M2

H1

)
sαcα

vHvϕ
, (2.12)

where we use the shorthand notations sα ≡ sinα; cα ≡ cosα and we follow the conventions

MH2 ≥MH1 and −π/2 ≤ α ≤ π/2. We take vH = 246 GeV and MH1 = 125 GeV.1 Then in

the scalar sector we only have two free parameters that are not determined from the SM

or the gauge sector, which we choose to be MH2 and sinα. Note that for a given MZ′ , vϕ
is given as a function of gz and zH .

2.3 Fermion sector

Apart from the SM fermions we also introduce three generations of right-handed neutrinos,

required to cancel various gauge anomalies which we discuss in the following subsection.

The three generations of left-handed quark and lepton doublets are denoted by qiL and liL
respectively and the right-handed components of up-type, down-type quarks and charged

leptons are denoted by uiR, diR and eiR (here i = 1, 2, 3) respectively; the three right-

handed neutrinos are denoted as νkR. All the SM fermions are, in general, charged under

the U(1)z group and the right-handed neutrinos are singlets under the SM gauge group

but charged under U(1)z. The U(1)z charges are determined from the Yukawa couplings

and the anomaly cancellation conditions, which require that the right-handed neutrinos

1By choosing instead MH2 = 125GeV, one can consider the possibility that there is a lighter scalar yet

to be found at the LHC. We will not be concerned with this since we do not study the scalar sector in detail.
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are charged under U(1)z. The anomaly cancellation conditions will be elaborated in the

following section.

For definiteness we assume that neutrino masses arise from the type-I seesaw scenario,

by allowing Majorana mass terms to be generated from the U(1)z breaking. Dirac mass

terms are then generated from EWSB, and upon diagonalization we obtain 3 light and 3

heavy Majorana states. We restrict ourselves to the case of small mixing between genera-

tions, since this will not affect Z ′ phenomenology. This mixing would be important for a

dedicated study of the neutrino sector, but this is beyond the scope of the present paper.

In principle, mixing between the left and right-handed neutrinos could be important.

For type-I seesaw the mixing angle is given by

1

2
arctan

[
−2

√
MνRMνL

MνR +MνL

]
∼ −

√
MνL

MνR

, (2.13)

where MνL and MνR are the masses of the left-handed and right-handed neutrinos respec-

tively. Since the left-handed neutrinos have extremely small masses, this mixing is not

important for the Z ′ phenomenology considered in this paper.

3 Anomaly cancellation & U(1)z charges

We wish to consider here a class of anomaly free models and what restrictions anomaly

cancellation places on the spectrum of possible fermion charges. To construct an anomaly-

free gauge theory with chiral fermions, we should assign the gauge charges of the fermions

respecting all types of gauge-anomaly cancellation conditions. These conditions arise when

contributions from all anomalous triangle diagrams are required to sum to zero. There are

six types of possible anomalies as listed below, leading to six conditions that have to be

satisfied in order to make the theory anomaly-free:

• The [SU(2)L]2 [U(1)z] anomaly, which implies Tr
[{
T i, T j

}
z
]

= 0,

• The [SU(3)c]
2 [U(1)z] anomaly, which implies Tr

[{
T a, T b

}
z
]

= 0,

• The [U(1)Y ]2 [U(1)z] anomaly, which implies Tr
[
Y 2z

]
= 0,

• The [U(1)Y ] [U(1)z]
2 anomaly, which implies Tr

[
Y z2

]
= 0,

• The [U(1)z]
3 anomaly, which implies Tr

[
z3
]

= 0,

• The gauge-gravity anomaly, which implies Tr [z] = 0.

