
EURASIP Journal on Applied Signal Processing 2004:9, 1257–1265
c© 2004 Hindawi Publishing Corporation

Optimal STBC Precoding with Channel Covariance
Feedback for Minimum Error Probability

Yi Zhao
Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road,
Toronto, ON, Canada M5S 3G4
Email: zhaoyi@comm.utoronto.ca

Raviraj Adve
Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road,
Toronto, ON, Canada M5S 3G4
Email: rsadve@comm.utoronto.ca

Teng Joon Lim
Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road,
Toronto, ON, Canada M5S 3G4
Email: limtj@comm.utoronto.ca

Received 31 May 2003; Revised 15 January 2004

This paper develops the optimal linear transformation (or precoding) of orthogonal space-time block codes (STBC) for minimiz-
ing probability of decoding error, when the channel covariance matrix is available at the transmitter. We build on recent work
that stated the performance criterion without solving for the transformation. In this paper, we provide a water-filling solution
for multi-input single-output (MISO) systems, and present a numerical solution for multi-input multi-output (MIMO) systems.
Our results confirm that eigen-beamforming is optimal at low SNR or highly correlated channels, and full diversity is optimal at
high SNR or weakly correlated channels, in terms of error probability. This conclusion is similar to one reached recently from the
capacity-achieving viewpoint.
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1. INTRODUCTION

In wireless communications, the adverse effects of channel
fading can be mitigated by transmission over a diversity of
independent channels. A large, and growing, body of re-
sults have firmly established the potential of space-time cod-
ing [1, 2, 3] in multi-input multi-output (MIMO) systems,
which use antenna arrays at the transmitter and the receiver
to provide spatial diversity at both ends of a communications
link.

In [3], Tarokh et al. introduced the well-known rank
and determinant criteria for the design of space-time codes
without channel knowledge at the transmitter. Furthermore,
it was argued [2, Section II-C] that these criteria apply to
both spatially independent and dependent fading channels.
In other words, without channel state information (CSI) at
the transmitter, space-time codes should be designed us-
ing the rank and determinant criteria, even when the spa-
tial channels are correlated. This result was confirmed by

El Gamal [4, Proposition 7], who proved that with spatial
correlation and quasistatic flat fading, full-diversity space-
time codes such as orthogonal space-time block codes (OS-
TBC) extract the maximum diversity gain achievable, with-
out CSI at the transmitter.

While spatial correlation does not affect diversity gain,
Shiu and Foschini showed that correlation between spatial
channels leads to a loss in capacity [5]. It is also known that
spatial correlation results in a smaller coding advantage [2,
Section II-C]. This paper explores practical approaches to
recover this performance loss. However, given that nothing
can improve the performance of current state-of-the-art full-
diversity space-time codes without CSI at the transmitter, it
is natural to consider performance improvements when this
assumption is relaxed.

In this paper, we study the design of a linear precoder
for OSTBC in spatially correlated, quasistatic, flat fading
channels with knowledge of the channel covariance at the
transmitter. The objective is to minimize the probability of
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Figure 1: Precoded STBC transmitter and receiver block diagrams.

decoding error. The channel covariance information may be
fed back from the receiver. Such a system may be considered
more practical than the case when true CSI is available at the
transmitter, because in that case the feedback channel may be
too heavy an overhead on the communication system. Prior
work done on this topic developed the optimality criterion
[6] to be satisfied by the precoding matrix, but no closed-
form or numerical solution was provided. In this paper, a
numerical solution is provided for MIMO systems with an
arbitrary number of transmit and receive antennae. Further-
more, we derive an exact water-filling solution for MISO sys-
tems. Assuming uncorrelated fading at the receiver as in [7],
we show that this solution is exact in MIMO systems as well.

