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Abstract

Background: Studies exploring the potential of Chaos Game Representations (CGR) of genomic sequences to act as
“genomic signatures” (to be species- and genome-specific) showed that CGR patterns of nuclear and organellar DNA
sequences of the same organism can be very different. While the hypothesis that CGRs of mitochondrial DNA
sequences can act as genomic signatures was validated for a snapshot of all sequenced mitochondrial genomes
available in the NCBI GenBank sequence database, to our knowledge no such extensive analysis of CGRs of nuclear
DNA sequences exists to date.

Results: We analyzed an extensive dataset, totalling 1.45 gigabase pairs, of nuclear/nucleoid genomic sequences
(nDNA) from 42 different organisms, spanning all major kingdoms of life. Our computational experiments indicate
that CGR signatures of nDNA of two different origins cannot always be differentiated, especially if they originate from
closely-related species such as H. sapiens and P. troglodytes or E. coli and E. fergusonii. To address this issue, we propose
the general concept of additive DNA signature of a set (collection) of DNA sequences. One particular instance, the
composite DNA signature, combines information from nDNA fragments and organellar (mitochondrial, chloroplast, or
plasmid) genomes. We demonstrate that, in this dataset, composite DNA signatures originating from two different
organisms can be differentiated in all cases, including those where the use of CGR signatures of nDNA failed or was
inconclusive. Another instance, the assembled DNA signature, combines information from many short DNA
subfragments (e.g., 100 basepairs) of a given DNA fragment, to produce its signature. We show that an assembled
DNA signature has the same distinguishing power as a conventionally computed CGR signature, while using shorter
contiguous sequences and potentially less sequence information.

Conclusions: Our results suggest that, while CGR signatures of nDNA cannot always play the role of genomic
signatures, composite and assembled DNA signatures (separately or in combination) could potentially be used
instead. Such additive signatures could be used, e.g., with raw unassembled next-generation sequencing (NGS) read
data, when high-quality sequencing data is not available, or to complement information obtained by other methods
of species identification or classification.

Keywords: Comparative genomics, Alignment-free, Genomic signature, Chaos Game Representation, Information
distance, Additive DNA signature, Composite DNA signature, Assembled DNA signature

Background
Motivated by the general need to identify and clas-
sify species based on molecular evidence, alignment-free
genome comparisons have been proposed, based on com-
paring Chaos Game Representations (CGR) of genomic
DNA sequences. The CGR of a DNA sequence, proposed
by Jeffrey [1, 2], is a graphical representation of a DNA
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sequence, where the patterns in the image correspond to
the frequencies of k-mers in the sequence. Deschavanne
et al. [3, 4] were the first to suggest that CGR is a good
candidate for the role of “genomic signature” defined by
Karlin and Burge [5] as any specific quantitative charac-
teristic of a sequence that is pervasive along the genome,
while being dissimilar for sequences originating from
organisms of different species.
CGR is one of a variety of alignment-free methods (see

[6–11] for detailed literature reviews) that have been pro-
posed for sequence and genome comparisons, as a com-
putationally efficient approach that performs well even
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with DNA sequences that have nothing or little in com-
mon. (We use the following notational conventions for
genomic DNA: nDNA (nuclear/nucleoid DNA), mtDNA
(mitochondrial DNA), cpDNA (chloroplast DNA), and
pDNA (plasmid DNA)).
Initially, CGR images were only qualitatively analyzed

[12–14], and Dutta et al. and Goldman both advanced
the suggestion that CGR images represent no more infor-
mation than second-order Markov chains [15, 16], which
was later disproven by Almeida et al. [17, 18] and others
[19, 20]. CGR has been applied extensively to phylogenet-
ics together with the Euclidean distance, for instance on
nDNA fragments from various domains [3], 27 genomes
from various genera [4], 125 nDNA fragments from sev-
eral bird genomes [21], 26 mtDNA sequences (also with
the Pearson distance and a custom image distance) [19],
4 bacteria and about 200 phages [22], 75 HIV-1 genomes
[23], 10 mtDNA sequences and 14 nDNA sequences from
plants in the Brassicales order [24]. Other distances have
also been used, for instance the DSSIM image distance
on a set of 3,176 mtDNA sequences [20], and six dif-
ferent distances on 174 million base pairs of sampled
nDNA fragments from organisms of all major kingdoms
of life [25]. The performance of several distance functions
has also been compared and benchmarked on their accu-
racy in constructing phylogenetic trees [26–32]. Initially,
CGR was used only for strings over a 4-letter alphabet
(like DNA), but generalizations have been proposed to
peptide sequences [33–38], and Almeida and Vinga pro-
posed a derivative of CGR called the Universal Sequence
Map (USM), which is suitable for alphabets of any size
[39, 40]. CGRs have also been subjected to multifrac-
tal analysis (which measures the degree of self-similarity
within the image), see, e.g., [35, 41–46]. Lastly, CGR has
been used to estimate sequence entropy [47–49], to speed
up local-alignment algorithms [50], and has been used
together with neural networks to classify HPV genomes
by genotype [51].
Several CGR studies [13, 20, 52] observed that CGR

patterns of nuclear and organellar DNA sequences of the
same organism can be completely different. While the
hypothesis that CGRs of mitochondrial DNA sequences
can play the role of genomic signatures was tested and
validated on the set of all 3,176 sequenced mitochon-
drial genomes (totalling 91.3 megabase pairs) available in
the NCBI GenBank sequence database in July 2012 [20],
to our knowledge no such extensive analysis of CGRs of
nuclear/nucleoid genomic sequences exists to date.
The main contributions of this paper are:

• We present an extensive analysis of the hypothesis
that conventionally computed (called herein
“conventional”) nDNA signatures can play the role of
genomic signatures at multiple taxonomic levels,

from kingdom to species. Our dataset totals 1.45
gigabase pairs of nDNA sequences from 42 different
genomes, from all major kingdoms of life.

• Our analysis indicates that conventional nDNA
signatures of two different origins cannot always be
differentiated, especially if they originate from closely
related organisms. To address this issue, we propose
taking into account information obtained from
organellar DNA, in addition to nDNA. More
generally, we propose the concept of an additive DNA
signature of a set (collection) of DNA sequences, and
define two particular instances: composite DNA
signatures and assembled DNA signatures.

• We explore composite DNA signatures, which
combine conventional nDNA signatures with
organellar DNA signatures (mtDNA, cpDNA, or
pDNA) of the same organism. We demonstrate that,
in this dataset, the composite DNA signatures
originating from two different organisms can be
differentiated in all cases, including those where the
use of conventional nDNA signatures failed. In
particular, composite DNA signatures from genomes
of species as closely related as H. sapiens and
P. troglodytes, or E. coli and E. fergusonii, can be
successfully separated.

• We explore assembled DNA signatures, which
combine information from many short contigs
(e.g., 100 bp) of a DNA fragment to produce a
recognizable signature. This is in contrast to
conventional DNA signatures wherein one single
long (thousand to hundreds of thousands of
basepairs) DNA sequence is needed to generate a
recognizable signature.

The enhanced discriminating power of composite DNA
signatures, and the ability of assembled DNA signatures to
operate with scattered and reduced sequence data, open
the possibility of practical applications including aiding
species identification or classification, and comparisons
of DNA fragments of various origins such as genomes
of extinct organisms, synthetic genomes, raw unassem-
bled next-generation sequencing (NGS) read data, or even
computer-generated DNA sequences.

