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Abstract

Background: Predicting Posttraumatic Stress Disorder (PTSD) is a pre-requisite for targeted prevention. Current
research has identified group-level risk-indicators, many of which (e.g., head trauma, receiving opiates) concern but
a subset of survivors. Identifying interchangeable sets of risk indicators may increase the efficiency of early risk
assessment. The study goal is to use supervised machine learning (ML) to uncover interchangeable, maximally
predictive combinations of early risk indicators.

Methods: Data variables (features) reflecting event characteristics, emergency department (ED) records and early
symptoms were collected in 957 trauma survivors within ten days of ED admission, and used to predict PTSD
symptom trajectories during the following fifteen months. A Target Information Equivalence Algorithm (TIE*)
identified all minimal sets of features (Markov Boundaries; MBs) that maximized the prediction of a non-remitting
PTSD symptom trajectory when integrated in a support vector machine (SVM). The predictive accuracy of each set
of predictors was evaluated in a repeated 10-fold cross-validation and expressed as average area under the Receiver
Operating Characteristics curve (AUC) for all validation trials.

Results: The average number of MBs per cross validation was 800. MBs’ mean AUC was 0.75 (95% range: 0.67-0.80).
The average number of features per MB was 18 (range: 12–32) with 13 features present in over 75% of the sets.

Conclusions: Our findings support the hypothesized existence of multiple and interchangeable sets of risk indicators
that equally and exhaustively predict non-remitting PTSD. ML’s ability to increase prediction versatility is a promising
step towards developing algorithmic, knowledge-based, personalized prediction of post-traumatic psychopathology.

Keywords: Posttraumatic Stress Disorder (PTSD), Machine learning, Early prediction, Risk factors, Markov boundary
feature selection, Support vector machines
Background
The early identification of individuals at risk for develop-
ing posttraumatic stress disorder (PTSD) is a major clin-
ical and public health challenge, which many studies
have attempted to address (for meta-analyses, see Brewin
et al. [1] and Ozer et al. [2]). Currently-identified risk in-
dicators include event characteristics [3], peri-traumatic
responses [4-6], early symptoms [7-10], early physio-
logical and neuroendocrine responses [11], gene expres-
sion profiles [12] and recovery environment factors [13].
Together, current findings suggest that PTSD is associated
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with an array of multimodal risk indicators, many of
which are observable shortly after trauma exposure.
Despite these findings, research to date has failed to re-
veal clinically useful, personalized predictors.
This translational gap has several reasons: Previous

studies have identified risk indicators at the group level,
thereby overlooking within-group heterogeneities and
distinct individual paths to PTSD that emanate from the
disorder’s complex multi-causal etiology [14]. Based on
the general linear model, statistical methods used were
not optimally suited to explore the complex interactions
between linear, non-linear or non-normally distributed
risk indicators encountered during trauma and its early
aftermath [15].
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Additionally, within the inherently complex and multi-
modal matrix of emerging post-traumatic morbidity, the
relative contribution of any risk-indicator is necessarily
context-dependent and thus does not directly translate
across traumatic events and individuals exposed (e.g.,
female gender increases the likelihood of PTSD among
survivors of physical assault, but not in accidents victims
[3]). Consequently proper risk assessment defies simple
computation and requires knowledge-based, rule driven
expert systems.
Importantly, many of the currently known risk indicators

may not be present, or not captured in every exposed indi-
vidual. For example, elevated heart rate response to trau-
matic events, whilst repeatedly associated with subsequent
PTSD [5,16] is only recorded in survivors who are brought
to medical attention. Other known risk moderators, such
as head injury [17,18] or receiving opiates following injury
[19] similarly concern a subset of survivors.
To overcome these limitations, forecasting methods of

PTSD must accommodate multiple combinations of risk
indicators, account for partially available information
and use prior knowledge to adjust the relative weights of
putative predictors. The goal of the present work is to
address the first requirement, namely, evaluate the use
of multiple combinations or ‘sets’ of data items to pre-
dict post-traumatic morbidity, assess the accuracy the
predictive power made from such sets.
To accomplish this goal, this work applied machine

learning (ML, see glossary in Additional file 1) modeling to
a large longitudinal dataset and evaluated the method’s abil-
ity to identify multiple, equally predictive sets of variables.
ML based forecasting models can accommodate different
configurations of predictive features, integrate multi-modal
variables, assign context-driven weights to putative predic-
tors and identify multiple sets of variables that exhaust the
predictive power of available features [20-22].
In a previous study [23], we evaluated the ability of

