
REVIEW Open Access

Modifications of the metabolic pathways of lipid
and triacylglycerol production in microalgae
Wei-Luen Yu1, William Ansari2, Nathan G Schoepp1, Michael J Hannon2, Stephen P Mayfield2,3 and
Michael D Burkart1,3*

Abstract

Microalgae have presented themselves as a strong candidate to replace diminishing oil reserves as a source of
lipids for biofuels. Here we describe successful modifications of terrestrial plant lipid content which increase overall
lipid production or shift the balance of lipid production towards lipid varieties more useful for biofuel production.
Our discussion ranges from the biosynthetic pathways and rate limiting steps of triacylglycerol formation to
enzymes required for the formation of triacylglycerol containing exotic lipids. Secondarily, we discuss techniques
for genetic engineering and modification of various microalgae which can be combined with insights gained from
research in higher plants to aid in the creation of production strains of microalgae.

Introduction
In the past decade, the price of crude oil has ranged from
20 dollars a barrel to nearly 170 dollars a barrel. The vola-
tile price, expected depletion and increase in atmospheric
greenhouse gases due to oil combustion provide impetus
to develop alternative energy sources. Biofuels have served
as sources of energy from the beginning of human history,
but the start of the industrial revolution led to a reliance
on fossil energy due to its prevalence and high energy
yields compared to the majority of bioenergy [1]. Estab-
lishing energy independence in coordination with the
increasing costs for liquid fuels have renewed interest by
the government, industry and academia in renewable
liquid fuels to replace petroleum.
Biofuels can be solids, liquids or gasses so long as they

are derived directly from biological sources. The most
common solid biofuel is lignified cellulose (wood) that
can be burned for energy. Liquid and gaseous biofuels
generally require more refining, and include bioethanol,
biodiesel, and engine-combustible hydrocarbons as well
as methane from anaerobic digestion. The aforemen-
tioned liquid biofuels offer significant potential to aug-
ment or replace petroleum gasoline for transportation
purposes. Currently ethanol dominates the biofuel mar-
ket and may be produced by a variety of methods,

primarily heterotrophic fermentation of sugars purified
from biomass feedstocks [2]. Biodiesel, and other hydro-
treated biofuels, are derived mainly from vegetable oil
feedstocks (lipids) [3].
The lipids used for biofuels have important physiological

roles in plants, including energy storage, structural support
as membranes, and intercellular signaling [4]. Storage
lipids differ from both structural and signaling lipids in
that they are mainly composed of glycerol esters of fatty
acids, also known as triacylglycerol (TAG). These lipids
are generally stored in a compartment specialized for lipid
storage, the lipid body. This compartment is found in
most oleaginous plant cells, and is used to store a variety
of TAG molecules depending on the species [5]. Vascular
plants store large amounts of lipids in seeds, and provide
energy for growth during germination. The lipid content,
and fatty acid composition of oilseeds varies. Environmen-
tal changes or human manipulation, such as breeding or
genetic engineering have been used to change lipid con-
tent and composition [6]. Although less common, some
species like Simmondsia chinensis accumulate storage
lipids as waxes rather than as TAG. Regardless of the final
storage type, de novo fatty acid biosynthesis in plants
occurs exclusively in the stroma of plastids, whereas, with
the exception of plastidial desaturation and a few complex
lipid biosyntheses, most modifications of fatty acyl residues
and TAG synthesis from acyl chains are localized in the
lumen of the endoplasmic reticulum (ER) [6]. In addition
to TAGs, plants also contain membrane lipids. These,
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unlike TAGs, remain highly conserved in both identity
and quantity to maintain normal plant physiology.
Ethanol and biodiesel is primarily derived from plant

sources, often food crops, because the established scale of
food crops made them a convenient source of biomass
necessary to produce biofuel on a commercial scale.
However, an increasing demand for biofuel feedstocks
has negatively impacted food markets, and raised a global
“food vs. fuel” controversy. Furthermore, the land and
fresh water requirements for growing crops, and the long
growth-to-harvest periods limit the expansion of plant
based biofuel industries to the amount of arable land. In
contrast, unicellular algae require smaller amounts of
land that does not need to be arable, have faster growing
cycles, contain a higher percentage of oil, and have been
proposed to be a better solution to the food vs. fuel
debate. Therefore, significant attention has been focused
on algae as a next generation feedstock for biofuel pro-
duction [7]. It has been proposed that a fuel only based
approach to biodiesel production from algae is unlikely
to be feasible with current yields based on economic
modeling of production facilities. As a result, attention
must be paid to genetic manipulations in order to har-
ness the ability of algae to make high quality fuel, but
also potentially to serve as a factory for the production of
other value added products such as protein therapeutics
[8,9]. In light of this and studies on selection pressure for
photosynthetic efficiency in native vs. bioreactor environ-
ments, it seems genetic modification is likely to provide
the key to unlocking the feasibility of algal production
strains [10].
Several research papers and reviews have been published

presenting the recent progress in plant lipid biosynthesis
and related industrial applications [4,11-14]. In this review,
we discuss lipid biosynthesis and regulation in plants and
algae; the state of genetic manipulation in plants to modify
lipid biosynthesis; and the possible impacts of manipula-
tion on biodiesel production from algae and future studies.