Results
The first objective of this study was to test, on a compre-
hensive dataset, the hypothesis that conventional nDNA
signatures can be used to differentiate between nuclear
DNA sequences originating from different organisms,
spanning all major kingdoms of life, at multiple taxonomic
levels.
To this end, the following computational experiment

was performed, for each of the major kingdoms of life,
at various taxonomic levels. We chose a pivot organism
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(e.g., H. sapiens for Kingdom Animalia) and proceeded
to use conventional nDNA signatures to compare frag-
ments of its nuclear/nucleoid genome with fragments
of the nuclear/nucleoid genome of one other organism
from the same kingdom. The process was then repeated
with the second organism being at increasing degrees of
relatedness to the pivot organism.
More precisely, for each such pairwise comparison, the

following three-step process was implemented.

Step 1. Randomly sample 150 kbp nDNA fragments
from every chromosome (20 per chromosome,
or all fragments if fewer) of the two genomes
involved in the comparison. For each such
nDNA fragment, construct its corresponding
conventional nDNA signature using the process
described in Section “Methods”.

Step 2. Compute pairwise distances for all pairs of
conventional nDNA signatures generated in
Step 1. The distance used to start with was an
approximated information distance (AID),
formally defined in Section “Methods” (see also
[25, 53]), since it is computationally simple and
uses the least amount of sequence information.
If separation was not achieved using AID, five
other distance measures were used: Structural
Dissimilarity Index (DSSIM) [54], Euclidean
distance, Pearson correlation distance [55],
Manhattan distance [56], and descriptor
distance [25].

Step 3. Use the distance matrix obtained in Step 2 as
input to a Multi-Dimensional Scaling (MDS)
algorithm to produce a 3D Molecular Distance
Map [25]: Each point in the map corresponds to
(the conventional nDNA signature of) an nDNA
fragment from Step 1, and the geometric
distance between every two points corresponds
to the distance between the respective
conventional nDNA signatures in the distance
matrix. Assess, for each Molecular Distance
Map, whether or not separation between
conventional nDNA signatures of DNA
fragments from the pivot organism and those
from the other organism was achieved, by using
either k-means clustering [57] or by verifying
the existence of a separating plane.

Figure 1 illustrates an example of the end result of
this three-step process: A three-dimensional Molecular
Distance Map that displays the conventional nDNA sig-
natures of the pivot organism of Kingdom Animalia, H.
sapiens, plotted together with the conventional nDNA
signatures of D. melanogaster.
The results for all kingdoms are presented in Fig. 2

(the first two result columns) and the corresponding

Fig. 1 3D Molecular Distance Map illustrating interrelationships
among conventional nDNA signatures of 480 randomly sampled
150 kbp nuclear genomic fragments from H. sapiens (blue) and 128
randomly sampled 150 kbp nuclear genomic fragments from D.
melanogaster (orange). The accuracy of separation is 97.2 %

3D Molecular Distance Maps can be found in [58].
For Kingdom Animalia, the approximated information
distance succeeded to separate H. sapiens (24 chromo-
somes, 480 fragments) conventional nDNA signatures
from those of other organisms, down to and including
from M. murinus (grey mouse lemur, same order but dif-
ferent suborder) and T. syrichta (Phillipine tarsier, same
suborder but different infraorder). In the cases marked Y*
in Fig. 2, while the accuracy was less than the threshold for
separation (85%), the existence of a separating plane was
verified. See discussion in Section “Methods” for details.
The use of conventional nDNA signatures failed to

achieve separation for genomes of more closely related
species. In particular, it failed to separate conventional
nDNA signatures of H. sapiens from those of C. jacchus
(common marmoset, same infraorder), P. anubis (Anubis
baboon, same parvorder), N. leucogenys (northern white-
cheeked gibbon, same superfamily), P. abelii (Sumatran
orangutan, same family), G. gorilla (gorilla, same sub-
family, and P. troglodytes (chimpanzee, same tribe, see
Fig. 3). For those organisms where separation was not
achieved with approximated information distance, we
performed the comparisons with the other five distances.
The results of these multiple computations were that, in
all cases where approximated information distance failed
to achieve separation, the other distances also failed.
For Kingdom Fungi, the pivot organism is the model

organism Saccharomyces cerevisiae (16 chromosomes, 73
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Fig. 2 Each subfigure summarizes, for a given kingdom, the results of pairwise comparisons between DNA signatures of fragments from a pivot
organism (blue) and those from one other organism, at increasing levels of relatedness. The first two result columns indicate the outcome of the
comparisons of conventional nDNA signatures, and the last two columns the comparisons of composite DNA signatures. Green indicates that
separation was achieved with AID, red indicates that separation was not achieved with any of the six distances listed in Section “Results”, and yellow
(Y/N) or Y* indicate results discussed in the text. The columns labelled Acc % indicate the accuracy of the separations listed immediately at their left:
Acc > 85% was considered separation. A dash indicates that no sequenced data was available on NCBI/GenBank at the time of this submission. The
corresponding 3D Molecular Distance Maps for each of the comparisons can be found in [58]
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Fig. 3 3D Molecular Distance Map illustrating interrelationships
among conventional nDNA signatures of 480 randomly sampled
nuclear genomic fragments from H. sapiens (blue) and 500 randomly
sampled nuclear genomic fragments from P. troglodytes (red). All
fragments are 150 kbp long, the accuracy of separation is 52.34 %,
and no separation plane could be found

fragments), a species of yeast instrumental to winemak-
ing, baking, and brewing. Separation of its conventional
nDNA signatures was achieved down to and including
separation from C. dubliniensis (same family, different
genus). In the case of the comparison with K. pastoris,
marked with Y* in Fig. 2, the accuracy score was lower
than 85%: This is an artifact of the shape of the 3D
Molecular Distance Map wherein one of the clusters has
a trailing set of points that become erroneously separated
by k-means from all the rest of the points. Because of this,
and since the use of k-means on the 2D Molecular Dis-
tance Map of the same dataset resulted in an accuracy
score of 100 %, we interpreted this comparison as resulting
in separation. The results of the comparison between the
conventional nDNA signatures of the pivot organism and
those of S. arboricola (same genus, different species), were
inconclusive: The use of Euclidean and Pearson distances
resulted in separation (both with accuracy of 88.48 %),
while the use of the other four distances (DSSIM,Manhat-
tan, descriptor, approximated information distance) did
not result in separation.
For Kingdom Plantae, the pivot organism is the model

organism Brassica napus (19 chromosomes, 380 DNA
fragments), rapeseed, a flowering member of the fam-
ily Brassicaceae (mustard or cabbage family). Separation
of its conventional nDNA signatures was achieved down
to and including separation from C. papaya (papaya,
same order, different family). For the comparisons with

A. thaliana (thale cress, same family, different tribe) and
R. sativus (radish, same tribe, different genus), cluster
separation was visually observed but not quantitatively
confirmed by either k-means or plane separation. The
comparison with B. oleracea (wild cabbage, same genus,
different species) did not result in separation, with any of
the six distances.
For Kingdom Protista, the pivot organism is the model

organism Plasmodium falciparum, a protozoan para-
site (14 chromosomes, 149 DNA fragments), one of the
species of Plasmodium that cause malaria in humans.
Separation of its conventional nDNA signatures from
those of other organisms from the same kingdom was
achieved at all taxonomic levels, down to and including
separation from P. vivax (same genus, different species).
For Kingdom Bacteria, the pivot organism is the model

organism Escherichia coli (20 genomic DNA fragments),
a bacterium commonly found in the lower intestine of
warm-blooded organisms. Separation of its conventional
nDNA signatures from those of other bacteria was suc-
cessful down to and including separation from S. enterica
(same family, different genus), but failed with all six dis-
tances in the comparison with E. fergusonii (same genus,
different species).
For Kingdom Archaea, the pivot organism is the model

organism Pyrococcus furiosus (12 genomic DNA frag-
ments), an extremophilic species of Archaea. Separation
of its conventional nDNA signatures from those of other
archaea was successful at all levels, down to and includ-
ing separation from P. yayanosii (same genus, different
species).
The above results indicate that, especially in King-

dom Animalia, conventional nDNA signatures cannot
always be used to differentiate nuclear/nucleoid genomic
sequences originating from two different genomes. This
suggests that conventional nDNA signatures cannot
always play the role of a “genomic signature”, particu-
larly when the genomes being compared belong to closely
related species.