ML-based feature-selection algorithm to extract one set
of early risk indicators. We also compared various ML
classification algorithms and evaluated predictability of
two outcome configurations: PTSD at end point and
membership in a non-remitting PTSD symptom trajec-
tory. That study demonstrated that data representing the
traumatic event and subsequent ED admission (e.g., head
injury, length of stay in the ED) improves the prediction
from early symptoms. It showed equal performance of
six classification algorithms and better predictability of
the non-remitting PTSD symptom trajectory relative to
diagnostic status. Building on these findings, this work
uses support vector machines (SVMs) as its classification
algorithm and a non-remitting PTSD symptom trajectory
as the predicted outcome. This work, therefore, expands
the scope of the previous study by evaluating multiple,
equivalent, maximally predictive sets of early features.
Specifically, we applied a Target Information Equivalence
algorithm (TIE-star or TIE*; Figure 1) to uncover all com-
pact non-redundant sets of items that maximize the predic-
tion of non-remitting PTSD symptom trajectory [20,4]. We
then evaluated the accuracy of prediction from each of
these sets using support vector machines (SVMs [24]).

Methods
Participants and Procedures
This study used data collected for the Jerusalem Trauma
Outreach and Prevention Study (J-TOPS [25-27]; Clini-
calTrial.Gov identifier: NCT0014690). Participants were
adults (age: 18–70) consecutively admitted to ED follow-
ing potentially traumatic events (PTEs). Participants pro-
vided oral and written informed consent for, respectively,
telephone based and face-to-face phases of the study. The
study’s procedures were approved and monitored by the
Hadassah University Hospital’s Institutional Review Board.
Eligible participants (n = 4,743) were screened by short

telephone interviews, and those with confirmed PTEs
as per DSM-IV PTSD criteria A1 and A2 (n = 1,996)
received structured, telephone-based interviews ten days
(exactly 9.61 ± 3.91 days) after trauma exposure. Tele-
phone based assessments were repeated seven months (n
= 1,784) and fifteen months (n = 1,022) following ED ad-
mission. Participants with acute PTSD symptoms in the
first assessment (n = 1,502) were additionally invited for
clinical interviews, which n = 756 attended, 19.80 ±
5.17 days after ED admission. Participants of the first clin-
ical assessment were re-evaluated five months after the
traumatic event (144.1 ± 35.2 days; n = 604). For detailed
procedures, see Shalev et al. [27].
For the purpose of this study, we included individuals

who had initial data available at ten days and at least
two additional time points (n = 957). Participants in-
cluded in this study did not differ from those who were
not included in gender distribution, age, general distress,
initial PTSD symptoms and the frequency of exposure
to new traumatic events during the study [24].

Instruments
Sixty-eight data items (features) were recorded during
survivors’ ED admission and in the first telephone inter-
views. ED features included demographics, trauma types
(traffic accidents, work accidents, terrorist attacks and
other incidents), loss of consciousness during the trau-
matic incident, head injury, whiplash injury, blood pres-
sure, pulse, perceived pain (a 1–10 pain intensity scale),
prescribed analgesics and duration of ED admissions.
Telephone interview features included individual items
and total scores of the PTSD symptom scale (PSS) [28],
the Kessler-6 (K6), [29] the Acute Stress Disorder Scale
(ASDS) [30] and the Clinical Global Impression
instrument (CGI) [31] which both participants and



Figure 1 TIE* Algorithm Flow Chart. The figure outlines the successive steps used by the TIE* algorithm to, first, identify (step I) and validate
(step II) compact set of maximally predictive risk indicators (MBs), calculate ROC curve AUC for the MB (step III), include the MB in a pool of MBs if
AUC≥ that for the original MB (Step IV), extract MB features from the dataset (step V) and reiterate steps I to V until all MBs in a dataset are identified.
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interviewers completed. They also included single items
reflecting the four dimensions of the Posttraumatic
Cognition Inventory (PTCI [32]: (counting on others,
counting on oneself, dangerousness of the world, and
self-blame) and four coping efficacy items [33] (sus-
tained task performance, capacity for rewarding inter-
personal communication, controllability of emotions,
and positive self-perception), as well as participants’
expressed need for help, perceived social support, and
perceived fearfulness and threat embedded in the trau-
matic event.