This problem setting ties in with recent work on de-
termining the capacity-achieving signal correlation matrix
when the channel covariance matrix is available at the trans-
mitter [7, 8, 9]. In contrast, our research is focused on min-
imizing the error probability, given a linear precoding struc-
ture based on orthogonal STBC. Because of the orthogonal
structure of the codematrices used, this transmitter has com-
plexity only linear in the number of transmit antennas de-
spite the use of a maximum-likelihood (ML) receiver [10].

The rest of the paper is organized as follows. Section 2
presents the background material needed in the rest of the
paper, Section 3 discusses the optimal precoding under var-
ious scenarios, while Section 4 introduces three simplified
strategies that are shown to result in minimal performance
loss. Simulation examples are presented in Section 5. Finally,
Section 6 presents conclusions.

2. BACKGROUND

Consider a MIMO system with M transmit and N receive
antennae. OSTBC is used, and a linear transformation unit
is applied prior to transmission to take account of the chan-
nel covariance information. The transformation matrixW ∈
CM×M is to be determined to minimize the maximum pair-

wise error probability (PEP) between codewords in corre-
lated fading. An ML receiver is used. Illustrations of the
transmitter and receiver for such a system are shown in
Figure 1.

The MIMO channel between the transmitter and the re-
ceiver, assumed flat and Rayleigh, is described by the N ×M
matrix

H =


h11 h12 · · · h1M
h21 h22 · · · h2M
...

...
. . .

...
hN1 hN2 · · · hNM

 , (1)

where the element hnm is the fading coefficient between the
mth transmit antenna and the nth receive antenna. The chan-
nel correlation matrix is

R = E
[
hh†

]
,

h = vec(H),
(2)

where (·)† denotes Hermitian transpose, and vec(·) denotes
the vectorization operator which stacks the columns of H.
Note that this definition is identical to the one in [3].

The STBC encoder organizes data into anM×LmatrixC
and successive columns of this matrix are transmitted over L
time indices. The correspondingN×L received signal matrix
X can be written as

X = HWC + E, (3)

where E is an N × Lmatrix with i.i.d. complex Gaussian ele-
ments representing additive thermal noise. The receiver em-
ploys an ML decoder, thus the decoded codeword Ĉ can be
expressed as

Ĉ = argmin
C
‖X−HWC‖2F , (4)
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where ‖ · ‖F is the Frobenius norm [11]. Note that, because
HW is equivalent to a modified channel matrix H̃, ML de-
coding of C requires only the simple linear operation de-
scribed in [10].

It is known that the exact probability of error is hard to
compute, so in much of the literature (see e.g. [6]), we work
with the maximum PEP, which is the dominating term of the
probability of error, and try to minimize a bound on it. This
approach was taken in [6] and the result is that the tight up-
per bound on the Gaussian tail for themaximumPEP is min-
imized by a transformation matrixW that satisfies

Zopt =WoptW
†
opt

= arg max
Z�0,

tr(Z)=M
det
[(
IN ⊗ Z

)
η + R−1

]
, (5)

where Z has to be positive semidefinite because Z = WW†,
and the trace constraint is necessary to avoid power amplifi-
cation.⊗ denotes the Kronecker product, while η = µmin/4σ2

with

µmin = argmin
µkl

{
µklI =

(
Ck − Cl

)(
Ck − Cl

)†}
, (6)

among all possible codewords. In this paper, we follow this
approach as well and solve the optimization problem defined
in (5).

3. OPTIMAL TRANSFORMATION

3.1. General solution

To solve the optimization problem (5), we begin by introduc-
ing a reasonable assumption of the channel correlation: the
correlation between two subchannels is equal to the prod-
uct of the correlation at the transmitter and that at the re-
ceiver [12]. In matrix form, letting RT = (1/M)E{HHH}
denote the correlation between different transmit antennae,
and RR = (1/N)E{HHH} the correlation between receive an-
tennae, the channel correlation is

R = RR ⊗ RT . (7)

It has been shown that the validity of this assumption is sup-
ported by measurement results for mobile links [12]. With
this assumption, the optimal Zmatrix is