Biosynthesis of Triacylglycerol (TAG) in Plants
A general scheme of plant TAG biosynthesis is broadly
discussed in the textbook “Plant Lipid Biosynthesis:
Fundamentals and Agricultural Application” and other
review articles, as shown in Figure 1. The TAG path-
way begins with the basic fatty acid precursor, acetyl-
CoA, and continues through fatty acid biosynthesis,
complex lipid assembly, and saturated fatty acid modi-
fication, until finally reaching TAG formation and sto-
rage [15].
The fatty acid synthase (FAS) complex residing in plant

chroloplasts is a major player in de novo fatty acid synth-
esis [16]. Completion of de novo fatty acid synthesis is
accomplished in one of three ways [4,6]. Either the newly
synthesized fatty acid is hydrolysed by a thioesterase,

further modified by desaturases, or directly transferred to
complex lipid formation (’prokaryotic lipid’) using plastid
acyltransferases. After release from plastids, free fatty
acids are exported to the cytosol by an unknown
mechanism and converted to acyl-CoA esters by an acyl-
CoA synthetase located in the outer envelope of the plas-
tid [17,18]. The cytosolic acyl-CoA esters are then trans-
ferred to the ER for further elongation, modification, or
participation in the synthesis of membrane lipids or sto-
rage TAGs (’eukaryotic lipid’).
Triacylglycerols (TAGs) are commonly found as storage

fats or oils and are described as neutral or non-polar lipids,
differentiating them from polar membrane lipids. TAGs
consist of three FA chains esterified via the hydroxyl
groups of a glycerol backbone. Biosynthesis of TAGs
occurs in the plastids, mitochondria, and endomembrane
system. Although the substrates are commutable, each
compartment of the plant cell has an independent TAG
synthesis pathway. The Kennedy pathway is well under-
stood and one of the most straightforward TAG biosynth-
esis pathways; it consists of stepwise acylation, adding to
each hydroxyl group of glycerol beginning with glycerol-3-
phosphate [19]. Lipid bodies are single-layer, membrane-
wrapped, protein embedded organelles 0.2-2.5 μm in
diameter and are in the cytoplasm of most, if not all, plant
cells [4,5]. It is generally believed that plant lipid bodies
are not only a cellular lipid reservoir, but also provide an
effective energy battery during seed germination. Plasto-
globules are lipid bodies found within plastids that contain
TAG, isoprenoid-derived metabolites, as well as proteins
[20].
Palmitate (16:0) and stearate (18:0) are the major pro-

ducts of plastid FAS. However, the major fatty acids of
plants are the C18 compounds, oleate (18:1Δ9), linoleate
(18:2Δ9, 12) and a-linolenate (18:3Δ9, 12, 15). Together,
these three fatty acids represent over 85% of total mem-
brane acids, and over 80% of economically important sto-
rage oils. There are other various fatty acids which contain
longer carbon-chains, unsaturated double bonds, hydroxyl
groups, and other modifications within the plant fatty acid
repertoire [21].
Fatty acid modification during plant lipid biosynthesis

is crucial for generating the fatty acid repertoire found in
plants. Fatty acids with 20 or more carbon atoms are
called very-long-chain fatty acids (VLCFAs). In plants,
VLCFAs are ubiquitous in leaf surfaces as wax, and in
cuticle components which play an important role against
xenobiotics. In Simmondsia chinensis seed, VLCFA is the
major component of energy storage in the form of liquid
wax consisting of chains 36 to 46 carbon atoms in length
[11,13]. The VLCFAs are precursors of very-long-chain
polyunsaturated fatty acids (VLC-PUFAs) which are
important in human nutrition and health [22]. However,
none of these VLC-PUFAs is normally produced in
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higher plants. In lower eukaryotes such as mosses, fungi,
and algae, VLC-PUFAs are synthesized to confer flexibil-
ity, fluidity, and selective permeability to cellular mem-
branes in stringent environments [23].