The traces run over all fermions. The generators of SU(2)L and SU(3)c are represented

by T i and T a respectively, and we denote hypercharge by Y and the U(1)z charge by

z. We assume the charges z to be generation independent, just as for the charges in the

SM. Generation dependent charges are in principle not forbidden, but they may lead to

flavor changing neutral currents. The charges of the fermions are labeled as: zq — left-

handed quark doublets, zu — right-handed up-type quarks, zd — right-handed down-type

– 6 –
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SU(3)c SU(2)L U(1)Y U(1)z

qL 3 2 1/3 zq

uR 3 1 4/3 zu

dR 3 1 −2/3 2zq − zu
lL 1 2 −1 −3zq

eR 1 1 −2 −2zq − zu
νR 1 1 0 zk

H 1 2 +1 −zq + zu

ϕ 1 1 0 1

Table 1. The charge assignments for the fermions and scalars of the model.

quarks, zl — left-handed lepton doublets, ze — right-handed charged leptons and zk —

right-handed neutrinos.

By requiring that the EWSB gives mass to the SM fermions, the relations zH =

zu−zq = ze−zl = zq−zd must hold for the Yukawa interactions to be gauge invariant [36].

It should be noted that the mixed gauge anomaly [SU(3)c]
2 [U(1)z] cancels automatically

from the Yukawa coupling constraints above.

By requiring that all the other gauge anomalies vanish one can obtain relations between

these charges. One finds that [36]

zl = −3zq; zd = 2zq − zu; ze = −2zq − zu; (3.1)

1

3

n∑
k=1

zk = −4zq + zu;

(
n∑
k=1

zk

)3

= 9

n∑
k=1

z3
k . (3.2)

It is well known that the most general solution to the anomaly cancellation conditions (in

the framework with no kinetic mixing) is for the charge Qf of a given fermion f to be

written as a linear combination of its hypercharge Yf and (B −L)f quantum number [38],

i.e., Qf = aYf + b(B − L)f . In our convention, this becomes [36]

Qf = (zu − zq)Yf + (4zq − zu)(B − L)f , (3.3)

which is consistent with eq. (3.1). In table 1, we summarize the gauge charges of all the

relevant fields.

In this model it is possible to introduce Majorana mass terms for the right-handed

neutrinos, such as (ϕ†)ν̄ckRν
k
R, provided that zk = 1/2, since ϕ has unit U(1)z gauge charge

(a mass term is also possible for zk = −1/2, but we ignore this since this choice will not

provide any different conclusion than the zk = 1/2 case). Hence, if we want to be able to

have both Majorana and Dirac mass terms from renormalizable interactions (i.e., a seesaw

mechanism), we require that all the right-handed neutrino charges are equal to 1/2; from

eq. (3.2) we then find

zk = 4zq − zu = 1/2. (3.4)

– 7 –



J
H
E
P
1
1
(
2
0
1
6
)
0
7
1

Including three right-handed neutrinos introduces three new parameters, i.e., the

masses of the three right-handed neutrinos. We find that the only influence of the neutrino

masses on the phenomenology is whether or not the decay channel Z ′ → νRνR is open. In

this paper, we take the masses to be degenerate and equal to 500 GeV. This somewhat

arbitrarily chosen mass ensures that the Z ′ → νRνR channel remains open for the entire

mass region of interest, while at the same time not being light enough to conflict with

experimental neutrino constraints. In our setup we are only considering the SM fermion

content together with right-handed neutrinos.

4 U(1)z models

So far we have discussed a very wide class of anomaly-free U(1) extensions. Many cases of

these models have been studied in the literature [39]. We briefly review some of them here

and then introduce a model independent parametrization for this class of models.

4.1 Specific models

4.1.1 Gauged B − L

A particularly attractive U(1) extension of the SM is where the B − L quantum number

is gauged, usually called U(1)B−L. Specifically all fermion charges are proportional to

their B − L quantum numbers. From eq. (3.3) we see that this corresponds to the choice

zu = zq. This model can also be thought of as the special case of no Z ↔ Z ′ mixing, since

zH = zu − zq = 0, which is the only charge assignment that results in vector-like couplings

for the fermions. There exist extensive dedicated studies [29, 40] of the B − L model in

the literature to which we refer the reader for a deeper discussion.