Zopt = arg max
Z=Z∗�0,
tr(Z)=M

det
[(
IN ⊗ Z

)
η + R−1R ⊗ R−1T

]
, (8)

since R−1 = R−1R ⊗ R−1T [13].
The problem is to choose a positive semidefinite matrix

Z to maximize det[(IN⊗Z)η+R−1R ⊗R−1T ] subject to the trace
constraint tr(Z) =M. Notice that the correlationmatricesRR

and RT are both positive semidefinite and we can decompose
them into

RT = UTΛTU
†
T , where UTU

†
T = IM ,

RR = URΛRU
†
R, where URU

†
R = IN ,

(9)

then

det
[
(I⊗ Z)η + R−1R ⊗ R−1T

]
= det

[
(I⊗ Z)η +

(
URΛ

−1
R U†R

)⊗ (UTΛ
−1
T U†T

)]
= det

[
(I⊗ Z)η +

(
UR ⊗UT

)(
Λ−1R ⊗Λ−1T

)(
UR ⊗UT

)†]
= det

[(
UR ⊗UT

)[(
UR ⊗UT

)†
(I⊗ Zη)

(
UR ⊗UT

)
+Λ−1R ⊗Λ−1T

](
UR ⊗UT

)†]
= det

[
UR ⊗UT

]
det
[(
U†RIUR

)⊗ (U†TZηUT
)

+Λ−1R ⊗Λ−1T
]
det
[
U−1R ⊗U−1T

]
= det

[
IN ⊗ B +Λ−1R ⊗Λ−1T

]
,

(10)

where B = U†TZηUT . The intermediate steps above come
from the fact that [13]( N∏

i=1
Ai

)
⊗
( N∏

i=1
Bi

)
=

N∏
i=1

Ai ⊗ Bi, (11)

and det[UR ⊗UT] = 1. The trace constraint becomes

tr(B) = tr
(
U†TZηUT

)
= tr

(
UTU

†
TZη

)
= tr(Zη) = ηM,

(12)

since tr(AB) = tr(BA).
The problem therefore reduces to finding a positive

semidefinite matrix

Bopt = arg max
B�0,

tr(B)=ηM
det
[(
IN ⊗ B

)
+Λ−1R ⊗Λ−1T

]
. (13)

Since Λ−1T and Λ−1R are both diagonal, B must be also di-
agonal [14]. Let the ith diagonal element of ΛT and B, and
the jth diagonal elements of ΛR be λti, bi, and λr j , respec-
tively. The problem (8) becomes finding a set of nonnegative
bi’s to maximize

M∏
i=1

N∏
j=1

(
bi + λ−1r j λ

−1
ti

)
(14)

under the trace constraint tr(B) = ∑
i bi = ηM. This prob-

lem is an extension of the water-filling problem to two pa-
rameters (i and j), so we can view it as a generalized wa-
terfilling problem. The closed form solution to this prob-
lem is unknown. However, we can find the solution by nu-
merical methods such as sequential quadratic programming
(SQP) [15]. Results of the numerical scheme are provided in
Section 5.2.

Since Zη = UTBU
†
T , the diagonal matrix B is actually the

eigenvalue matrix of Zη. Thus Z andW can be derived from
B as follows:

Z = 1
η
UTBU

†
T ,

W = 1√
η
UT

√
BΦ,

(15)



1260 EURASIP Journal on Applied Signal Processing

where Φ can be any M ×M unitary matrix, so Wopt is not
unique. For simplicity we choose the identity matrix in this
paper, that is,Φ = IM .