Biosynthesis of Triacylglycerol (TAG) in Algae
Algae are a diverse group of organisms which includes
prokaryotes and eukaryotes in the form of single cells,
colonized cells, and multicellular plants. Algae are

Figure 1 The general scheme of plant lipid biosynthetic pathway and representative chemical structures of petroleum diesel,
biodiesel, and ethanol. AT = acetyltransferase, MAT = malonyl-CoA acetyltransferase, ACP = acyl carrier protein, KAS = ketoacyl synthase, FAS =
fatty acid biosynthesis, KR = ketoreductase, DH = dehydratase, ER = enoyl reductase, GPDH = glycerol-3-phosphate dehydrogenase, GPAT =
glycerol-3-phosphate acyltransferase, LPAAT = lysophosphatidic acid acyltransferase, PAP = phosphatidic acid phosphatase, DAGAT =
diacylglycerol acyltransferase, ACS = acetyl-CoA synthetase, DGTA = diacylglyceryl hydroxymethyltrimethyl-b-alanine, CPT = carnitine palmitoyl
transferase, PDAT = phospholipid diacylglycerol acyltransferase, LPCAT = lysophosphatidylcholine acyltransferase.
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typically distinguished from other classes of organisms
by their ability to fix carbon, and utilize solar energy.
Algae reside in a variety of ecosystems including marine
and freshwater environments, desert sands, hot springs,
and even snow and ice. To survive in these environ-
ments, algae produce a myriad of lipids. These include
structural lipids for cellular membranes, as well as lipids
for nutrient storage [24,25]. The two oil crises during
the 1970’s spurred a vigorous search for alternative
energy sources, as people began to address their growing
energy problem. From 1978 to 1996, the U.S. Depart-
ment of Energy’s Office of Fuels Development developed
the Aquatic Species Program (ASP) with a goal of devel-
oping renewable transportation fuels from algae. During
this program, systematic and fuel-directed algal oil
research evaluated the potential of algal oil as an energy
source. Although the program was terminated in 1996,
the preliminary results of the pioneering studies provide
a direction for later exploration in this field [26].
Over almost two decades of the ASP program, thou-

sands of algae strains were isolated and screened for their
lipid and fatty acid content. These data were combined
with previous sporadic results, and some generalizations
of lipid content in different algae categories were formed
[26-29]. For example, diatoms are among the most com-
mon and widely distributed groups of algae. They store
energy primarily in the form of lipids (TAGs) and the
average lipid content of oleaginous diatoms is 22.7% dry-
cell-weight (DCW) under normal growth conditions;
with that number rising to 44.6% DCW when cultured
under stress conditions [30]. However, the slower growth
rate caused by nutrient deficiency, along with the increas-
ing cost of silicate containing culture media hampers the
usage of diatoms as a robust biofuel feedstock.
Green algae, often referred to as chlorophytes, are highly

abundant and are estimated to number as many as 8,000
species. They are the most diverse group of algae, and
include unicellular, colonial, coccoid, filamentous, and
multicellular forms growing in a variety of habitats. Green
algae are believed to share a common ancestor with higher
plants, carrying the same photosynthetic pigments and
having similar metabolic mechanisms. Generally, these
algae use starch as their primary storage vehicle, however,
in some strains large quantities of TAG accumulate under
specific growing conditions. Oleaginous green algae
contain an average total lipid content of 25.5% DCW,
which can be raised to 55.2% DCW when the algae are
grown under stress conditions or heterotrophically [30,31].
Chlamydomonas reinhardtii has been treated as a model
organism for photosynthesis, and as a result has been stu-
died extensively, because of its giant chloroplast and ability
to control sexual reproduction, allowing detailed genetic
analysis [32]. Indeed, Chlamydomonas was also the first
alga to be genetically transformed and a draft sequence of

the whole genome has recently been determined [33].
Although it does not typically accumulate lipids under
ideal conditions, metabolic engineering can be used to
transform this alga into an oleaginous factory [34].
Algal lipid metabolism from de novo fatty acid bio-

synthesis to the formation of complex glycerolipids is
similar to that of the plant cells. Higher plants have dif-
ferentiated organs, each of which performs specific phy-
siological functions, and contains specific biochemical
pathways. Similarly to higher plants, algae process TAG
into lipid droplets which are coated in a large number of
proteins. Most of these are typical members of vesicular
transport and signaling pathways such as RabGTPases,
but a proteomics approach to algal lipid bodies has iden-
tified a protein called major lipid droplet protein (MLDP)
which affecs the size of lipid droplets and may present a
target for immunofluorescence imaging of algal lipid con-
tent [35]. Algae species, especially microalgae, have a
general biochemical composition of 30-50% DCW pro-
teins, 20-40% DCW carbohydrates and 8-15% DCW
lipids under optimal growth condition[36]. Most of the
algal lipids are glycerinated membrane lipids, with minor
contributions to overall lipid content from TAG, wax
esters, hydrocarbons, sterols, and prenyl derivatives
[30,36]. Under unfavorable growing conditions many
algae shift their metabolic pathways toward the biosynth-
esis of storage lipids or polysaccharides. TAG accumula-
tion in response to environmental stress likely occurs as
a means of providing an energy deposit that can be read-
ily catabolized in response to a more favorable environ-
ment to allow rapid growth [27]. Nutrients, temperature,
light, salinity and growing phase have been shown to
influence the flux of algal cellular metabolism [37].
Since many of the algal lipid metabolism studies on

environmental changes have been carried out in batch cul-
tures, there is a lack of systematic, multi-factor monitored
studies. This decreases the practicability of applying pre-
vious findings to large-scale algal cultures. During the
years of Aquatic Species Program, a ‘silver bullet’ was
sought; a single species which could produce high levels of
storage lipids without growth rate alteration. To maximize
lipid production and growth efficiency for industrial scale
culture, experiments with recombinant genetics and com-
plex culture conditions (multi-stage cultures, timed nutri-
ent limitations) may be required.

