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1 Introduction
A function f : I → R, I ⊆ R is an interval, is said to be a convex function on I if

f
(
tx + ( – t)y

) ≤ tf (x) + ( – t)f (y) (.)

holds for all x, y ∈ I and t ∈ [, ]. If the reversed inequality in (.) holds, then f is concave.
Many important inequalities have been established for the class of convex functions, but

the most famous is the Hermite-Hadamard inequality. This double inequality is stated as
follows:

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ f (a) + f (b)


, (.)

where f : [a,b] → R is a convex function. The above inequalities are in reversed order if f
is a concave function.
In , Breckner introduced an s-convex function as a generalization of a convex func-

tion [].
Such a function is defined in the following way: a function f : [,∞) → R is said to be

s-convex in the second sense if

f
(
tx + ( – t)y

) ≤ tsf (x) + ( – t)sf (y) (.)

holds for all x, y ∈ ∞, t ∈ [, ] and for fixed s ∈ (, ].
Of course, s-convexity means just convexity when s = .
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In [], Dragomir and Fitzpatrick proved the following variant of the Hermite-Hadamard
inequality, which holds for s-convex functions in the second sense:

s–f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx ≤ f (a) + f (b)

s + 
. (.)

In the paper [] a large class of non-negative functions, the so-called h-convex func-
tions, is considered. This class contains several well-known classes of functions such as
non-negative convex functions and s-convex in the second sense functions. This class is
defined in the following way: a non-negative function f : I → R, I ⊆ R is an interval, is
called h-convex if

f
(
tx + ( – t)y

) ≤ h(t)f (x) + h( – t)f (y) (.)

holds for all x, y ∈ I , t ∈ (, ), where h : J → R is a non-negative function, h �≡  and J is an
interval, (, )⊆ J .
In the further text, functions h and f are considered without assumption of non-

negativity.
In [] Sarikaya, Saglam and Yildirim proved that for an h-convex function the following

variant of the Hadamard inequality is fulfilled:


h(  )

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ [

f (a) + f (b)
] ·

∫ 


h(t)dt. (.)

In [] Bombardelli and Varošanec proved that for an h-convex function the following
variant of the Hermite-Hadamard-Fejér inequality holds:

∫ b
a w(x)dx
h(  )

f
(
a + b


)
≤

∫ b

a
f (x)w(x)dx

≤ (b – a)
(
f (a) + f (b)

)∫ 


h(t)w

(
ta + ( – t)b

)
dt, (.)

where w : [a,b]→ R, w≥  and symmetric with respect to a+b
 .

A modification for convex functions, which is also known as co-ordinated convex func-
tions, was introduced by Dragomir [] as follows.
Let us consider a bidimensional � = [a,b]× [c,d] in R with a < b and c < d. A mapping

f :� → R is said to be convex on the co-ordinates on� if the partial mappings fy : [a,b]→
R, fy(u) = f (u, y) and fx : [c,d] → R, fx(v) = f (x, v) are convex for all x ∈ [a,b] and y ∈ [c,d].
In the same article, Dragomir established the following Hadamard-type inequalities for

convex functions on the co-ordinates:

f
(
a + b


,
c + d


)
≤ 

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y)dxdy

≤ f (a, c) + f (b, c) + f (a,d) + f (b,d)


. (.)

The concept of s-convex functions on the co-ordinates was introduced by Alomari and
Darus []. Such a function is defined in following way: the mapping f : � → R is s-convex

http://www.journalofinequalitiesandapplications.com/content/2013/1/227
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in the second sense if the partial mappings fy : [a,b] → R and fx : [c,d] → R are s-convex
in the second sense.
In the same paper, they proved the following inequality for an s-convex function:

s–f
(
a + b


,
c + d


)
≤ 

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y)dxdy

≤ f (a, c) + f (b, c) + f (a,d) + f (b,d)
(s + )

. (.)

For refinements and counterparts of convex and s-convex functions on the co-ordinates,
see [–].
The main purpose of this paper is to introduce the class of (h,h)-preinvex functions

on the co-ordinates and establish new inequalities like those given by Dragomir in [] and
Bombardelli and Varošanec in [].
Throughout this paper, we assume that considered integrals exist.

2 Main results
Let f : X → R and η : X ×X → Rn, where X is a nonempty closed set in Rn, be continuous
functions. First, we recall the following well-known results and concepts; see [–] and
the references therein.