3.2. Water-filling solution forMISO systems

We now consider the special case of a multi-input single-
output (MISO) system, that is, a system with only a single
receive antenna (N=1). This is a reasonable model for the
downlink of mobile communication systems since it may be
impractical to employ more than one antenna at the mobile
terminal. Under this assumption, the Kronecker product in
(13) disappears and we need to solve

Bopt = arg max
B�0

tr(B)=ηM
det
[
B +Λ−1T

]
, (16)

whereB is still a positive semidefinite diagonal matrix. This is
identical to the water-filling problem in information theory
[14], which has the solution

bi = max
(
ν− λ−1ti , 0

)
, for i = 1, . . . ,M, (17)

where ν is a constant chosen to satisfy the trace constraint
and B = diag(b1, . . . , bM). The optimal transformation ma-
trix is

Wopt = 1√
η
UT

√
Bopt. (18)

WithWopt given by (18), the transmitted signal is

Wx = (ut1, . . . ,utM)


√
b1
η

. . . √
bM
η



x1
...
xM



=
M∑
i=1

uti

√
bi
η
xi,

(19)

and thus occupies the subspace spanned by the subset of
eigenvectors of RT corresponding to nonzero bi in (17). No-
tice that

rank
(
WCk −WCl

)
= rank

[
UTB

(
Ck − Cl

)] = rank(B),
(20)

since both UT and (Ck − Cl) are full rank. Therefore, the di-
mension of this subspace is equal to the transmit diversity
order, as defined in [2].

In the case of very high correlation, only one bi—the
one corresponding to the principal eigenvector—is nonzero,
and we have eigen-beamforming. On the other hand, all the
eigenvectors are used when the correlation is low, and we
have full diversity. In the uncorrelated channel where R = I,
it can easily be shown that W = I, meaning that OSTBC is
already optimal, as expected. In between beamforming and
full diversity, the water-filling scheme determines the num-
ber of active eigenchannels, and distributes the power over
them with more power devoted to the stronger ones. In this

transition region, the optimal scheme may be considered to
have a partial diversity order. In all cases, the diversity order
is equal to the number of nonzero bi’s.

3.3. Relation to capacity analyses
There has been much interest in the information theory
community in MIMO channels with covariance feedback
[7, 8, 9]. In those works the goal is to find the input covari-
ance matrix Sx,opt necessary to achieve ergodic channel ca-
pacity, while in contrast our goal is to find the optimal lin-
ear transformation to achieve minimum error probability.
Interestingly, the conclusions reached are strikingly similar
for both approaches, and warrant some comment.

(1) Transmitting over the eigenvectors of the transmit cor-
relation matrix is optimal assuming only the chan-
nel correlation is available at the transmitter. The two
schemes both result in allocating transmission power
over the eigenvectors of the transmit correlation ma-
trix. The strategy is similar: the stronger eigen-channel
gets more power. However, the exact amount allocated
to each eigen-channel may differ for the two schemes
since different optimization criteria are applied.

(2) Beamforming is optimal at high correlation/low SNR.
When the channels are highly correlated, both mini-
mizing error probability and maximizing capacity re-
quire transmission over the strongest eigen-channel
only. This statement is also true for the low SNR re-
gion where the errors are caused mainly by Gaussian
noise. Thus focusing all the energy into one particular
direction results in maximizing the received SNR. Di-
versity is not helpful as it is noise, and not fading, that
limits performance.

(3) Optimal diversity order increases with SNR. At low
SNR, only the strongest eigen-channel is used. As the
SNR increases, more eigenchannels come into use, so
the diversity order increases until full-diversity order
is achieved. However, the SNR points where the diver-
sity order changes may not be the same for the two
schemes.

(4) Full diversity is optimal in uncorrelated channels. For
the extreme case of an uncorrelated channel, no trans-
formation of STBC is required to minimize error rate,
while uncorrelated transmit signals maximize bit rate.
Similarly, in the high-SNR region, the optimal scheme
should use all the eigen-channels because in this case
diversity can be taken advantage of.