Composite DNA signatures
To enhance the discriminating power of conventional
nDNA signatures, our second objective was to introduce
and explore the concept of composite DNA signatures,
which combine conventional nuclear/nucleoid DNA sig-
natures with signatures of organellar genomes (mtDNA,
cpDNA, or pDNA).
To test the discriminating power of composite DNA

signatures, we repeated all previous pairwise compar-
isons (where sequenced organellar DNA was available),
using this time composite DNA signatures. The results are
presented in the last two columns of Fig. 2.
For Kingdoms Animalia, Fungi and Protista we used

composite DNA signatures combining the conventional
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nDNA signature of each nuclear/nucleoid genomic
fragment with that of the mtDNA of the same organism
(when available). Using such composite DNA signa-
tures, differentiation of DNA signatures by organism
was successful in all cases, including all cases where
the use of conventional nDNA signature previously
failed or was inconclusive. See Fig. 3 (H. sapiens vs.
P. troglodytes conventional nDNA signatures, no separa-
tion) versus Fig. 4 (H. sapiens vs. P. troglodytes compos-
ite DNA signatures using nDNA and mtDNA, complete
separation).
To test the discriminating power of composite DNA sig-

natures using nDNA, mtDNA and cpDNA, we employed
them to perform comparisons for all genome pairs from
Kingdom Plantae. Separation was achieved using all of:
composite DNA signatures using nDNA and mtDNA,
composite DNA signatures using nDNA and cpDNA,
and composite DNA signatures using nDNA, mtDNA,
and cpDNA. See Fig. 5 for the Molecular Distance Maps
illustrating the relationships between these signatures for
B. napus and B. oleracea.
For Kingdom Bacteria, the use of composite DNA sig-

natures combining nDNA and pDNA (when available)
resulted in separation in all cases.
Overall, the use of composite DNA signatures resulted

in separation in all pairwise comparisons in Fig. 2
(where organellar DNA sequencing data was available),
including in those where the use of conventional

Fig. 4 3D Molecular Distance Map illustrating interrelationships
among composite DNA signatures using nDNA and mtDNA, of 480
DNA fragments from H. sapiens (blue) and 500 DNA fragments from
P. troglodytes (red). The accuracy of separation is 100 %

nDNA signature failed or resulted in inconclusive
separations.

Assembled DNA signatures
As the third objective of this study, we explored a way to
enhance the practical applicability of conventional DNA
signatures. Recall that, to produce a recognizable visual
pattern that can be reliably used to represent a genome,
a conventional DNA signature needs as input a long con-
tiguous (two to several hundred kilobase pairs) DNA
fragment. This assumes a high quality and reliability of
sequencing and assembly, which are not always available.
We propose instead to approximate a conventional signa-
ture by an assembled DNA signature, which combines the
conventional DNA signatures of many short contigs (e.g.,
100 bp) of the given fragment. Note that these contigs
need not cover the entire DNA fragment.
In what follows, we denote by |s| the length of the

sequence s. Given a DNA fragment s, an assembled DNA
signature of s, using r equi-length contigs of length n (sub-
fragments of the sequence s), is defined as the sum of
the conventional DNA signatures of all of the r contigs.
A particular case of assembled DNA signature is where
the fragment s is partitioned into equi-length, consecutive,
non-overlapping contigs, that is, s = s1s2 . . . srsr+1, and
|si| = n for 1 ≤ i ≤ r, with |sr+1| < n. In this case, we call
the assembled signature a fully-assembled DNA signature
of the sequence s, using equi-length contigs of length n.
Table 1 ((A) through (C)) presents a comparison

between the conventional nDNA signature of a given
DNA fragment and its assembled DNA signatures, as
well as fully-assembled DNA signatures, for various val-
ues of contig length n, and number of contigs r. The
DNA fragment used is from H. sapiens, chromosome 21,
fragment 20 (from position 2,850,001 to 3,000,000 after
removing all Ns in the original sequence), and the dis-
tance used is approximated information distance between
CGRs. For example, the distance between the conven-
tional nDNA signature and the fully-assembled DNA sig-
nature of the same fragment, that uses 1,000 contigs of
length 150 bp each, is 0.03 (row 2, column (A)). This
value is very small, given that approximated information
distance theoretically ranges between 0 and 1. This sug-
gests that, for these parameter values (n = 150 and r =
1, 000), a fully-assembled DNA signature can be an excel-
lent approximation of the conventional DNA signature of
the same fragment. This was expected, given that the only
information lost in the computation of a fully-assembled
DNA signature, when using the approximated informa-
tion distance, is the information about the k-mers situated
at the borders between contigs.
Also as expected, for the same values of n and r,

the distance between an assembled DNA signature and
the conventional nDNA signature of the same fragment



Karamichalis et al. BMC Bioinformatics  (2016) 17:313 Page 7 of 18

Fig. 5 3D Molecular Distance Map illustrating interrelationships among signatures of 380 DNA fragments from B. napus (magenta) and 180 DNA
fragments from B. oleracea (brown) using a conventional nDNA signatures, b composite DNA signatures using nDNA and mtDNA, c composite DNA
signatures using nDNA and cpDNA, and d composite DNA signatures using nDNA, mtDNA, and cpDNA. The accuracy of separation is 63.03 % for
(a), and 100 % for each of (b), (c), and (d)

(Table 1, Column (B)) is higher than the one between
a fully-assembled DNA signature and the conventional
nDNA signature of the same fragment (Table 1, (A)). This
indicates that the assembled DNA signature is less per-
formant than the fully-assembled DNA signature as an
approximation of a conventional nDNA signature. The
reason is that, given a fixed number r of contigs, in
the case of an assembled DNA signature the contigs are
allowed to overlap and need not cover the entire fragment.
This can be compensated by increasing the coverage, that

is, the number r of contigs. Table 1, (C) shows that tripling
the number of contigs results in significantly smaller
differences between assembled DNA signatures and the
conventional DNA signature of the same fragment which
they were meant to approximate.
The results in Table 1 suggest that assembled DNA sig-

natures have the potential to play the role of “genomic
signatures”, and be used directly on raw unassembled next-
generation sequencing read data, or in cases where other
methods are not directly applicable because high-quality