Definition . Let u ∈ X. Then the set X is said to be invex at u with respect to η if

u + tη(v,u) ∈ X

for all v ∈ X and t ∈ [, ].

X is said to be an invex set with respect to η if X is invex at each u ∈ X.

Definition . The function f on the invex set X is said to be preinvex with respect to η

if

f
(
u + tη(v,u)

) ≤ ( – t)f (u) + tf (v)

for all u, v ∈ X and t ∈ [, ].

We also need the following assumption regarding the function η which is due toMohan
and Neogy [].

Condition C Let X ⊆ R be an open invex subset with respect to η. For any x, y ∈ X and
any t ∈ [, ],

η
(
y, y + tη(x, y)

)
= –tη(x, y),

η
(
x, y + tη(x, y)

)
= ( – t)η(x, y).

Note that for every x, y ∈ X and every t, t ∈ [, ] from Condition C, we have

η
(
y + tη(x, y), y + tη(x, y)

)
= (t – t)η(x, y).

http://www.journalofinequalitiesandapplications.com/content/2013/1/227
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In [], Noor proved the Hermite-Hadamard inequality for preinvex functions

f
(
a +



η(b,a)

)
≤ 

η(b,a)

∫ a+η(b,a)

a
f (x)dx≤ f (a) + f (b)


. (.)

Definition . Let h : [, ] → R be a non-negative function, h �≡ . The non-negative
function f on the invex set X is said to be h-preinvex with respect to η if

f
(
u + tη(v,u)

) ≤ h( – t)f (u) + h(t)f (v)

for each u, v ∈ X and t ∈ [, ].

Let us note that:

– if η(v,u) = v – u, then we get the definition of an h-convex function introduced by
Varošanec in [];

– if h(t) = t, then our definition reduces to the definition of a preinvex function;
– if η(v,u) = v – u and h(t) = t, then we obtain the definition of a convex function.

Now let X and X be nonempty subsets of Rn, let η : X ×X → Rn and η : X ×X → Rn.

Definition . Let (u, v) ∈ X ×X. We say X ×X is invex at (u, v) with respect to η and
η if for each (x, y) ∈ X ×X and t, t ∈ [, ],

(
u + tη(x,u), v + tη(y, v)

) ∈ X ×X.

X × X is said to be an invex set with respect to η and η if X × X is invex at each
(u, v) ∈ X ×X.

Definition . Let h and h be non-negative functions on [, ], h �≡ , h �≡ . The non-
negative function f on the invex set X × X is said to be co-ordinated (h,h)-preinvex
with respect to η and η if the partial mappings fy : X → R, fy(x) = f (x, y) and fx : X →
R, fx(y) = f (x, y) are h-preinvex with respect to η and h-preinvex with respect to η,
respectively, for all y ∈ X and x ∈ X.

If η(x,u) = x – u and η(y, v) = y – v, then the function f is called (h,h)-convex on the
co-ordinates.

Remark  From the above definition it follows that if f is a co-ordinated (h,h)-preinvex
function, then

f
(
x + tη(b,x), y + tη(d, y)

)
≤ h( – t)f

(
x, y + tη(d, y)

)
+ h(t)f

(
b, y + tη(d, y)

)
≤ h( – t)h( – t)f (x, y) + h( – t)h(t)f (x,d)

+ h(t)h( – t)f (b, y) + h(t)h(t)f (b,d).

Remark  Let us note that if η(x,u) = x – u, η(y, v) = y – v, t = t and h(t) = h(t) = t,
then our definition of a co-ordinated (h,h)-preinvex function reduces to the definition

http://www.journalofinequalitiesandapplications.com/content/2013/1/227
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of a convex function on the co-ordinates proposed by Dragomir []. Moreover, if h(t) =
h(t) = ts, then our definition reduces to the definition of an s-convex function on the co-
ordinates proposed by Alomari and Darus [].

Now, we will prove the Hadamard inequality for the new class functions.

Theorem . Suppose that f : [a,a + η(b,a)] → R is an h-preinvex function, Condition C
for η holds and a < a + η(b,a), h(  ) > . Then the following inequalities hold:


h(  )

f
(
a +



η(b,a)

)
≤ 

η(b,a)

∫ a+η(b,a)

a
f (x)dx≤ [

f (a) + f (b)
] ·

∫ 


h(t)dt. (.)