4.1.2 Y -sequential

Another natural model is one where the new gauge charges obey the same relations as the

hypercharges. From eq. (3.3) we see that this model, known as the Y-sequential model,

is achieved when zu = 4zq. An interesting and special feature of this model is that right-

handed neutrinos are redundant, since as can be seen from eq. (3.2), anomaly cancellation

is ensured without any right-handed neutrinos. In this paper we consider the minimal

Y-sequential model, by assuming that there exist no right-handed neutrinos charged under

the gauge groups. It is important to note that the Y -sequential model is different from the

so-called sequential Standard Model (SSM), which is not anomaly free.

4.1.3 SO(10)-GUT

The SO(10) model is a widely studied model as a candidate of grand unified theories

(GUTs), with and without supersymmetry. One of the possible breaking patterns for the

SO(10) group is to break down to a flipped SU(5) model, i.e., SO(10) → SU(5) × U(1).

These models can then upon breaking at a high scale result in a U(1) extension surviving

after the SU(5) breaking. These models commonly include new exotic fermionic states,

but for the purpose of studying the minimal U(1) extension these states will be ignored.
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The model is often denoted as U(1)χ and in our framework it is distinguished by the

relation zq = −zu.

4.1.4 Right-handed

In the right-handed model, the gauge field corresponding to the new U(1)R only couples

to the right-handed fermion fields. The gauge charges are proportional to the eigenvalues

of the approximate global SU(2)R symmetry of the SM. This corresponds to the case

when zq = 0.

4.1.5 Left-right model

A neutral heavy gauge boson Z ′ can originate from left-right symmetric models with gauge

group SU(2)L ⊗ SU(2)R ⊗U(1)B−L. In addition to Z ′, there are also two massive charged

gauge bosons W ′±R . By redefining gauge couplings and fields we can always write U(1)R ⊗
U(1)B−L ≡ U(1)Y ⊗U(1)z. In terms of the zH , gz and the fermion charges, this model can

be defined by the relations

zq = − g2
Y

3g2
zzH

; zu = zH −
g2
Y

3g2
zzH

. (4.1)

4.2 κ-parametrization

All of these particular cases of the U(1) extensions we discuss above have one thing in

common: the charges zu and zq can be written as

zq = κzu, (4.2)

where κ is a parameter we introduce in order to present our results in a model-independent

fashion. In table 2 we use the κ-parametrization to summarize some of the specific models

considered in subsection 4.1. We have not included the left-right model since it is not easy

to express in this framework; an ambiguity arises since there exist two branches of κ as

functions of gz. In the limit gZ →∞, one branch approaches the right-handed model, and

the other one approaches the B−L model. We will hence not study this model separately

and instead focus separately on the limiting cases. The charges zq and zu can, by their

relation to the charge zH , be written as

zq =
κ

1− κzH ; zu =
1

1− κzH . (4.3)

Using equation (3.4), i.e. requiring that we can write a Majorana mass term for the right

handed neutrinos, together with eqs. (4.3), we find that

zH(κ) =
1− κ

2(1− 4κ)
⇒ zu(κ) =

κ

2(1− 4κ)
; zq(κ) =

1

2(1− 4κ)
. (4.4)

Note that this parametrization is only allowed if κ 6= 1/4, which reflects the fact that

right-handed neutrinos are not necessarily included in the Y -sequential model. This case,

therefore, has to be treated separately and we perform a separate analysis for this model.
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Model κ = zq/zu

Gauged B − L 1

Y sequential 1/4

SO(10)-GUT −1

Right-handed 0

Table 2. The ratio of the charges zq/zu, i.e., κ for specific models with an extra U(1) symmetry.

In the κ-formalism one can parametrize the production cross section of Z ′ at the LHC,

i.e., σ(pp→ Z ′), in terms of κ as follows,

σ (MZ′ , gz, κ) = g2
z

{
auL (MZ′)

(
κ

1− 4κ

)2

+ auR (MZ′)

(
1

1− 4κ

)2

+ adL (MZ′)

(
κ

1− 4κ

)2

+ adR (MZ′)

(
2κ− 1

1− 4κ

)2
}
, (4.5)

where auL/R (adL/R) are the contributions from the left/right components of all the up (down)

type quarks in the proton. Using this parametrization we can in a compact manner study

a wide class of anomaly free U(1) extensions.