Modeling Approach
Outcome Measure
The study’s main outcome measure was membership
(yes/no) in a non-remitting PTSD symptom trajectory as
defined in a previous LGMM-based study of this sample
[25]. Studies have shown that the alternative outcome,
PTSD diagnostic status, is unstable, fluctuates with time
[34] and can be met with various degrees of symptom
severity. In this dataset, the non-remitting PTSD symp-
tom trajectory was not affected by treatment received
and, as mentioned above, was better predicted than end
point PTSD status [23].

Machine learning approach

Identification of risk indicators sets (MBs, Figure 1)
To identify all compact sets of variables with optimal
predictive accuracy, we applied the TIE* (Target Informa-
tion Equivalence - Star) algorithm [20]. The TIE*
algorithm: (i) Identifies a minimal set of variables that
render all other predictors non-significant in relation
to the outcome (a ‘Markov Boundary’ or, MB) and
evaluates the accuracy of prediction using SVM, (ii)
removes one or more of the obtained MB features
from the data set, and repeats the analyses to identify a
new MB in the reduced data set, (iii) determines the
accuracy of the new MB by feeding it in to a Support
Vector Machine, and keeps the new MB if its predictive
accuracy is statistically comparable to that of the original
MB, and (iv) reiterates steps (ii) and (iii) until all MBs
that provide equivalent predictive accuracy have been
identified (Figure 1). The TIE* has been validated in previ-
ous studies [20]. The MB identification processes used in
the TIE* are available in the Causal Explorer toolkit [35].
The SVM algorithm used is available at LibSVM [36].

Cross-validation procedure To test the robustness of
predictors, we subsequently applied the TIE* proced-
ure in a 10-fold cross-validation, in which participants
are randomly split into ten non-overlapping subsets
containing approximately the same number of cases
and non-cases (patients following a non-remitting and a
remitting course of PTSD, respectively). The classification
algorithm is trained in nine of these ten data subsets, and
subsequently (and independently) tested in the remaining
tenth subset. This procedure is repeated iteratively, result-
ing in each of the ten data subsets being used once for
testing of the model. We repeated the 10-fold cross val-
idation procedure 10 times to reduce splitting vari-
ance, resulting in a total of 100 repetitions of training
and testing. Predictive accuracy was expressed as the
mean accuracy obtained from SVM applied across all
cross-validation runs. The frequency of features’ pres-
ence across MBs was calculated as a measure of their
predictive ‘robustness’.

Accuracy metric
We estimated predictive accuracy using Area Under the
ROC Curve (AUC). The ROC curve is a plot of the
sensitivity versus 1-specificity of a classification system,
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and measures the accuracy of that system, which can
then be directly compared to that of another system
[37]. To further investigate the accuracy, we also computed
average sensitivity and specificity for various thresholds.

Results
Identification of MBs in full data set
Before cross-validation, the TIE* algorithm applied to the
full data set (N = 957) identified 789 distinct MBs. The aver-
age number of data items per MB was 18 (range 15–29).
Thirty-four items participated in at least one MB.

Cross-validation of MBs
The average number of MBs identified in the repeated
cross-validations was 800. The average number of features
per MB was 18 (range 12–32). Forty-seven features partic-
ipated in at least one MB. Thirteen features participate in
over 75% of all MBs (see Figure 2). The consistently pre-
dictive features include age, time in the ED, head injury,
perceived ED pain, patient and clinician’s clinical global
impression, total PSS and K6 scores, reporting nightmares,
concentration problems, feeling worthless, wanting help,
and quality of social support. The average predictive ac-
curacy of all MBs was within an acceptable range (AUC
= .75; 95% range = 0.67 - 0.80).

Discussion
The study’s findings support the hypothesized existence
of multiple interchangeable combinations of risk indica-
tors that equally predict non-recovery from information
Figure 2 Feature’s presence in repeated cross validation trials. The fig
features participate in MBs identified during successive cross-validations tria
in red indicate features selected in >75% of cross validation runs (n = 13).
obtained within days of a traumatic event. Specifically,
before cross validation, we identified 789 minimal sets of
variables (MBs) that rendered all others non-significant
predictors of non-remitting PTSD. The average number
of MBs per cross validation trial was 800. This minor
difference is expected, given use of slightly different
datasets (i.e., total dataset vs. randomly selected sets
of 90% of the observations).
The existence of such large number of MBs may

reflect the presumed multi-causal and equifinal etiology
of post-traumatic morbidity, which posits many inter-
changeable contributing factors and many causal path-
ways. It is also in line with prior evidence of multiplicity
of distinct risk indicators of PTSD [7,12,38].
Our finding extends previous work by translating