Proof From the definition of an h-preinvex function, we have that

f
(
a + tη(b,a)

) ≤ h( – t)f (a) + h(t)f (b).

Thus, by integrating, we obtain

∫ 


f
(
a + tη(b,a)

)
dt ≤ f (a)

∫ 


h( – t)dt + f (b)

∫ 


h(t)dt =

[
f (a) + f (b)

] ∫ 


h(t)dt.

But

∫ 


f
(
a + tη(b,a)

)
dt =


η(b,a)

·
∫ a+η(b,a)

a
f (x)dx.

So,


η(b,a)

·
∫ a+η(b,a)

a
f (x)dx≤ [

f (a) + f (b)
] ∫ 


h(t)dt.

The proof of the second inequality follows by using the definition of an h-preinvex func-
tion, Condition C for η and integrating over [, ].
That is,

f
(
a +



η(b,a)

)
= f (a + tη(b,a) +



η
(
a + ( – t)η(b,a),a + tη(b,a)

)

≤ h
(



)[
f
(
a + tη(b,a)

)
+ f

(
a + ( – t)η(b,a)

)]
,

f
(
a +



η(b,a)

)
≤ h

(



)[∫ 


f
(
a + tη(b,a)

)
dt +

∫ 


f
(
a + ( – t)η(b,a)

)]
,

f
(
a +



η(b,a)

)
≤  · h

(



)


η(b,a)
·
∫ a+η(b,a)

a
f (x)dx.

The proof is complete. �

Theorem . Suppose that f : [a,a+ η(b,a)]× [c, c+ η(d, c)] → R is an (h,h)-preinvex
function on the co-ordinates with respect to η and η,ConditionC for η and η is fulfilled,

http://www.journalofinequalitiesandapplications.com/content/2013/1/227
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and a < a + η(b,a), c < c + η(d, c), and h(  ) > , h(  ) > . Then one has the following
inequalities:


h(  )h(


 )
f
(
a +



η(b,a), c +



η(d, c)

)

≤ 
 · h(  )η(d, c)

∫ c+η(d,c)

c
f
(
a +



η(b,a), y

)
dy

+


 · h(  )η(b,a)
∫ c+η(b,a)

a
f
(
x, c +



η(d, c)

)
dx

≤ 
η(b,a)η(d, c)

∫ a+η(b,a)

a

∫ c+η(d,c)

c
f (x, y)dxdy

≤ 
η(b,a)

∫ 


h(t)dt

[∫ a+η(b,a)

a
f (x, c)dx +

∫ a+η(b,a)

a
f (x,d)dx

]

+


η(d, c)

∫ 


h(t)dt

[∫ c+η(d,c)

c
f (a, y)dy +

∫ c+η(d,c)

c
f (b, y)dy

]

≤ [
f (a, c) + f (b, c) + f (a,d) + f (b,d)

]∫ 


h(t)dt ·

∫ 


h(t)dt. (.)

Proof Since f is (h,h)-preinvex on the co-ordinates, it follows that the mapping fx
is h-preinvex and the mapping fy is h-preinvex. Then, by the inequality (.), one
has


h(  )

f
(
x, c +



η(d, c)

)
≤ 

η(d, c)

∫ c+η(d,c)

c
f (x, y)dy

≤ [
f (x, c) + f (x,d)

] ∫ 


h(t)dt

and


h(  )

f
(
a +



η(b,a), y

)
≤ 

η(b,a)

∫ a+η(b,a)

a
f (x, y)dx

≤ [
f (a, y) + f (b, y)

] ∫ 


h(t)dt.

Dividing the above inequalities for η(b,a) and η(d, c) and then integrating the resulting
inequalities on [a,a + η(b,a)] and [c, c + η(d, c)], respectively, we have


η(b,a) · h(  )

∫ a+η(b,a)

a
f
(
x, c +



η(d, c)

)
dx

≤ 
η(b,a)η(d, c)

∫ a+η(b,a)

a

∫ c+η(d,c)

c
f (x, y)dxdy

≤ 
η(b,a)

∫ 


h(t)dt

[∫ a+η(b,a)

a
f (x, c)dx +

∫ a+η(b,a)

a
f (x,d)dx

]

http://www.journalofinequalitiesandapplications.com/content/2013/1/227
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and


η(b,a) · h(  )

∫ c+η(d,c)

c
f
(
a +



η(b,a), y

)
dy

≤ 
η(b,a)η(d, c)

∫ a+η(b,a)

a

∫ c+η(d,c)

c
f (x, y)dxdy

≤ 
η(d, c)

∫ 


h(t)dt

[∫ c+η(c,d)

c
f (a, y)dy +

∫ c+η(c,d)

c
f (b, y)dy

]
.