Generally the most stringent constraints on Z ′ models come from dilepton events;

thus it is worthwhile to study which κ value minimizes the contributions to this channel,

since this will put a model independent constraint on the parameter space (gz, MZ′).

Performing this minimization numerically we find that the minimum of σ(MZ′ , κ) × Γll

occurs for 0 > κ > −1/2, with a slight MZ′ dependence coming from the relative strength

of the different quark contributions to the production cross section. This κmin value then

serves as an important benchmark, since if the model is ruled out by dilepton data for

given (gz, MZ′), then all κ models are automatically ruled out for this parameter point.

5 Decay widths & branching ratios

The Z ′ has the following two-body decays: f̄f (where f denotes any Dirac fermion), νν

(where ν denotes any Majorana fermion), W+W− and ZS (where S represents any scalar,

i.e., H1 or H2). In this paper we only consider the lowest order results from perturbation

theory. The tree-level decay widths can be found from each corresponding interaction

Lagrangian.

• Z ′ → f̄f decay mode: from the interactions

LZ′ff ⊃
(
iλL f̄Lγ

µfL + iλR f̄Rγ
µfR

)
Z ′µ , (5.1)

the partial decay width for Z ′ → f̄f decay is given by

Γ
(
Z ′→ f̄f

)
=
NcMZ′

24π

√
1−

4M2
f

M2
Z′

{(
λ2
L+λ2

R

)(
1−

M2
f

M2
Z′

)
+6λLλR

M2
f

M2
Z′

}
, (5.2)

where λL and λR denote the couplings to the left and right handed fermions respec-

tively, Mf is the fermion mass, and Nc is the number of colors of the fermion.
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• Z ′ → νν decay mode: from the interaction

LZ′νxνx ⊃ iλx (νc)TγµPxνZ
′
µ , (5.3)

the partial decay width for Z ′ → νν decay is given by

Γ
(
Z ′ → νxνx

)
=
MZ′

48π
λ2
x

(
1− 4M2

νx

M2
Z′

)3/2

, (5.4)

where λx is the coupling to the x chirality and Px is the corresponding projection

operation. The mass of the Majorana fermion is denoted by Mνx .

• Z ′ → W+W− decay mode: the Z ′W+W− coupling arises from the mixing of the

gauge fields Wµ
3 , B

µ and Bµ
z . From the triple gauge boson interaction

LZ′W+W− ⊃ λWZ ′µ(p1)W+
ν (p2)W−ρ (p3), (5.5)

the partial decay width for Z ′ →W+W− decay is given by

Γ
(
Z ′ →W+W−

)
=

M5
Z′

192πM4
W

λ2
W

(
1− 4M2

W

M2
Z′

)3
2
(

1 +
20M2

W

M2
Z′

+
12M4

W

M4
Z′

)
, (5.6)

where λW is the Z ′W+W− coupling. The momentum associated with each gauge field

is shown within bracket in eq. (5.5) and all momenta point towards the three-point

vertex.

• Z ′ → ZS decay mode: from the interaction

LZ′ZS ⊃ µS Z ′µZµS , (5.7)

the partial decay width for Z ′ → ZS decay is given by

Γ
(
Z ′ → ZS

)
=

µ2
SMZ′

192πM2
Z

(
1−

(
2M2

S − 10M2
Z

)
M2
Z′

+

(
M2
S −M2

Z

)2
M4
Z′

)

×
(

1− 2
(
M2
S +M2

Z

)
M2
Z′

+

(
M2
S −M2

Z

)2
M4
Z′

)1/2

, (5.8)

where µS is a dimensionful (mass dimension one) cubic coupling.