Karamichalis et al. BMC Bioinformatics  (2016) 17:313 Page 8 of 18

Table 1 (A) through (C) – Distances between the conventional nDNA signature of a fragment and its assembled DNA signatures, for
various numbers r of contigs of the same length n: (A) distances to fully-assembled DNA signatures; (A′) theoretical upper bounds for
(A); (B) distances to assembled DNA signatures; (C) same as (B), when tripling the number of contigs

n r (A) (A’) (B) r (C) r (B’) r (C’)

100 1500 0.05 0.13 0.29 4500 0.042 1475 0.32 4434 0.041

150 1000 0.03 0.09 0.29 3000 0.034 1000 0.29 2999 0.040

200 750 0.02 0.07 0.28 2250 0.033 750 0.29 2250 0.038

300 500 0.02 0.04 0.28 1500 0.030 500 0.28 1500 0.038

500 300 0.01 0.03 0.26 900 0.037 300 0.28 900 0.033

1000 150 0.005 0.01 0.30 450 0.030 150 0.25 450 0.039

2000 75 0.003 0.007 0.30 225 0.041 75 0.26 225 0.023

3000 50 0.002 0.004 0.25 150 0.044 50 0.29 150 0.021

10000 15 0.0004 0.001 0.30 45 0.053 15 0.25 45 0.045

15000 10 0.0003 0.0008 0.24 30 0.12 10 0.23 30 0.079

30000 5 0.0001 0.0004 0.36 15 0.13 5 0.41 15 0.058

(B′) through (C′) – Distances between the conventional nDNA signature of a fragment and its assembled DNA signatures, using variable-length contigs taken from a normal
distribution N(n, σ), with mean n and variance σ = 40. The nDNA fragment used was from H. sapiens, chromosome 21, fragment 20 (from position 2,850,001 to 3,000,000
after removing all Ns in the original sequence)

sequencing data is not available. To test this hypothesis,
we considered the organism pairs in Fig. 2 for which sepa-
ration was obtained using conventional nDNA signatures,
and attempted to reproduce these successful separations
using assembled DNA signatures instead. In addition, we
empirically sought to find, in each case, the coverage
(amount of sequence data) needed to achieve separation,
as a percentage of total fragment length.
To determine the threshold interval where separation

between assembled DNA signatures of a given pair of
organisms was achieved, when contigs of length n = 300
were used, the following process was employed. For var-
ious values of t, 0 ≤ t ≤ 1 (representing the fragment
coverage, e.g., t = 0.5 means that 50 % of the frag-
ment data was used), we attempted to see if separation of
assembled DNA signatures from the two organisms was
achieved, in the following way.
For each of the 150 kbp fragments s from the two

genomes, q random positive integers were picked from
the interval 1 to |s| − n + 1 = (150, 000 − 300 + 1),
where q = �t ∗ |s|/n�, that is, the integer part of t ∗ |s|/n.
These q numbers represent the start positions of the q
chosen contigs. For each contig start position, a contig of
length n = 300 was read and used for the assembled DNA
signature of the fragment s.
For each value of t, the corresponding 3D Molecular

DistanceMap of the assembled DNA signatures of the two
organisms was then analyzed, by verifying the existence
(or absence) of a separating plane.
The results are summarized in Table 2 and can be inter-

preted as follows. In the comparison between H. sapiens
and D. melanogaster the threshold interval is 1 –5 %. The

lower limit of this interval is 1 %, and this means that
in the computation using the coverage value t = 0.01
(implying q = �0.01 ∗ 150, 000/300� = 5), separation
was not achieved. That is, for each of the 150 kbp nDNA
fragments available (480 from H. sapiens and 128 from
D. melanogaster), when employing assembled nDNA sig-
natures using only 5 contigs per fragment (for a maxi-
mum of 1 % of each fragment length, that is, 1,500 bp
per fragment), separation was not achieved. The upper
limit of the interval is 5 %, and this means that in the
computation using the coverage value t = 0.05 (imply-
ing q = 25), separation was achieved. That is, when
employing assembled nDNA signatures using 25 contigs
per fragment (for a maximum of 5 % of each fragment
length, that is, 7,500 bp per fragment), separation was
achieved.
The actual threshold values lie in the intervals listed,

and may be subject to the quality of the sequencing. As
expected, in general, the thresholds needed for separa-
tion increase with the increase in the degree of related-
ness of the organisms being compared. This suggests that
nDNA sequences from closely related organisms require
a higher coverage (that is, a higher amount of information
from each sequence) to be separated. The only exception
to this trend, in this dataset, were the pairs H. sapiens
with M. murinus (gray mouse lemur) requiring 60 –80 %
sequence coverage, and H. sapiens and T. syrichta
(Philippine tarsier) requiring 20 –40 % sequence coverage.
Thus, the (human, lemur) pair required higher sequence
coverage to achieve separation than the (human, tarsier)
pair, even though the gray mouse lemur belongs to a dif-
ferent primate suborder (Haplorrhini) than the modern
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Table 2 Assembled nDNA signatures: sequence coverage
(amount of DNA fragment information) needed for separation of
the assembled nDNA signatures of the pivot organism from
assembled nDNA signatures of the comparison organism, for all
major kingdoms of life. Separations were confirmed by verifying
the existence of separating planes

Animalia

H.sapiens vs. Different taxon Thresh.

D.melanogaster Phylum: Arthropoda 1 –5 %

G.gallus Class: Aves 3 –10 %

M.musculus Order: Rodentia 10 –20 %

M.murinus Suborder: Strepsirrhini 60 –80 %

T .syrichta Infraorder: Tarsiiformes 20 –40 %

Fungi

S.cerevisiae vs. Different taxon Thresh.

C.gattii Phylum: Basidiomycota 0.5 –2 %

F.oxysporum Class: Sordariomycetes 0.5 –2 %

K .pastoris Family: Phaffomycetaceae 2 –10 %

C.dubliniensis Genus: Candida 2 –10 %

Plantae

B.napus vs. Different taxon Thresh.

M.pusilla Phylum: Chlorophyta 2 –3 %

P.patens Unranked: Bryophyta 3 –4 %

M.domestica Unranked: Fabids 4 –5 %

C.papaya Family: Caricaceae 4 –5 %

Protista

P.falciparum vs. Different taxon Thresh.

O.trifallax Phylum: Ciliophora 0.5 –2 %

T .gondii Class: Conoidasida 0.5 –2 %

T .orientalis Order: Piroplasmida 0.5 –2 %

P.vivax Species: P.vivax 0.5 –2 %

Bacteria

E.coli vs. Different taxon Thresh.

S.aureus Phylum: Firmicutes 0.5 –2 %

H.pylori Class: Epsilonproteobact. 0.5 –2 %

A.baumannii Order: Pseudomonadales 0.5 –2 %

S.enterica Genus: Salmonella 10 –20 %

Archaea

P.furiosus vs. Different taxon Thresh.