Summing the above inequalities, we get the second and the third inequalities in (.).
By the inequality (.), we also have


h(  )

f
(
a +



η(b,a), c +



η(d, c)

)
≤ 

η(d, c)

∫ c+η(d,c)

c
f
(
a +



η(b,a), y

)
dy

and


h(  )

f
(
a +



η(b,a), c +



η(d, c)

)
≤ 

η(b,a)

∫ a+η(b,a)

a
f
(
x, c +



η(d, c)

)
dx,

which give, by addition, the first inequality in (.).
Finally, by the same inequality (.), we ca also state


η(d, c)

∫ c+η(d,c)

c
f (a, y)dy ≤ [

f (a, c) + f (a,d)
] ∫ 


h(t)dt,


η(d, c)

∫ c+η(d,c)

c
f (b, y)dy ≤ [

f (b, c) + f (b,d)
]∫ 


h(t)dt,


η(b,a)

∫ a+η(b,a)

a
f (x, c)dx ≤ [

f (a, c) + f (b, c)
] ∫ 


h(t)dt,


η(b,a)

∫ a+η(b,a)

a
f (x,d)dx≤ [

f (a,d) + f (b,d)
]∫ 


h(t)dt,

which give, by addition, the last inequality in (.). �

Remark  In particular, for η(b,a) = b – a, η(d, c) = d – c, h(t) = h(t) = t, we get the
inequalities obtained by Dragomir [] for functions convex on the co-ordinates on the
rectangle from the plane R.

Remark  If η(b,a) = b – a, η(d, c) = d – c, and h(t) = h(t) = ts, then we get the in-
equalities obtained byAlomari andDarus in [] for s-convex functions on the co-ordinates
on the rectangle from the plane R.

Theorem . Let f , g : [a,a + η(b,a)] × [c, c + η(d, c)] → R with a < a + η(b,a), c < c +
η(d, c). If f is (h,h)-preinvex on the co-ordinates and g is (k,k)-preinvex on the co-

http://www.journalofinequalitiesandapplications.com/content/2013/1/227
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ordinates with respect to η and η, then


η(b,a) · η(d, c)

∫ a+η(b,a)

a

∫ c+η(d,c)

c
f (x, y)g(x, y)dxdy

≤ M(a,b, c,d)
∫ 



∫ 


h(t)h(t)k(t)k(t)dt dt

+M(a,b, c,d)
∫ 



∫ 


h(t)h(t)k(t)k( – t)dt dt

+M(a,b, c,d)
∫ 



∫ 


h(t)h(t)k( – t)k(t)dt dt

+M(a,b, c,d)
∫ 



∫ 


h(t)h(t)k( – t)k( – t)dt dt,

where

M(a,b, c,d) = f (a, c)g(a, c) + f (a,d)g(a,d) + f (b, c)g(b, c) + f (b,d)g(b,d),

M(a,b, c,d) = f (a, c)g(a,d) + f (a,d)g(a, c) + f (b, c)g(b,d) + f (b,d)g(b, c),

M(a,b, c,d) = f (a, c)g(b, c) + f (a,d)g(b,d) + f (b, c)g(a, c) + f (b,d)g(a,d),

M(a,b, c,d) = f (a, c)g(b,d) + f (a,d)g(b, c) + f (b, c)g(a,d) + f (b,d)g(a, c).

Proof Since f is (h,h)-preinvex on the co-ordinates and g is (k,k)-preinvex on the co-
ordinates with respect to η and η, it follows that

f
(
a + tη(b,a), c + tη(d, c)

)
≤ h( – t)h( – t)f (a, c) + h( – t)h(t)f (a,d)

+ h(t)h( – t)f (b, c) + h(t)h(t)f (b,d)

and

g
(
a + tη(b,a), c + tη(d, c)

)
≤ k( – t)k( – t)g(a, c) + k( – t)k(t)g(a,d)

+ k(t)k( – t)g(b, c) + k(t)k(t)g(b,d).