Besides these similarities, the transmitter structures of
the two schemes are very similar. The channel signals (STBC
codewords in our scheme or randomly coded Gaussian sig-
nals in capacity-achieving scheme) are first modulated on the
eigenvectors of the transmit correlation matrix. Then these
vectors are transmitted with different powers, determined by
the eigenvalues of the channel correlation matrix. These two
steps can be implemented with a linear transformation unit.
Therefore, if we replace the STBC encoder with a random
encoder and Gaussian signal modulator, the linear transfor-
mation structure becomes a capacity-achieving one.
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4. SIMPLIFIED SCHEMES

From Section 3 we know that the optimal transformation
scheme is not simple to determine. For the general MIMO
systems, the computation of the transformation matrix in-
volves complex numerical algorithms. Even for the simpler
case of MISO systems, the water-filling solution still requires
an iterative process. In this section, we introduce several sim-
plified schemes to reduce the complexity. Simulation results
in Section 5 will show that these schemes can achieve per-
formance very similar to the optimal one with much lower
complexity.

4.1. Ignoring the receive correlation

Due to differences in their physical surroundings, the trans-
mitter and receiver on the downlink of a mobile network
have different correlation properties. The extended “one-
ring” model introduced in [5] is a well-known scattering
model for channel correlation. If we use this model to sim-
ulate the downlink of a mobile connection, the correlation
of the fading coefficients between transmit antennae p and q
and receive antennam is

[
RT
]
p,q = E

[
hmph

∗
mq

] ≈ J0

(
∆
2π
λ
dT(p, q)

)
, (21)

where ∆ is the angle spread, which is defined as the ratio
of the radius of the scatterer ring around the receiver and
the line-of-sight distance between the transmitter and the re-
ceiver, λ is the wavelength, dT(p, q) is the distance between
the two transmit antennae, and J0(·) is the zeroth-order
Bessel function of the first kind. The correlation between two
receive antennae l andm is[

RR
]
l,m = E

[
hlph

∗
mp

] = J0

(
2π
λ
dR(l,m)

)
, (22)

where dR(l,m) is the distance between the two receive anten-
nae.

In practice, the angle spread ∆ is usually small. As a re-
sult, from (21) and (22) we see that the receive correlation is
usually small compared to transmit correlation. For instance,
if the distance between two transmit antennae equals λ/2 and
∆ = 0.1, the correlation between these two transmit antennae
is J0(0.1π) = 0.97. But the correlation between two receive
antennae with the same separation is just J0(π) = −0.30.

In dealing with receive diversity, a correlation below 0.5
is considered negligible [16]. Therefore we can simplify our
algorithm by ignoring the receive correlation. Under this ap-
proximation, the rows of H become independent and the
channel correlation matrix can be written as R = IN ⊗ RT .
In this case, (13) becomes

Bopt = arg max
B�0

tr(B)=ηM
det
[
IN ⊗ B + IN ⊗Λ−1T

]
= arg max

B�0
tr(B)=ηM

det
[
B +Λ−1T

]N
.

(23)

Therefore, the solution is exactly the same as in (17), and
generalized water filling is avoided.

4.2. Switching between beamforming and STBC
The water-filling scheme in Section 3.2 changes from beam-
forming to full diversity as a function of SNR. In the transi-
tion region, the diversity order is determined by the number
of the active eigenchannels, and the optimal power allocation
is determined by water filling. This iterative process must be
recalculated for each SNR. We can introduce a simplifying
scheme to avoid water filling altogether by switching between
beamforming (W is rank one) and O-STBC (W = I) at a pre-
computed threshold SNR level. This threshold is found by
equating the error probability performance with beamform-
ing and O-STBC. In particular, for a MISO system, we want
to find the η that solves the equation

det
[
Zbeamη + R−1T

] = det
[
ηIM + R−1T

]
, (24)

where Zbeam is the Zmatrix for beamforming, that is,

Zbeam = 1
η
UT diag[Mη, 0, . . . , 0]U†T =Mut1u

†
t1, (25)

where ut1 is the eigenvector corresponding to the largest
eigenvalue of UT . With the solution of η, the SNR threshold
can be set as

SNRth = 4η
µmin

. (26)

It is self-evident that the simplified strategy incurs a
greater loss in performance relative to the full-complexity
scheme when the transition region between beamforming
and O-STBC grows. There are however cases when the tran-
sition region is so small that no difference in performance is
discernible.