Engineering of Lipid Biosynthesis for the Production of
Biofuels
1. Advantages of Biodiesel
Petroleum diesel or petrodiesel is a mixture of saturated
and aromatic hydrocarbons with 10-15 carbon atoms and
is ignited in high-compression diesel engines. Most plant
oils (TAGs) are too viscous to use in modern diesel
engines, and eventually lead to engine failure caused by
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incomplete combustion. Biodiesel is mono-alkyl (usually
methyl) esters (fatty acid methyl ester, or FAME) made
by the transesterification of TAGs from vegetable oils or
animal fats, and has a similar viscosity to petrodiesel [38].
There are several advantages in addition to carbon neu-
trality when using biodiesel as a liquid fuel source. The
cetane number, a measure of the delay between compres-
sion and ignition, can be higher for biodiesel than regular
grade petrodiesel. This reflects the quality of the fuel and
a higher number is associated with shorter delays in igni-
tion, resulting in more complete combustion. Burning
biodiesel produces less carbon monoxide, particulate
matter, sulfur, and aromatic compounds than burning
petrodiesel. Furthermore, it has a higher flashpoint,
allowing safer handling and storage and greater lubricity
for engines than other fuels. It is made from renewable
biomass and is biodegradable and “friendlier” to the
environment than crude petroleum when fuel leakages
do occur. Currently only two major renewable liquid
fuels are produced in large quantities, bio-ethanol and
biodiesel. Biodiesel has 25% higher energy content per
volume, and requires much less energy input in produc-
tion than bio-ethanol, as no distillation step is necessary.
Additionally, ethanol has been shown to corrode pipe-
lines, likely shortening their lifetimes [39].
Despite the many advantages, and increasing market

share of biodiesel, there are limitations hindering its com-
plete replacement of petrodiesel [38]. Negative biodiesel
characteristics include poor cold-temperature properties,
namely the tendency to solidify or gel, which can lead to
fuel starvation and engine failure. The presence of polyun-
saturated fatty acids in biodiesel also makes it susceptible
to oxidation by atmospheric oxygen or hydrolytic degrada-
tion by water, which decrease the stability of biodiesel
during long-term storage. In addition, the emissions from
biodiesel contain a higher concentration of nitrogen oxide
(NOx) than do petrodiesel emissions, limiting its usage in
areas under strict air quality standards. One of biodiesel’s
biggest limitations is cost and supply. As mentioned
above, the use of oil crops for biodiesel production has
already increased the cost of these commodities, and
raised the ‘food vs. fuel’ debate. Although the oil supply
problem may be relieved by switching from food plant to
non-food plant feedstocks such as algae, the higher pro-
duction costs of algal oil along with the lack of successful
industry examples to date further hinders industry-scale
adoption of algae-derived biodiesel.
The four major sources of plant oil today are oil palm,

soybean, rapeseed, and sunflower, which together account
for approximately 79% of the world’s total production.
Within these oils, palmitate (16:0), stearate (18:0), oleate
(18:1Δ9), linoleate (18:2Δ9, 12), and a-linolenate (18:3Δ9,
12, 15) are the five main fatty acid components [14]. Unu-
sual fatty acids produced by specific plant species contain

unique functional groups giving them selective usages in
industry [4]. The fatty acid composition determines the
physical and chemical properties of the oil and its eco-
nomic value. Traditionally, simple methods like blending
or partial hydrogenation were applied to produce oils for
specific applications. As the accumulating knowledge of
plant lipid biosynthesis has been coupled with the devel-
opment of advanced genetic technologies, various meta-
bolic engineering methods have been performed to modify
the fatty acid and lipid composition of several oleaginous
plants [40-42].
2. Increasing Oil Content
Increasing oil content could be a straight-forward
method to lower the high cost of biodiesel production,
and may be applicable through genetic manipulation of
lipid biosynthetic pathways. Table 1 shows an outline of
genetic manipulations that have been performed in
higher plants and the resulting changes in fatty acid com-
position and content. It has been proposed that lipid
biosynthesis may be controlled by the availability of fatty
acids, and that the production of fatty acids is regulated
by acetyl CoA carboxylase (ACCase) [43,44]. Increasing
the activity of ACCase may push excess substrate, malo-
nyl-CoA, into the lipid biosynthesis pathway. Substan-
tially increasing plastidial ACCase activity may prove
quite complex due to the multigene-encoded enzyme
complex and its post-translational regulation [45]. A suc-
cessful example has been achieved by expressing a cyto-
solic version of the enzyme targeted to the rapeseed
chloroplast [46]. This manipulation resulted in a higher
ACCase activity and consequently a 5% increase in seed
oil content, a relatively modest increase.
Increasing malonyl-CoA substrate pools for de novo