Multiplying the above inequalities and integrating over [, ] and using the fact that

∫ 



∫ 


f
(
a + tη(b,a), c + tη(d, c)

) · g(a + tη(b,a), c + tη(d, c)
)
dt dt

=


η(b,a) · η(d, c)
∫ a+η(b,a)

a

∫ c+η(d,c)

c
f (x, y)g(x, y)dxdy,

we obtain our inequality. �

In the next two theorems, wewill prove the so-calledHermite-Hadamard-Fejér inequal-
ities for an (h,h)-preinvex function.

http://www.journalofinequalitiesandapplications.com/content/2013/1/227
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Theorem . Let f : [a,a + η(b,a)] × [c, c + η(d, c)] → R be (h,h)-preinvex on the co-
ordinates with respect to η and η, a < a+η(b,a), c < c+η(d, c), and w : [a,a+η(b,a)]×
[c, c + η(d, c)]→ R, w ≥ , symmetric with respect to

(
a +



η(b,a), c +



η(d, c)

)
.

Then


η(b,a) · η(d, c)

∫ a+η(b,a)

a

∫ c+η(d,c)

c
f (x, y)w(x, y)dxdy

≤ [
f (a, c) + f (a,d) + f (b, c) + f (b,d)

]

·
∫ 



∫ 


h(t)h(t)w

(
a + tη(b,a), c + tη(d, c)

)
dt dt. (.)

Proof From the definition of (h,h)-preinvex on the co-ordinates with respect to η and
η, we have
(a)

f
(
a + tη(b,a), c + tη(d, c)

)
≤ h( – t)h( – t)f (a, c) + h( – t)h(t)f (a,d)

+ h(t)h( – t)f (b, c) + h(t)h(t)f (b,d),

(b)

f
(
a + ( – t)η(b,a), c + ( – t)η(d, c)

)
≤ h(t)h(t)f (a, c) + h(t)h( – t)f (a,d)

+ h( – t)h(t)f (b, c) + h( – t)h( – t)f (b,d),

(c)

f
(
a + tη(b,a), c + ( – t)η(d, c)

)
≤ h( – t)h(t)f (a, c) + h( – t)h( – t)f (a,d)

+ h(t)h(t)f (b, c) + h(t)h( – t)f (b,d),

(d)

f
(
a + ( – t)η(b,a), c + tη(d, c)

)
≤ h(t)h( – t)f (a, c) + h(t)h(t)f (a,d)

+ h( – t)h( – t)f (b, c) + h( – t)h(t)f (b,d).

Multiplying both sides of the above inequalities by w(a + tη(b,a), c + tη(d, c)), w(a +
(– t)η(b,a), c+(– t)η(d, c)),w(a+ tη(b,a), c+(– t)η(d, c)),w(a+(– t)η(b,a), c+
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tη(d, c)), respectively, adding and integrating over [, ], we obtain


η(b,a) · η(d, c)

∫ a+η(b,a)

a

∫ c+η(d,c)

c
f (x, y)w(x, y)dxdy

≤ [
f (a, c) + f (a,d) + f (b, c) + f (b,d)

]

· 
∫ 



∫ 


h(t)h(t)w

(
a + tη(b,a), c + tη(d, c)

)
dt dt,

where we use the symmetricity of the w with respect to (a+ 
η(b,a), c+


η(d, c)), which

completes the proof. �

Theorem . Let f : [a,a + η(b,a)] × [c, c + η(d, c)] → R be (h,h)-preinvex on the co-
ordinates with respect to η and η, and a < a+η(b,a), c < c+η(d, c), w : [a,a+η(b,a)]×
[c, c + η(d, c)] → R, w ≥ , symmetric with respect to (a + 

η(b,a), c +

η(d, c)). Then, if

Condition C for η and η is fulfilled, we have

f
(
a +



η(b,a), c +



η(d, c)

)
·
∫ a+η(b,a)

a

∫ c+η(d,c)

c
w(x, y)dxdy

≤  · h
(



)
h

(



)
·
∫ a+η(b,a)

a

∫ c+η(d,c)

c
f (x, y)w(x, y)dxdy. (.)

Proof Using the definition of an (h,h)-preinvex function on the co-ordinates and Con-
dition C for η and η, we obtain

f
(
a +



η(b,a), c +



η(d, c)

)

≤ h
(



)
h

(



)
· [f (a + tη(b,a), c + tη(d, c)

)

+ f
(
a + tη(b,a), c + ( – t)η(d, c)

)
+ f

(
a + ( – t)η(b,a), c + tη(d, c)

)
+ f

(
a + ( – t)η(b,a), c + ( – t)η(d, c)

)]
.