S.islandicus Phylum: Crenarchaeota 0.5 –2 %

M.smithii Class: Methanobacteria 0.5 –2 %

Thermococcus Genus: Thermococcus 0.5 –2 %

P.yayanosii Species: P.yayanosii 0.5 –2 %

human, while the tarsier belongs to the same primate sub-
order as the modern human (Strepsirrhini), and thus one
would expect that more information would be needed

to achieve the latter separation. This apparent anomaly
may be partly related to the fact that the phylogenetic
placement of tarsiers within the order Primates has been
controversial for over a century [59]: In [60] tarsiers are
placed within Haplorrhini, while according to [20, 61],
mitochondrial DNA evidence places tarsiiformes as a
sister group to Strepsirrhini.
Table 2 indicates that the amount of DNA fragment

information needed to achieve separation, at the same tax-
onomic level, can differ from one kingdom to another.
For example, in Kingdom Animalia, conventional nDNA
signatures of organisms from two species of a different
species (H. sapiens and P. troglodytes) could not be sep-
arated even though we use 100 % of the DNA fragment
information. In contrast, in Kingdom Fungi, assembled
nDNA signatures from two organisms of a different genus
(S cerevisiae and C. dubliniensis) could be separated even
when using only 10 % of DNA fragment data. Similarly,
in Kingdom Bacteria, assembled nDNA signatures from
two organisms of different genus (E. coli and S. enter-
ica) could be separated even when using only 20 % of
DNA fragment data. The situation is even more extreme
in Kingdom Protista and Kingdom Archaea, where even
organisms belonging to the same genus could be separated
with very little sequence coverage. Indeed, in Kingdom
Protista, assembled nDNA signatures of two organisms
of the same genus (P. falciparum and P. vivax) could be
separated using only 2 % of DNA fragment data. Simi-
larly, in Kingdom Archaea, assembled nDNA signatures
from two organisms of the same genus (P. furiosus and
P. yananosii) could also be separated using only 2 % of
DNA fragment data. This suggests that some taxonomic
categories, such as “genus”, do not necessarily reflect the
same degree of structural similarity of genomic sequences
uniformly across kingdoms.

Composite-assembled DNA signatures
We now briefly explore the potential of combining the
approach of composite DNA signatures with that of
assembled DNA signatures. A composite-assembled DNA
signature is produced by combining information from
the assembled DNA signatures of two (or more) differ-
ent types of DNA fragments. For example, a composite-
assembled signature using nDNA and mtDNA is obtained
by combining the assembled nDNA signature of one
150 kbp nDNA fragment, with the assembled mtDNA
signature of the mtDNA genome of the same organism.
Figure 6 plots together composite DNA signatures

and composite-assembled DNA signatures using nDNA
and mtDNA from H. sapiens and P. troglodytes. Note
that composite-assembled DNA signatures and composite
DNA signatures of fragments (using nDNA and mtDNA),
from the same species are closely clustered together. On
the other hand, all DNA signatures of H. sapiens are
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Fig. 6 3D Molecular Distance Map illustrating interrelationships
among 480 composite (respectively 480 composite-assembled) DNA
signatures, each using one nDNA fragment and the mtDNA genome
from H. sapiens, blue (resp. green); and 500 composite (resp. 500
composite-assembled) DNA signatures, each using one nDNA
fragment and the mtDNA genome from P. troglodytes, red (resp.
turquoise); For the composite-assembled DNA signatures, the length
of contigs was n = 100, while the number of contigs was 4,500 for
each 150 kbp nDNA fragment, and 497 (resp. 496) for the human
(resp. chimp) mtDNA genome. The accuracy of separation between
the H. sapiens and the P. troglodytes sequences was 58 %, but the
existence of a separation plane was verified

separated from all DNA signatures of P. troglodytes, and
the existence of a separating plane was verified. These
results suggest that composite-assembled DNA signatures
could also be potential candidates for the role of “genomic
signature”, as they have in general better discriminating
power than conventional nDNA signatures while using
scattered and potentially less sequence information.

Conclusions
The first objective of this paper was to conduct a com-
prehensive analysis, on a dataset totalling 1.45 Gb, of
the hypothesis that Chaos Game Representations of
nuclear/nucleoid genomic sequences can play the role
of “genomic signatures”, that is, that they are genome- and
species-specific. Our results suggest that this hypothesis is
not always valid, in that nuclear/nucleoid DNA sequences
belonging to closely related species such as H. sapiens
and P. troglodytes or E. coli and E. fergusonii cannot
always be separated using conventionally computed CGR
signatures.
To address this issue, as a second objective, we pro-

pose the use of composite DNA signatures, which combine
information from the nuclear/nucleoid genome with that

from one or more organellar genomes (mtDNA, cpDNA
and/or pDNA). Composite DNA signatures were found,
in this study, to result in successful separation of DNA
sequences by organism in all cases, including those where
conventional nDNA signatures failed.
As a third objective, we propose the use of assembled

DNA signatures, which combine information from short
contigs (subfragments) of a DNA fragment, rather than
using the entire contiguous fragment, to produce its sig-
nature. We show that assembled DNA signatures can be
successful replacements of conventional DNA signatures,
and also that the composite and assembled DNA signature
approaches can be used simultaneously.
Mathematically, composite and assembled DNA sig-

natures are both particular cases of a general concept,
namely that of an additive DNA signature of a set of DNA
sequences (see Section “Methods”). Our results indicate
that such additive DNA signatures could be considered as
potential candidates for the role of “genomic signatures”
at various taxonomic levels, from distant to closely related
species, and thus complement other methods for species
identification and classification.
Several directions of future research stem from

the fact that existing literature indicates that the
oligomer composition of nuclear/nucleoid DNA
sequences and mitochondrial DNA sequences can
be a source of taxonomic information. Such direc-
tions include testing the discriminating power of
additive DNA signatures in large-scale multi-genome
comparisons, and exploring their utility in practical
applications such as DNA sequence identification and
classification (including directly on raw unassembled
NGS read data or when high-quality sequencing
data is not available), metagenomics, and synthetic
genomes.

Methods
Dataset
The dataset, totalling 1.45 Gb, comprised whole
nuclear/nucleoid genomes and organellar genomes of
42 organisms, spanning all major kingdoms of life (see
Additional file 1 for the scientific name, NCBI accession
number, chromosome number, and number of fragments
sampled). In our analysis, for each complete genomic
sequence, all letters other than A,C,G,T were ignored,
and the resulting DNA sequence was divided into suc-
cessive, non-overlapping, contiguous fragments, each
150 kbp long (when the last portion was shorter than
150 kbp, it was not included in the analysis). The choice of
fragment length, 150 kbp, was due to our choice of CGR
image resolution (namely 29×29, that is, k = 9), empirical
testing, and computational efficiency reasons, see [25].
Subsequently, 20 such 150 kbp fragments were ran-

domly sampled from each chromosome and, for each
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such fragment, a corresponding conventional nDNA
signature was constructed, as described below. (If
there were fewer than 20 fragments, all fragments in
the chromosome were chosen.) In the cases where
the genome assembly of the organism was at the
contig/scaffold level, the contigs/supercontigs of the
assembly were sorted by length and the first 500 con-
tigs/supercontigs were selected. (If there were fewer than
500 contigs/supercontigs, all were selected.) From each
contig/supercontig, only the first 150 kbp fragment was
considered.
We note that this method is alignment-free, and that its

approach contrasts typical biodiversity and species identi-
fication research [62–65] in that it uses randomly selected
DNA sequences rather than specific marker genes for
identification and classification of species. This approach
is somewhat similar to novel approaches in metage-
nomics, metatranscriptomics, and viromics [66], but there
are also substantial differences such as that metatran-
scriptomics is based on RNA rather than DNA and that
it groups sequences based on functionality rather than
oligomer composition.