In figure 1 we show the BRs of Z ′ as functions of the mass for the specific models we

discussed in section 4. The final states with biggest BRs are dijets and dileptons. Therefore,

in the next section, for the exclusion from experiments we mostly use dilepton and dijet

data, where it turns out that the dilepton data is more constraining. We observe that all the

BR curves are almost horizontal (after a mode becomes kinematically allowed) in the entire

range of MZ′ in consideration. This is because all the couplings of Z ′ are either constant

or depend very weakly on MZ′ , and therefore BRs become insensitive to MZ′ since phase-

space factors go to a constant value in the MZ′ →∞ limit. For the right-handed model, the

Z ′ → νLνL mode is absent since only right-handed fermions couple to Z ′ in this model. In

the B−L model there is no tree-level mixing between Z and Z ′, and thus there are no direct

diboson couplings to Z ′ at tree level. Notice that Γ (Z ′ →W+W−) ≈ Γ (Z ′ → ZH1) for all

models, which is a consequence of Goldstone boson equivalence in the high energy limit.
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Figure 1. Branching ratios of Z ′ as functions of MZ′ for the models: (a) Y -sequential with no

right-handed neutrinos, (b) SO(10)-GUT, (c) B-L (d) right-handed model. We use MνR = 500 GeV,

MH2 = 500 GeV and sinα = 0.1 for all branchings.

6 Constraints from data

Using the κ-parametrization described in section 3, we perform tree-level calculations of Z ′

production cross section σ(pp→ Z ′) at the LHC using CTEQ6L1 [41] parton distribution

functions (at µF = µR = MZ′ where µF and µR are the factorization and renormalization

scales, respectively). Various BRs of Z ′ are calculated analytically using the formulas given

in section 5, where the relevant couplings are obtained using FeynRules-2.3 [42]. The

production cross sections are computed using MadGraph5 aMC@NLO [43]. Using the

parametrization shown in eq. (4.5), the (fitted) functional forms of au,dL,R(MZ′) are obtained

by interpolating the cross sections. The narrow width approximation is then used in order

to write σ (pp→ Z ′ → XY ) ≈ σ (pp→ Z ′)×BR(Z ′ → XY ).

In this section we will see that the main constraint on minimal U(1) extensions of the

SM comes from the dilepton channel. Since some free parameters of the model (MνR ,MH2

and sinα) have very little effect on the dilepton branching, we fix them at reasonable values.

The only real effect of the mass parameters on the Z ′ phenomenology is whether the cor-

responding decay channel is open or not. We choose MνR = 500 GeV and MH2 = 500 GeV
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Exp. 95% CL UL

Obs. 95% CL UL

Right-handed

SO(10)-GUT

Y-sequential

Gauged B-L

κ-minimum

Figure 2. Comparison of the observed and expected 95% CL UL on σ × BR obtained from the

13 TeV ATLAS dilepton resonance search data with the theoretical predictions of various models.

In this plot the reference value gz = 0.2 is chosen. For the Y-sequential model it is also necessary

to provide a value for zH ; we use the reference zH = 1.

such that these channels are open in the mass range we study, and sin α = 0.1 motivated

by the SM-likeness of the observed Higgs boson.

In order to place exclusion bounds on the models, we compare the 95% confidence

level (CL) upper limits (UL) on cross sections (the quantity used is σ×BR where σ is the

production cross section and BR denotes the branching of Z ′ in the corresponding channel)

using dijet and dilepton data from the 13 TeV LHC [31, 44]. In our analysis, we use only

the ATLAS data since the CMS data puts very similar bounds on the parameter space.

In addition, the models are constrained by EWPT constraints, in particular by tree-level

contributions to the T -parameter and to the Z width. In principle there is also a bound on

zHgZ from perturbativity, but this is much less constraining than the bounds from data.