fatty acid biosynthesis resulted in only minor increases
in seed oil yield. Fatty acid synthase has been suggested
to be another rate-limiting regulator of lipid production
and several studies have been performed where a single
enzyme of the FAS complex is overexpressed. Heterolo-
gous overexpression of KAS III, the first condensing
enzyme synthesizing 4C acyl chains, increased the pro-
portion of palmitic acid (16:0) but decreased the total
fatty acid content by 5-10% [47]. The accumulation of
butyryl-ACP suggests that KAS I is the next rate-limit-
ing enzyme. It seems unlikely that the up-regulation of
any single enzyme will have a major positive effect on
lipid biosynthetic flux. Multiple gene expression or acti-
vation of key regulators operating on the entire fatty
acid biosynthetic pathway may have a more substantial
effect on lipid production [48].
The second part of triacylglycerol biosynthesis is the

Kennedy pathway, which depends on levels of glycerol-3-
phosphate. Increasing the glycerol-3-phosphate levels in
developing seeds by overexpression of a yeast gene
encoding a cytosolic glycerol-3-phosphate dehydrogenase
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(gpd1) resulted in a substantial increase in seed oil con-
tent up to 40% in transgenic rape [49,50]. Other success-
ful examples increasing plant oil levels have come by
altering the acyltransferases of TAG biosynthesis. Arabi-
dopsis thaliana has been transformed with a soluble saf-
flower glycerol-3-phosphate acyltransferase (GPAT),
where the plastidial targeting sequence was removed, and
an Escherichia coli GPAT inserted. Seeds of both trans-
genic plants produced 10 to 21% more oil [51]. A yeast
sn-2 acyltransferase gene (SLC1-1) was introduced into a
high erucic acid (22:1Δ9)-containing Brassica napus. The
resulting transgenic strain showed a substantial increase
in seed oil content and an increase in the proportion of
erucic acid [52]. The transgenic strain was later tested in
the field, and exhibited a 53-121% increase in total erucic
acid yield (weight/plot) [53]. Overexpression of the Ara-
bidopsis DGAT1 gene in the wild-type strain led to
increased seed oil deposition and average seed weight
[54]. A functional DGAT homologue, the DGAT2 gene
from the oleaginous fungus Mortieralla rammanniana
was overexpressed in soybean, and resulted in small but
significant increases in seed oil content in both green-
house and field tests [55].
Together, these studies indicate that increased metabolic

flux towards oil production may be achieved by manipula-
tions targeted at later steps in the TAG biosynthetic path-
way. A reasonable explanation is that the consequences of
activating early biosynthetic steps may be slowed by later

rate-limiting steps, and excess intermediate products may
be utilized by other metabolic pathways sharing the same
intermediates of TAG biosynthesis. Metabolic modeling
networks that simulate flux of fatty acids through TAG
biosynthetic pathways should play an important part in
developing strategies for future genetic manipulation.
Actual values of the engineering results need to be prop-
erly calculated for whole organisms and total production
costs, not just the oil itself. For example, increasing oil
content of soybean usually comes at the expense of the
reduction of high-value protein content used for animal
feed. Rigorous field testing is necessary to determine
whether oil content increases are reflected in an increased
oil yield per hectare per year. These tests must prove that
strains with lipid content increases are economically viable
compared to elite, high-yield commercial varieties.
3. Changing the Fatty Acid Composition of Oil
Beyond base supply, biodiesel has other limitations hin-
dering its market competitiveness. The fuel properties of
biodiesel are closely related to its fatty acid composition.
Altering the fatty acid profile, for example the carbon
chain length and number of double bonds, can lead to a
better-quality, inexpensive biodiesel. The presence of
methyl ester with saturated acyl chain longer than C12
significantly increases the cloud point of the biodiesel,
the temperature at which crystals form [56]. The methyl
esters derived from poly-unsaturated fatty acids are
prone to oxidation and the hydroperoxides formed will

Table 1 A list of genetic modifications to higher plants and their resulting changes in fatty acid content

Modification Organism Result Reference

Expression of a cytosolic variant of endogenous ACCase Brassica napus 5% increase in seed oil content [40]

Expression of KASIII from Spinacia oleracea Brassica napus Increased palmitic acid proportion, decreased total
fatty acids 5-10%

[41]

Saccharomyces cerevisiae G3p dehydrogenase (gpd1)expression Brassica napus 40% increase in seed oil content [43]

Carthamus tinctorius G3p acyltransferase (GPAT) expression Arabidopsis
thaliana

10-21% increase in seed oil content [45]

Saccharomyces cerevisiae sn-2 acyltransferase (SLC1-1) expression Brassica napus 53-121% increase in erucic acid content [47]

Arabidopsis thaliana diacylglycerol acyltransferase (DGAT1)
expression

Brassica napus Increases in oil content and seed weight [48]