Chaos Game Representation (CGR)
CGR is a method introduced by Jeffrey [1] as a way to
visualize the structural composition of a DNA sequence.
This method associates an image to each DNA sequence
as follows: Starting from a square with corners labelled A,
C, G, and T, and the center of the square as the starting
point, the image is obtained by successively plotting each
nucleotide as the middle point between the current point
and the corner labelled by the nucleotide to be plotted.
If the generated square image has a size of 2k × 2k pix-
els, then every pixel represents a distinct k-mer: A pixel
is black if the k-mer it represents occurs in the DNA
sequence, otherwise it is white. CGR images of genetic
DNA sequences originating from various species show
patterns such as squares, parallel lines, rectangles, tri-
angles, and also complex fractal patterns, as shown in
Fig. 7.
We used a modification of the original CGR, introduced

by Deschavanne [3]: a k-th order FCGR (frequency CGR)
of a sequence s, denoted by FCGRk(s), is a 2k × 2k matrix
that can be constructed by dividing the CGR image of the
sequence s into a 2k ×2k grid, and defining the element aij
of the matrix FCGRk(s) as the number of points that are
situated in the corresponding grid square.
We now formally define the conventional DNA signa-

ture of a sequence s to be the matrix FCGRk(s), which
records the numbers of occurrences of all possible k-mers
in the sequence s. Throughout this paper, the parameter
k is assumed to be a fixed constant. In particular, similar
to [25], in all computational experiments in this paper the
value used was k = 9.

For computing composite and assembled DNA signa-
tures, we introduce the general concept of additive DNA
signature of a set of sequences, formally defined as follows.

Definition 1 The additive DNA signature of a set of
sequences S = {s1, s2, . . . , sr}, r ≥ 1, is defined as

FCGRk(S) = FCGRk(s1) + . . . + FCGRk(sr).

Note that the notions of conventional DNA signature,
composite DNA signature, assembled DNA signature, and
fully-assembled DNA signature, are all particular cases of
additive DNA signatures, as follows:

• The conventional DNA signature of a sequence s is
the additive DNA signature of the set {s} consisting of
a single sequence s, that is, FCGRk(s) = FCGRk({s}).

• The composite DNA signature using two DNA
sequences s1, s2, of two different types, is
FCGRk({s1, s2}) = FCGRk(s1) + FCGRk(s2),

• An assembled signature of a sequence s, using r
equi-length contigs of length n, is
FCGRk({s1, s2, . . . , sr}) = ∑r

i=1 FCGRk(si), where
s = αisiβi, |si| = n, for 1 ≤ i ≤ r.

• The fully-assembled DNA signature of a sequence s,
using equi-length contigs of length n, is
FCGRk({s1, s2, . . . , sr}) = ∑r

i=1 FCGRk(si), where
r = �|s|/n�, s = s1s2 . . . srsr+1, and |si| = n for
1 ≤ i ≤ r, while |sr+1| < n.

To compute the fully-assembled DNA signature of a
sequence s, using equi-length contigs of length n, one adds
the FCGRk of all the adjacent consecutive contigs of length
n that cover s (except possibly a short tail of length less
than n), where the first contig starts at the beginning of
the sequence. In contrast, to compute an assembled signa-
ture of s using equi-length contigs of length n, one has the
freedom to set the number of such contigs as an additional
parameter r, and then add the FCGRk of r contigs sam-
pled randomly from the sequence s. Thus, for a given n, a
sequence s has only one fully-assembled DNA signature,
but many different assembled signatures, each depend-
ing on both the choice of parameter r, and the particular
sampling of the r sequences (which may overlap or be
identical).
For example, if s is the DNA sequence

s = AAAAACCCCCGGGGGTTT ,

of length 18, and if we consider contigs of length n = 5,
then the fully-assembled DNA signature of s is unique
and is obtained by adding the FCGRk of the following
r = �18/5� = 3 contigs

{AAAAA,CCCCC,GGGGG}
that cover s (except the discarded remainder TTT).
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a b c

d e f
Fig. 7 Conventional nDNA signatures of 150 kbp sequences of the pivot organisms from Kingdom a Animalia, b Fungi, c Plantae, d Protista,
e Bacteria, and f Archaea

For the same sequence s and contig length n = 5, many
diferent assembled DNA signatures can be computed. For
example, an assembled DNA signature of s using r =
3 equi-length contigs of length n = 5 could use con-
tigs {AAACC,CCCGG,CCCGG}, while another could use
contigs {AACCC,CCCCG,GGTTT}. In addition, other
assembled DNA signatures of s with equi-length con-
tigs of length n = 5 exist, depending on the parameter
r. For example, an assembled DNA signature of s using
r = 5 equi-length contigs of length n = 5 could use the
contigs

{AAAAA,AAACC,CGGGG,GGGGT ,GGTTT}.

Approximated Information Distance (AID)
For a finite setX, we denote by |X| the cardinality ofX, that
is the number of elements in X. Given a set of sequences
S = {s1, s2, . . . , sn} we denote by Mk(S) the set of all dis-
tinct k-mers that occur in all the sequences of S. In the
case of a set consisting of a single sequence s, we write
Mk(s) to denoteMk({s}).

The approximated information distance between two
sequences s and t (introduced in [25] as a slight modifica-
tion of a distance used in [53]) is defined as:

dkAID(s, t) = |Mk(s) \ Mk(t)| + |Mk(t) \ Mk(s)|
|Mk({s, t})| ,

where for two setsX and Y,X\Y denotes the set difference
between X and Y, that is, the set of elements that belong
to X but not to Y.
The distance dkAID(s, t) was used for most of the compu-

tations of pairwise distances between conventional DNA
signatures in this paper.
The notion of approximated information distance

between two sequences can now be extended to that of
generalized approximated information distance between
two sets of sequences S and T, as:

dkAID(S,T) = |Mk(S) \ Mk(T)| + |Mk(T) \ Mk(S)|
|Mk(S ∪ T)| .
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This generalization of the approximated information
distance preserves the original meaning of the concept
as the ratio between the number of noncommon k-
mers of the two sets S and T and the total number
of k-mers that occur in S or in T (or both). This dis-
tance was used to compute distances between conven-
tional, composite and assembled DNA signatures in this
paper.
The next Proposition leads to a formula for the com-

putation of the generalized approximated information
distance, as well as gives a theoretical upper bound for
the generalized approximated information distance in
the case of fully-assembled DNA signatures. The follow-
ing auxiliary lemma follows from standard set theory
arguments.

Lemma 2 Let s be a sequence and S,T be two finite sets
of sequences over the DNA alphabet {A,C,G,T}, and let
k ≥ 2 be an integer. The following statements hold true.

1. If S ⊆ T then |Mk(S)| ≤ |Mk(T)| and
|Mk(S ∪ T)| = |Mk(T)|,

2. If every sequence in S is a subsequence of a given
sequence s, then
|Mk(S) ∪ Mk(s)| = |Mk(s)|,

3. The number of distinct k-mers that occur in S but not
in T is |Mk(S) \ Mk(T)| = |Mk(S ∪ T)| − |Mk(T)|,

4. |Mk(S)| = #FCGRk(S),

where for a numerical matrix A we denote by #(A) or #A
the number of non-zero entries of A.

Proposition 3 Let s be a sequence and let S,T be two
sets of sequences. The following statements hold true.

1. dkAID(S,T) = 2 − |Mk(S)|+|Mk(T)|
|Mk(S∪T)|

2. If s = s1s2 . . . sr and each si is of length n, n > k,
then
dkAID({s1s2 . . . sr}, s) ≤ min{(r−1)(k−1),|Mk(s)|}|Mk(s)| .