While comparing with the experimental data, we use a next-to-leading order (NLO)

QCD K-factor of 1.3 for any MZ′ [45]. Apart from the QCD corrections, when various cou-

plings of the model become large, other higher-order corrections might become important,

but we have not considered them in this simplified qualitative analysis. In figure 2 we com-

pare the 95% CL UL on the σ×BR set by ATLAS [44] using dilepton data at the 13 TeV

LHC with the theoretical predictions of the models discussed in section 4. We choose the

benchmark value gz = 0.2 for this plot. Note that the dilepton BR is largely independent

of gz and the production cross section σ scales as g2
z . Therefore it is straightforward to

translate these bounds to any other choice of gz.
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Figure 3. Excluded regions. The blue filled region represents R > 1, where R = (σ×BRll)th/(σ×
BRll)

obs
ATLAS; (σ × BRll)th and (σ × BRll)obsatlAS denote the theoretical prediction and the observed

95% CL UL set by ATLAS using dilepton data at the 13 TeV LHC, respectively. The filled beige

region is the same measure but using 13 TeV ATLAS dijet data instead. The region hashed by red

dashed lines corresponds to parameter points which do not fulfill the electroweak bounds set by the

T -parameter. The region marked by light blue lines corresponds to parameter points not fulfilling

the bounds set by the measured width of the Z-boson.
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Figure 4. Zoomed in version of figure 3d, with (a) gz normalization and (b) zHgz normalization.

In figure 3 we show the exclusion plots in the gz-MZ′ plane for four selected models.

We present exclusion regions using 13 TeV ATLAS dijet and dilepton data, T -parameter

constraints, and ΓZ constraints. The values of κ for all the models discussed in section 4

are constant except for the kmin model where κ varies with MZ′ ; κmin is the κ-value that

minimizes σ(pp → Z ′) × BR(Z ′ → ``) for a given MZ′ . This implies that the excluded

region for the κmin-model is also excluded for all other κ models and thus serves as a model

independent upper limit of gz for a given M ′Z . In figure 4a, which is a zoomed in version of

figure 3d, we see that for MZ′ . 3 TeV the gauge coupling is constrained to gz . 0.8. This

bound is shown in terms of gzzH in figure 4b, and the upper bound roughly correspond

to zHgz . 0.23 for M ′Z . 3 TeV. This is a model independent upper bound on the model

parameter zHgz in this mass region.

We see from figure 3 that the gz parameter space is strongly constrained from the

dilepton data. Another observation is that the B − L model receives no constraint from

the T -parameter or from the Z width ΓZ , which is expected since there is no tree-level

Z −Z ′ mixing in this model. Note that in the κ characterization, bounds are expressed as

functions of gz and MZ′ . However, the bounds on gz can be translated to bounds on zHgz
by relation zHgz = gz(1− κ)/{2(1− 4κ)}.

7 Summary and conclusions

In this paper, we consider minimal anomaly free U(1) extensions of the SM with a set

of minimal assumptions listed in section 1. Apart from the SM particles, an electrically

neutral massive Z ′, a complex scalar ϕ and three generations of right-handed neutrinos

are introduced. To make our results as model independent as possible, we introduce a
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“κ-parametrization” which is explained in section 4. By requiring all gauge anomalies to

cancel, we find that various models can be characterized by a κ value. Further requiring

the model to generate Majorana masses for the right-handed neutrinos through a seesaw

mechanism, the U(1)z gauge charge of the Higgs can be parametrized in terms of κ. In this

framework, the relevant parameters are the mass of the new gauge boson MZ′ , U(1)z gauge

coupling gz, and the κ parameter; this parametrization is viable for all κ values except for

κ = 1/4 (the Y -sequential model). We choose the masses of the right-handed neutrinos

and the new complex scalar in such a way that the decay channel is open for all considered

values of MZ′ . We find that the result depends weakly on the precise values of the masses.

We show that this wide class of U(1) extended models is mainly constrained from the new

LHC dilepton data and electroweak precision measurements.

The bounds on this class of models rely on the minimal assumptions outlined in

section 1. By relaxing these assumptions it could be possible to deviate from the bounds

derived from data. A few possibilities are: introducing new chiral fermions that enlarge

the number of possible charge assignments, allowing for generation dependent charges,

considering another mechanism for EWSB, or ignoring anomaly-cancellations altogether

by considering the theory as an effective field theory, perhaps supplemented by a variant

of the Green-Schwarz mechanism for anomaly cancellation [46]. We will return to these

issues in a forthcoming paper [47].
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