Down regulation of FAD2 desaturase and FatB hydrolase Glycine max 85% increase in oleic acid levels [53-55]

Expression of Coriandrum sativum Δ4palmitoyl ACP desaturase Nicotiana
tabacum

< 10% of total fatty acid became palmitoleic acid [56]

Expression of Thunbergia alata Δ6 ACP desaturase Arabidopsis
thaliana

< 10% of total fatty acid became palmitoleic acid [57]

Expression of Umbellularia californica lauryl-ACP thioesterase Arabidopsis
thaliana

24% of total fatty acid converted to laurate [66]

Expression of Umbellularia californica lauryl-ACP thioesterase Brassica napus 58% of total fatty acid converted to laurate [67]

Expression of Cuphea hookeriana FatB1 thioesterase Brassica napus Fatty acid content changed to 11% caprylate and
27% caprate

[68]

Co-expression of Cuphea hookeriana FatB1 thioesterase and KAS
(ketoacyl ACP synthase)

Brassica napus 30-40% increase in short chain fatty acid content
over FatB1 expression only

[69]

Co-expression of Cuphea hookeriana FatB1 thioesterase and
LPAAT from Cocos nucifera

Brassica napus 67% of total fatty acid content converted to laurate [70]
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eventually polymerize and form insoluble sediments cap-
able of interfering with engine performance [57]. Highly
saturated and longer carbon chain esters have lower NOx

emissions relative to shorter, less conjugated chains [58].
In addition, biodiesel ignition quality is adversely effected
by an increase in the number of double bonds [38].
When requirements for biodiesel quality are viewed
together, it is clear no single fatty acid methyl ester
(FAME) could fulfill every parameter. However, a balance
of different fatty acids containing higher amounts of
mono-unsaturated fatty acids such as oleate (18:1Δ9),
and fewer saturated and polyunsaturated fatty acids
would yield a more reliable biodiesel [59].
Increasing the contents of monoenoic fatty acids Most
polyunsaturated fatty acids in storage lipids are derived
from oleic acid by the catalysis of FAD2 (ω6) homologues.
Therefore, down-regulation of the ER membrane-bound
fatty acid desaturases should result in an increased percen-
tage of oleic acid present, relative to total fatty acid con-
tent. Several experiments have successfully enhanced the
oleate concentration in various oleaginous plants [60-62].
Down-regulating FAD2 and FatB, which hydrolyzes the
saturated acyl-ACP, further increases oleic acid levels in
transgenic soybean to over 85%, with saturated fatty acid
levels at less than 6%. In addition to oleic acid, other unu-
sual monoenoic fatty acids from plants have potential for
biodiesel production. Introduction of a coriander Δ4 pal-
mitoyl (16:0)-ACP desaturase, or a Thunbergia Δ6 palmi-
toyl-ACP desaturase into tobacco callus and Arabidopsis
seed, respectively, resulted in less than a 10% accumula-
tion of these non-native unusual fatty acids and their deri-
vatives [63,64]. Similar experiments have been performed
in Arabidopsis and Brassica napus where Δ9 palmitoyl-
ACP desaturase from Uncaria tomentosa was introduced.
Significant increases in palmitoleic acid (16:1Δ9) and its
derivatives were found in both transgenic plants, although
the proportion of palmitoleic acid to total fatty acid con-
tent was much lower than the original Uncaria tomentosa
(80%) [65]. The reason for the low levels of unusual mono-
ene production in non-native plants may be lack of corre-
sponding ACP, ferredoxin, 3-ketoacyl-ACP synthase,
thioesterase, and acyltransferase present in the original
strains [64,66]. Since fatty acid desaturases are highly con-
served in their structure and amino acid sequences, several
chimeric enzymes have been generated and shown to have
broader substrate specificity [67,68]. These engineered
desaturases may be more effective when designing trans-
genic plants to produce large amounts of monoenoic fatty
acids [69].
Engineering of fatty acid chain length As mentioned
previously, fatty acyl chain length is another important
factor that influences the viscosity and cold flow proper-
ties of biodiesel [38]. Short- to medium-chain fatty acids
(C8-C14) have lower viscosity and higher cloud points

than common long-chain fatty acids (C16-C18).
Although cold-flow properties are superior, cetane num-
bers are lower, and overall NOx emissions higher for
shorter chain fatty acids. However, increasing their pro-
portion in market-available biodiesel still leads to better
quality, more competitive fuel in terms of combustion
performance.
Commercial oils from palm kernel and coconut oil con-