3. There is a sequence s for which the above relation
holds with “=”.

Proof The first statement follows from Lemma 2.3, by
noting that dkAID(S,T) equals(

|Mk(S ∪ T)| − |Mk(T)|
)

+
(
|Mk(S ∪ T)| − |Mk(S)|

)
|Mk(S ∪ T)|

which is indeed equal to the required formula.
For the second statement, let S = {s1, s2, . . . , sr} and

T = {s}. By the definition of the generalized informa-
tion distance, dkAID({s1, . . . , sr}, s) equals a fraction, where
the numerator is the sum between the number of dis-
tinct k-mers that appear in {s1, . . . , sr} but not in s, and

the number of distinct k-mers that appear in s but not in
{s1, . . . , sr}. The first term of this sum is obviously zero,
since si are contigs that span the sequence s. Thus, the
numerator of this fraction is the second term of the sum,
namely the number of distinct k-mers that appear in s =
s1s2 . . . sr but not in {s1, . . . , sr}. We can count these k-
mers by noticing that the only k-mers that appear in s
but not in {s1, . . . , sr}, are the ones that span consecutive
contigs.
We now note that each joint of two contigs sisi+1 con-

tains atmost (k−1) distinct k-mers that span both contigs,
and that s contains (r−1) such joints sisi+1. Thus, the total
number of k-mers of s, that are in s but not in {s1, . . . , sr},
is at most (r − 1) · (k − 1).
Since the denominator of the fraction is, by Lemma 2.2,

|Mk(s) ∪ Mk({s1, s2, . . . , sr})| = |Mk(s)|, we have that

dkAID({s1, . . . , sr}, s) ≤ 0 + (r − 1)(k − 1)
|Mk(s)| .

Since the approximated information distance ranges
between 0 and 1, the required inequality follows.
For the third statement, an example of a sequence

where the upper bound of the distance between the con-
ventional DNA signature of the sequence and the fully-
assembled DNA signature of its contigs is reached is the
sequence

s = AAAACCCCGGGGTTTT ,

with k = 3 and n = r = 4. Then s contains exactly
10 different 3-mers, that is, |M3(s)| = 10, and (r − 1) ·
(k − 1)/|M3(s)| = 0.6. On the other hand, let s1 =
AAAA, s2 = CCCC, s3 = GGGG, s4 = TTTT . Then we
have |M3({s1, s2, s3, s4})| = 4, since only 4 distinct 3-mers,
namely AAA, CCC, GGG and TTT can be found in this
set, and thus

d3AID({s1, s2, s3, s4}, s) = 2 − 4 + 10
10

= 0.6,

which equals the given upper bound.

Remark that, by Proposition 3.1, the generalized approx-
imated distance between two sets of sequences S and T
can be now computed as

dkAID(S,T) = 2 − #FCGRk(S) + #FCGRk(T)

#(FCGRk(S) + FCGRk(T))
,

which is the formula that was used for all generalized
approximated information distance calculations in this
paper.
Remark also that the upper bound determined in

Proposition 3.2 for the generalized approximated infor-
mation distance, in the case of the comparison between
the conventional DNA signature of a sequence and the
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fully-assembled DNA signature of its r contigs of length n,
is the one illustrated in Column (A′) of Table 1.

Multi-dimensional scaling and separation assessment
To visualize the interrelationships among DNA signa-
tures originating from a pair of genomes, and thus to
visually assess whether separation was achieved, we used
Multi-Dimensional Scaling (MDS). MDS is an informa-
tion visualization technique introduced by Kruskal in [67].
MDS takes as input a distance matrix that contains the
pairwise distances among a set of items (here the items are
DNA signatures), and outputs a spatial representation of
the items in a common Euclidean space. Each item is rep-
resented as a point, and the spatial distance between any
two points corresponds to the distance between the items
in the distance matrix. Objects with a smaller pairwise
distance will result in points that are close to each other,
while objects with a larger pairwise distance will become
points that are far apart.
Concretely, classical MDS, which we use in this paper,

receives as input anm×m distance matrix (�(i, j))1≤i,j≤m
of the pairwise distances between any two items in the
set. The output of classical MDS consists of m points in
a q-dimensional space whose pairwise spatial (Euclidean)
distances are a linear function of the distances between
the corresponding items in the input distance matrix.
More precisely, MDS will returnm points p1, p2, . . . , pm ∈
R
q such that d(i, j) = ||pi − pj|| ≈ f (�(i, j)) for all i, j ∈

{1, . . . ,m} where d(i, j) is the spatial distance between
the points pi and pj, and f is a function linear in �(i, j).
Here, q can be at most (m − 1) and the points are recov-
ered from the eigenvalues and eigenvectors of the input
m × m distance matrix. If we choose q = 3, the result of
classical MDS is an approximation of the original (m−1)-
dimensional space as a three-dimensional map, such as
the Molecular Distance Maps in this paper. Throughout
the paper, for consistency, all Molecular Distance Maps
have been scaled so that the x-, y-, and z- coordinates
always span the interval [−1, 1]. The formula used for
scaling is xsca = 2 ·

(
x−xmin

xmax−xmin

)
− 1, where xmin and xmax

are the minimum and maximum of the x-coordinates of
all the points in the original map, and similarly for ysca
and zsca. In all Molecular Distance Maps displayed in this
paper, the origin of coordinates (0, 0, 0) is the center of the
depicted cube, and the parallel edges of the cube are par-
allel to one of the x-, y-, and z- axis respectively. The maps
have been rotated for optimal visualization and, for each
of the axes, the length units are displayed only on one of
the four edges of the cube that are parallel to it.
A feature of MDS is that the points pi are not unique.

Indeed, one can translate or rotate a map without affect-
ing the pairwise spatial distances d(i, j) = ||pi − pj||.
In addition, the obtained points in an MDS map may

change coordinates when more data items are added to,
or removed from, the dataset. This is because MDS aims
to preserve only the pairwise spatial distances between
points, and this can be achieved even when some of the
points change their coordinates. In particular, the (x, y, z)-
coordinates of a point representing the DNA signature of
a particular DNA fragment of H. Sapiens in Fig. 1 will
not be the same as the (x, y, z)-coordinates of the point
representing the same DNA fragment in Fig. 3.
For a given Molecular Distance Map, k-means cluster-

ing [57] was used to assess whether separation of the
DNA sequences by organismwas achieved. The reason for
this choice were that in all computed Molecular Distance
Maps the number of clusters was known a priori, k = 2
(not to be confused with k-mers, where k has a different
meaning), that the clusters had approximately the same
number of points and thus the prior probability of the
two clusters was the same, and that in most cases the
clusters were somewhat spherical in shape. Moreover, the
use of k-means yielded satisfactory results in the majority
of cases.
The k-means clustering algorithm proceeds as follows.