the previously demonstrated multiplicity of risk indi-
cators into versatile predictive model that can accom-
modate an array of traumatic situations where one or
several known predictors is either unavailable or not
contributing significantly. From a practical point of
view, such multiplicity points to the potential useful-
ness of data-informed algorithmic prediction tools to
future risk assessments.
This work also extends the array of risk indicators

identified by earlier studies: Former studies uncovered
salient predictors within large groups, whereas this work
demonstrated the ability of less consistently predictive,
or less frequently recorded features (e.g., expressing a
need for help, or ED length of stay) to carry important
information. This underscores ML ability to not to reject
ure shows the frequency (percentage of all trials) in which individual
ls (only features participating in >10% of the trials are presented). Bars
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features that are only weakly, or occasionally correlated
with an outcome, and thereby fully extract the informa-
tional item of datasets.
Within such multiplicity, however, this study identified

a few consistently predictive features (e.g., those in-
cluded in over 75% of all MBs). Interestingly, these fea-
tures comprised, side-by-side, prior variables (e.g., age),
event and injury parameters, immediate bodily responses
(e.g., ED pain), symptoms (nightmares, loss of concen-
tration, total PTSD and depression symptoms), clini-
cians’ observations (e.g., CGI) and more elaborated
subjective responses (need for help, sense of worthless-
ness). Surprisingly, gender was not among the consistent
predictors. This might reflect the nature of traumatic
events evaluated for this study, most of which were road
traffic accidents and thus not gender specific.
MB’s predictive accuracy (AUC = .75) does not support

a robust prediction from early information collected.
This may illustrate the limited predictive power of data
features available for this study, all collected within ten
days of a traumatic event. Within such limitations, the
results of this work still fare well on two accounts: They
firstly show the already reasonable ability of simple,
non-invasive, inexpensive observations to predict post-
traumatic morbidity. They additionally establish the use-
fulness of data features that are regularly collected in ED
situations. Indeed, this work was not meant to show su-
perior predictive performance, but rather to establish,
within the predictive power of a dataset, ways to increase
predictive versatility.
Predicting from very early features is also limited in that

early symptoms are ubiquitous whereas subsequent mor-
bidity is less frequent (17% non-remitting in this work).
Previous work has shown better prediction of chronic
PTSD by data collected one month after the traumatic
Figure 3 Data-Informed Decision Support Tool to Forecast PTSD. This
predictive models within a decision support tool for estimating the individ
traumatic event and a range of risk indicators are assessed. From the collec
best matching set of risk indicators is identified (step 1) and, if needed, the
indicators. Once enough data is available (step 2) a matching model is app
event [39]. Moreover, other known risk indicators that
might become available within days of traumatic expos-
ure (e.g., childhood trauma [40], lifetime mental disorders
[41], ED stress hormones [42], gene variants (e.g., FKBP5
[43]), or ED gene expression profiles [12,44]) have not
been assessed in this study. Expanding the array of early
predictive features by collecting such data might improve
the predictive accuracy of early observations.
An important remaining question is the added contri-

bution of putative biomarkers to prediction from of
non-invasive, easily retrievable clinical data: Clinical
manifestations may express the compounded effect of
underlying biological vulnerability and thus might
constitute more easily obtainable, non-invasive proxy
variables of the latter. Because ML methods can ac-
commodate multimodal information they might help
establishing such ‘proxy’ relationships.
Our results are far from exhausting the potential of

machine learning to forecast PTSD. Following similar
progress in other areas of medicine [45], ML ap-
proaches for forecasting post-traumatic morbidity must
be extended and enriched using other data sets and
adding other putative predictors. One of many scenarios
of such future use of ML decision support algorithms is
illustrated in Figure 3. The figure shows how cumulative
knowledge of predictive MBs can progressively enrich
knowledge-informed algorithmic approach for risk
assessment.

Conclusions
By providing greater versatility, ML-informed algorithms
may better identify individuals at risk for post-traumatic
morbidity under varying traumatic circumstances. ML
capacity to accommodate multimodal information offers
new heuristic for forecasting post-traumatic morbidity.
figure outlines a scenario for future implementation of multiple
ual risk. A patient is admitted to the ED after exposure to a potentially
tion of models previously identified, in this and subsequent studies, a
system prompts the clinician to seek information about missing risk
lied and personal risk estimate computed (step 3).
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