tain > 40% of total fatty acids in the form of lauric acid
(12:0). Plants that accumulate short- to medium-chain (C8
to C14) fatty acids in seed oil contain chain-length-specific
acyl-ACP thioesterases that cleave the corresponding fatty
acids from the growing acyl-ACP of de novo fatty acid bio-
synthesis [70]. For example, Umbellularia californica and
Cuphea hookeriana seeds accumulate up to 90% short-
and medium-chain saturated fatty acids in triacylglycerols.
The chain-length-specific acyl-ACP thioesterases were
identified in both species as the cause of the unusual
accumulation [71,72]. The expression of a lauryl-ACP
thioesterase from Umbellularia californica in the seeds of
non-laurate-accumulating plants, Arabidopsis and Brassica
napus (rapeseed), resulted in laurate quantities as large as
24 and 58% of total seed fatty acids, respectively [73,74]. In
another transgenic experiment, a medium-chain thioester-
ase, Ch FatB1 from Cuphea hookeriana, which produces
50% caprylate (8:0) and 25% caprate (10:0) in their total
fatty acids, was introduced into rapeseed. The transgenic
rapeseed was found to accumulate up to 11% caprylate,
and 27% caprate [75]. The reasons for lower production of
short-chain fatty acids in transgenic hosts compared to
donor species were further investigated. A short-chain-
fatty-acid-specific condensing enzyme (3-ketoacyl-ACP
synthase, KAS) from Cuphea hookeriana was identified
and co-expressed with Ch FatB1 in rapeseeds. All double-
transgenic lines showed a 30-40% increase in the levels of
short-chain fatty acids compared to the Ch FatB1 single-
transgene rapeseeds [76]. Additionally, structural analysis
of TAG from the plants containing inserted medium-
chain acyl-ACP thioesterase revealed that laurate was only
present at sn-1 and sn-3 positions [74]. The high specifi-
city of lysophosphatidic acid acyltransferase (LPAAT)
from the hosts prevented laurate from being incorporated
at the sn-2 position of TAG. Co-expression of a laurate-
specific coconut LPAAT into rapeseed containing the
Umbellularia californica thioesterase resulted in further
increases in laurate levels, up to 67% of the total fatty acid
content [77]. Another lesson learned from the study of
laurate-producing transgenic plants was the importance of
enzymes for lauryl-CoA b-oxidation, malate dehydrogen-
ase, and isocitrate lyase, all of which participate in the
glyoxylate cycle for fatty acid carbon reutilization. These
genes were induced with increasing levels of the lauric
acid [78]. Obtaining significant amounts of short-chain
fatty acids in TAG may require the engineering of multiple
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genes, including the short-chain-specific keto-synthase
and thioesterase, as well as short-chain-specific acyltrans-
ferases, which assemble the novel fatty acids into TAG.
Production of unusual fatty acids in transgenic hosts can
induce antagonistic pathways reducing the effects of
genetic manipulation, which must be addressed to maxi-
mize production efficiency.
Recently, direct use of low-molecular-weight TAG as

fuel has been discussed and studied [59,79]. The lower
cost of TAG fuels on the transesterfication and purifica-
tion of FAMEs greatly enhances the market potential of
such biodiesels. Seed oil containing 40% of caprylate (8:0)
and 37% caprate (10:0) in total fatty acids from a mutant
Cuphea viscosissimal had a coking index (a measure of
engine carbon deposition) comparable to that of No. 2 die-
sel used by on road vehicles in the US, albeit with the pro-
blem of poor low-temperature viscosity [80,81]. Another
interesting study involves the 1,2-diacyl-3-acetyl-sn-glycer-
ols (ac-TAG) from the seeds of Euonymus alatus (Burning
Bush). This acetyl TAG has a lower viscosity than com-
mon TAGs, and the potential to be used directly as biodie-
sel [59]. This specific acetyl DAGAT has been isolated
from Euonymus alatus, and data on the oil properties of
transgenic plants are much anticipated [82].
4. Manipulation of Algal Lipid Metabolism Using Genetic
Engineering
During the years of ASP (Aquatic Species Program), an
extra-copy of the monomeric ACCase gene was intro-
duced into the genome of the diatom Cyclotella cryptica,
in an attempt to increase lipid accumulation in the trans-
formed strains [83]. Unfortunately, a two to three-fold
higher ACCase activity in the transformed algae did not
result in any enhancement of lipid production [26]. A
major reason very few positive engineering results have
been achieved in algae lipid metabolism is the lack of a
reliable nuclear transformation system like that used in
higher plants. A more promising method of genetic engi-
neering has been successfully established in the chloroplast
of Chlamydomonas reinhardtii [84]. However, as the
examples in vascular plants have shown, most of the criti-
cal enzymes controlling lipid biosynthesis and fatty acid
modification reside in the cytoplasm.
Several transformation techniques have been developed

to genetically engineer C. reinhardtii to express recombi-
nant proteins from both the chloroplast and nuclear
genomes. General transformation protocols such as elec-
troporation, particle bombardment, silicon carbide whis-
ker agitation, and even Agrobacterium tumefaciens have
been shown to transform a number of diverse microalgae
including both green and red algae, diatoms, and dinofla-
gellates [85-89]. Expression levels vary greatly depending
on a number of factors including auto-attenuation of
exogenous sequences, codon usage bias, GC content, and
proteasome mediated degradation [90]. Improvements in