Suppose S1 is the set of points originating from the
genome of one of the organisms, and S2 is the set of points
originating from the second one. k-means assigns labels
A and B to all given points, in its attempt to cluster them
into two clusters, A and B. The k-means accuracy score
is computed by counting how many points were assigned
correctly to their cluster, that is,

Acc = max{|AS1 | + |BS2 |, |BS1 | + |AS2 |}
|S1| + |S2|

where AS1 is the set of points in the cluster A that belong
to the set S1, and BS2 is the set of points in the cluster
B that belong to the set S2 (BS1 and AS2 are defined sim-
ilarly). If label A would correspond to species S1, and B
to species S2, the quantity |AS1 | + |BS2 | would represent
the number of points that have been correctly classified
in this Molecular Distance Map, while |BS1 | + |AS2 | would
represent the number of points that have been incor-
rectly classified. As a number, Acc is a quantity between
0.5 and 1, with 50 % indicating the worst clustering, and
100 % indicating perfect clustering. For this paper, any
Molecular Distance Map with an accuracy greater than
85 % was interpreted as achieving separation of points by
species.
In some cases the accuracy was less than 85 % in spite

of the fact that separation of clusters could clearly be
observed visually. A closer look at those cases revealed
that they were generally plots similar to Fig. 4, that is,
consisting of two long and thin clusters. In addition, in
those plots the clusters were closer to each other than
in Fig. 4. In such cases, k-means erroneously labelled the
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top halves of the two clusters by A, and the two bot-
tom halves by B. For such situations, where the k-means
clustering algorithm had a relatively low accuracy score
but visual separation was nevertheless observed, we ver-
ified the existence of a plane that completely separated
the two clusters. That is, if cluster S1 had n1 points of
coordinates (xi1 , xi2 , xi3), where 1 ≤ i ≤ n1, and cluster
S2 had n2 points (yj1 , yj2 , yj3), where 1 ≤ j ≤ n2, then
our Mathematica-based code [68] was used to find one
(out of possibly infinitely many) solutions to the system of
equations with unknowns a, b, c, d:

{
a · xi1 + b · xi2 + c · xi3 + d > 0, i = 1, . . . , n1
a · yj1 + b · yj2 + c · yj3 + d < 0, j = 1, . . . , n2

that is, it found the equation ax + by + cz + d = 0 of a
plane with the property that the points of the cluster S1 are
situated on one of its sides, while those of cluster S2 are
situated on the other. For example, in Fig. 6, the equation
of a plane computed by this method, that completely sep-
arates the points originating from H. sapiens from those
originating from P. troglodytes, is x + 0.918 y + 0.37 z+
0.0002 = 0.
For Molecular Distance Maps with more complex clus-

ter shapes, where k-means accuracy is low and separating
planes do not exist, the use of other clustering methods
such as density-based spatial clustering of applications
with noise (DBSCAN) [69] would have to be explored to
see if separation is achieved.
The webtool MoDMap3D, [58], illustrates the 3D

Molecular Distance Maps that correspond to each of the
comparisons listed in Fig. 2, in the same way the Molec-
ular Distance Map in Fig. 1 illustrates the positive sep-
aration result listed in Fig. 2, subfigure Animalia, line 1.
The webtool MoDMap3D is, moreover, interactive, and
allows for an in-depth exploration of each particular 3D
Molecular Distance Map. After first selecting the pair of
genomes to be compared, the user can navigate in the
three-dimensional space of their DNA signatures: click-
ing on any point in the map will display information about
the DNA fragment represented by that point, such as its
NCBI accession number or assembly number, scientific
name of the organism it originates from, chromosome or
contig/scaffold number, length of the subsequence in bp,
and fragment number from the original sequence.

Software
The code for running the experiments [68] was written in
Wolfram Mathematica, and was used for the generation
of FCGRs, the computation of composite and assembled
DNA signatures, the calculation of distance matrices, the
creation of the 3D Molecular Distance Maps, and the
computation of the separating planes.

Remarks
One observation should be made about the genome
assemblies at contig/scaffold level in the dataset. The
general intent was for the 150 kbp DNA fragments
from a given genome not to be overlapping. This is
because sequence overlaps could result in artificially
smaller intragenomic distances due to the increase in
sequences’ similarities, and this could potentially lead to
false positive cluster separations. However, some over-
lap may have been unavoidable in the cases where only
contig/scaffold level data was available. The availabil-
ity of contig/scaffold data only may thus explain why
in Fig. 2 the accuracy scores do not always decrease
uniformly, as expected, when one compares the pivot
organism with organisms more and more closely related
to it.
Another observation should be made about the length

of sequences analyzed. When computing composite DNA
signatures, the signature of the mitochondrial genome
(or entire chloroplast or plasmid) was appended to that
of each 150 kbp nDNA fragment. This, in some sense,
magnifies the role of the organellar genome in the com-
posite signature. Depending on the application, one can
generalize Definition 1 to a weighted additive DNA signa-
ture which gives different weights to the different types of
DNA that compose it.
We now discuss some limitations of the proposed meth-

ods. First, note that assembled DNA signatures as defined
here use equi-length contigs. Preliminary computational
experiments, illustrated in Table 1, columns (B′) and
(C′), show the results of comparisons between a con-
ventional nDNA signature and variable-length assembled
DNA signatures of the same fragment. In those exper-
iments, contig lengths are drawn from a normal distri-
bution N(μ, σ) with mean μ = n (the length of the
contig in the corresponding equi-length contig experi-
ment) and variance σ = 40. The table shows that the
performance of assembledDNA signatures using variable-
length contigs is comparable with the performance of
those using equi-length contigs. This indicates that both
equi-length and variable-length contigs assembled DNA
signatures could be reliable approximations of conven-
tional genomic signatures, depending on the applica-
tion. Additional exploration is needed to confirm this
hypothesis.
Second, every computational experiment in this study

is a comparison between DNA signatures of genomic
sequences belonging to two different organisms. Further
analysis is needed to determine if the positive prelimi-
nary results on the discriminating power of composite
and composite-assembled DNA signatures extend suc-
cessfully to multi-genome comparisons. A necessary step
for such an experiment would be a thorough investiga-
tion of intragenomic variations of FCGRs and finding a
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Fig. 8 a Conventional nDNA signatures, and b composite (nDNA + cpDNA) signatures of Capsicum annuum L, cultivar Zunla-1 (domesticated)
shown in light green, and Capsicum annuum var. glabriusculum, cultivar Chiltepin (wild) shown in grey

method to determine, for each genome, a single “rep-
resentative” FCGR matrix to successfully represent that
genome.
Third, we mention a case where separation by organism

could not be achieved, even when using composite DNA
signatures (nDNA and cpDNA). This is the pairwise com-
parison between a cultivated pepper Capsicum annuum
L, cultivar Zunla-1 (domesticated) and its wild progenitor
Capsicum annuum var. glabriusculum, cultivar Chiltepin
(wild), see Fig. 8.
Several directions of future research stem from the

observation that the function FCGRk is a quasi-
homomorphism from the set of all DNA sequences with
the operation of catenation, to the set of 2k × 2k matri-
ces with the operation of addition, in the sense that for
sequences s, t, we have

FCGRk(st) ≈ FCGRk(s) + FCGRk(t).

The definition of FCGRk can be easily modified to make
it an exact homomorphism by, e.g, defining amarked cate-
nation of sequences s and t as s · t = s$t, with $ a new
symbol, and constructing FCGRk so as to not count any
k-mer that includes the symbol $. Next steps in the explo-
ration of the mathematical properties of additive DNA
signatures include studying the implications of the homo-
morphic, structure-preserving, nature of FCGRk , as well
as extensions of the concept of additive DNA signature,
to, e.g., weighted additive DNA signatures which would
give different weights to the different types of DNA that
compose it.

Additional file

Additional file 1: The 42 genomes analyzed in the Results section, and
the two genomes exemplified in the Remarks subsection: Scientific name,
number of chromosomes, NCBI accession number. (∗ P.patens genome
from JGI Phytozome). (PDF 127 kb)
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