Now, we multiply it by w(a+ tη(b,a), c+ tη(d, c)) = w(a+ tη(b, c), c+ ( – t)η(d, c)) =
w(a + ( – t)η(b,a), c + tη(d, c)) = w(a + ( – t)η(b,a), c + ( – t)η(d, c)) and integrate
over [, ] to obtain the inequality

f
(
a +



η(b,a), c +



η(d, c)

)∫ 



∫ 


w

(
a + tη(b,a), c + tη(d, c)

)
dt dt

= f
(
a +



η(b,a), c +



η(d, c)

)


η(b,a) · η(d, c)
∫ a+η(b,a)

a

∫ c+η(d,c)

c
w(x, y)dxdy

≤  · h
(



)
h

(



)


η(b,a) · η(d, c)
∫ a+η(b,a)

a

∫ c+η(d,c)

c
f (x, y)w(x, y)dxdy,

which completes the proof. �
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Now, for a mapping f : [a,b]× [c,d] → R, let us define a mapping H : [, ] → R in the
following way:

H(t, r) =


(b – a)(d – c)

∫ b

a

∫ d

c
f
(
tx + ( – t)

a + b


, ry + ( – r)
c + d


)
dxdy. (.)

Some properties of this mapping for a convex on the co-ordinates function and an
s-convex on the co-ordinates function are given in [, ], respectively. Here we investi-
gate which of these properties can be generalized for (h,h)-convex on the co-ordinates
functions.

Theorem . Suppose that f : [a,b]× [c,d] is (h,h)-convex on the co-ordinates. Then:
(i) The mapping H is (h,h)-convex on the co-ordinates on [, ],
(ii) h(  )h(


 )H(t, r)≥ H(, ) for any (t, r) ∈ [, ].

Proof (i) The (h,h)-convexity on the co-ordinates of the mappingH is a consequence of
the (h,h)-convexity on the co-ordinates of the function f . Namely, for r ∈ [, ] and for
all α,β ≥  with α + β =  and t, t ∈ [, ], we have:

H(αt + βt, r)

=


(b – a)(d – c)

∫ b

a

∫ d

c
f
(
(αt + βt, r)x +

(
 – (αt + βt)

)a + b


,

ry + ( – r)
c + d


)
dxdy

=


(b – a)(d – c)

∫ b

a

∫ d

c
f
(

α

(
tx + ( – t)

a + b


)
+ β

(
tx + ( – t)

a + b


)
,

ry + ( – r)
c + d


)
dxdy

≤ h(α)


(b – a)(d – c)

∫ b

a

∫ d

c
f
(
tx + ( – t)

a + b


, ry + ( – r)
c + d


)
dxdy

+ h(β)


(b – a)(d – c)

∫ b

a

∫ d

c
f
(
tx + ( – t)

a + b


, ry + ( – r)
c + d


)
dxdy

= h(α)H(t, r) + h(β)H(t, r).

Similarly, if t ∈ [, ] is fixed, then for all r, r ∈ [, ] and α,β ≥  with α + β = , we also
have

H(t,αr + βr) ≤ h(α)H(t, r) + h(β)H(t, r),

which means that H is (h,h)-convex on the co-ordinates.
(ii) After changing the variables u = tx + ( – t) a+b and v = ry + ( – r) c+d , we have

H(t, r) =


(b – a)(d – c)

∫ b

a

∫ d

c
f
(
tx + ( – t)

a + b


, ry + ( – r)
c + d


)
dxdy

=


(b – a)(d – c)

∫ uU

uL

∫ vU

vL
f (u, v)

b – a
uU – uL

· d – c
vU – vL

dudv

http://www.journalofinequalitiesandapplications.com/content/2013/1/227
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=


(uU – uL)(vU – vL)

∫ uU

uL

∫ vU

vL
f (u, v)dudv

≥ 
h(  )h(


 )
f
(
a + b


,
c + d


)
,

where uL = ta + ( – t) a+b , uU = tb + ( – t) a+b , vL = rc + ( – r) c+d and vU = rd + ( – r) c+d ,
which completes the proof. �

Remark  If f is convex on the co-ordinates, then we getH(t, r)≥ H(, ). If f is s-convex
on the co-ordinates in the second sense, then we have the inequality H(t, r) ≥ s–H(, ).
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