nuclear expression of transgenes have been reported with
combined codon usage optimization, endogenous 5’/3’
UTRs, and inserting introns from endogenous genes
[91,92]. Transformation and expression research in
C. reinhardtii will likely translate to a better understand-
ing of microalgae gene silencing mechanisms and there-
fore more effective means to prevent transgene silencing
in a variety of microalgae species.
Transformation of the nuclear genome allows for indu-

cible gene expression, targeting to subcellular compart-
ments, and protein secretion [93]. Insertion typically
occurs via non-homologous recombination, though
homologous recombination is known to occur at a very
low frequency [94]. Optimizing homologous recombina-
tion conditions should allow for the directed knockout of
enzymes diverting carbon usage away from lipid produc-
tion, or for the directed replacement of lipid synthesizing
enzymes with more effective isozymes. High levels of
transgene expression can be selected for by using antibio-
tic resistance genes in combination with transgenic con-
structs. Addition of the ble gene to a transgenic construct
confers resistance to phleomycin and zeocin in a 1:1
drug:protein ratio and can be used to select for transfor-
mants with high expression levels [95].
Although the nuclear genome does not yet robustly

support protein production on a scale viable for harvest-
ing protein therapeutics such as antibodies, expression of
cytosolic enzymes or signaling proteins which promote
the production of storage lipids may reach high enough
activity levels to significantly alter the overall lipid profile
of the host microalgae. C. reinhardtii and the model
organism diatom Phaeodactylum tricornutum are known
to produce fatty acids under nitrogen starved conditions
and deletion of sta6 (involved in starch biosynthesis) in
C. reinhardtii significantly increased lipid production in
response to nitrogen starvation [34,96]. Endogenous
micro RNAs (miRNA) and RNAi machinery have been
shown to function and knock down gene expression in
C. reinhardtii, and furthermore selectable constructs for
artificially knocking down gene expression using RNAi
machinery have been developed, enabling a reverse
genetics approach to probing gene function [97-99].
High-throughput screening by insertional mutagenesis
could be followed up with an RNAi based approach to
investigate pathways for regulators of stress response,
which may yield a genetic mechanism to increase lipid
yield while minimizing growth arrest in large scale cul-
tures. RNAi of protein members of pathways involved in
lipid catabolism such as lipase and proteins of the beta
oxidation, glyoxylate, and gluconeogenesis may represent
important modifications which could increase overall
TAG content [100].
To date, there have been over 30 complete genome

sequences of algae determined, with still more unpublished
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[30,101]. With this primary sequence data and the func-
tional characterization of homologous plant genes in hand,
we can more precisely determine the key regulators of algal
lipid biosynthesis in silico. Work has already started in this
field, including the first gene-expression profile of C. rein-
hardtii under hydrogen-producing conditions, which was
recently reported [102]. RNA-seq analysis of C. reinhardtii
under nitrogen depleted conditions revealed statistically
significant increases in several lipid biosynthesis genes
including KASI, FAT1, and DGAT and decreases in beta
oxidation genes such as LCS. Many of these genes were
expected to be upregulated in lipid producing conditions,
but more thorough bioinformatic analysis should yield new
targets for genetic manipulation. More genomic, proteomic
and metabolomic studies on algae lipid biosynthesis should
also be nearing completion. The idea of algal oils as a
potential biodiesel feedstock has been proposed and devel-
oped for years. The progresses in algal genetic engineering
technology should accelerate any steps taken in achieving
this goal.

Concluding Remarks
Renewable energy has become an important issue of
recent political campaigns, and an increase in usage with
less reliance on fossil energy will create substantial bene-
fits for the global environment, economy, and industry.
Biofuels are one of the few renewable energies proposed
that have generated large public expectation as a real
possibility for one of the fuels of the future. The use and
production of plant oil as a source of biodiesel is expand-
ing annually. Decades of studies have provided a general
scheme of the plant lipid metabolism, and genetic engi-
neering methods have provided valuable data and several
field trials. However, more studies in organism-scale
metabolic regulation will be necessary to understand how
plants control their lipid biosynthetic pathways in
response to physiological and environmental conditions.
Elucidation of complex flux-control will hold great bene-
fits for future biofuel production.
Algae, the world’s largest group of photosynthetic

organisms, contribute a majority of the carbon fixation
on earth, turning greenhouse gases into carbohydrates
and lipids. Using algal oils as a biodiesel feedstock holds
major advantages in comparison to plant oils. Algal cul-
tures have long been studied, and already are used to
produce several important value-added products for the
agriculture and food industries, such as VLC-PUFA, car-
otenoids, and high-protein animal feeds. The carbohy-
drates and cellulosic cell wall of algae have the potential
to be hydrolyzed and fermented into bioethanol, further
increasing the utility of algae as a biofuel feedstock. Algae
cells can also be used to synthesize important eukaryotic
proteins or natural products for pharmaceutical applica-
tions. Further fundamental studies in algae metabolism

hold the possibility of making the algae cell a multi-use
feedstock and creating a true “green gold”.
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