One example is when the correlation between antennae is
low. In this case all the eigenvalues are close to 1, so the tran-
sition region is small. Another example is when the channel
correlations are equal, in which case the eigenvalues of RT

take on only two values so that the transition region has zero
width. To show this, consider

RT =


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

 . (27)

This matrix has only two eigenvalues: (1+ ρ) and (1− ρ) (re-
peated (M − 1) times). As a result, the water-filling scheme
has no transition region. In the low SNR region, only the
eigen-channel corresponding to eigenvalue (1 + ρ) is used,
so we have beamforming. All the other M − 1 channels will
come into use together when the SNR exceeds the threshold
level, so the performance is quite close to STBC. Therefore,
the switching scheme can achieve very good performance un-
der this correlation model.

Although the switching scheme is designed forMISO sys-
tems to simplify the water-filling process, it can be easily ex-
tended to MIMO systems by changing (24) into

det
[
ηIN ⊗ Zbeam + R−1R ⊗ R−1T

]
= det

[
ηIN ⊗ IM + R−1R ⊗ R−1T

]
.

(28)
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Figure 2: Water filling withM = 2, N = 1, and BPSK modulation.

4.3. Equal power allocation (EPA) scheme

The switching scheme cannot guarantee good performance
for arbitrary channel correlation since it only provides a di-
versity order of 1 or M whereas the optimal scheme may re-
quire partial diversity order. As an alternative to the switch-
ing scheme, we propose the equal power allocation (EPA)
scheme. It automatically chooses the optimal diversity order,
and assigns equal power to each active eigen-channel and so
numerical water filling is avoided.

Similar to the switching scheme, the first step of EPA is
to set SNR thresholds at the points where diversity order
changes. These M − 1 thresholds can be found by solving
equations similar to (24). The ith threshold is obtained by
solving

det
[
ηIN ⊗ Zi + R−1R ⊗ R−1T

]
= det

[
ηIN ⊗ Zi+1 + R−1R ⊗ R−1T

]
,

(29)

where Zi denotes the Zmatrix corresponding to EPA over the
i strongest eigenchannels, or

Zi = Mη

i
UT

[
Ii 0i×(M−i)

0(M−i)×i 0(M−i)×(M−i)

]
U†T . (30)

The SNR axis is then divided to M regions, each cor-
responding to a diversity order. The transmitter can check
those thresholds to determine which region the true SNR be-
longs to. The corresponding diversity order for transmission
is used. To reduce the complexity, instead of going through
the water-filling process to compute the power distribution,
the transmitter now allocates power equally among all the ac-
tive eigenchannels. We can expect this scheme to have better
performance than the switching scheme in Section 4.2, but
the complexity is also higher.

STBC
Beamforming
Water filling

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10−4

10−3

10−2

10−1

B
E
R

Figure 3: Water filling withM = 4, N = 1, and BPSK modulation.

5. SIMULATION RESULTS

5.1. MISO channels

This section examines the performance of the water-filling
scheme derived in Section 3.2. Figure 2 shows the perfor-
mance of the proposed algorithm, O-STBC, and eigen-
beamforming when there are two transmit and one receive
antennae. The modulation scheme is BPSK and the vertical
axis plots the bit error probability (BEP). SNR is defined as
the ratio of the transmitted bit energy to power spectral den-
sity (i.e. Eb/N0 at the transmitter). Figure 3 is for the case of
four transmit antennae.

For the two simulation examples below, the transmit cor-
relation matrices are chosen to be

RT2 =
[

1 0.9755
0.9755 1

]
, (31)

RT4 =


1 0.9755 0.9037 0.79

0.9755 1 0.9755 0.9037
0.9037 0.9755 1 0.9755
0.79 0.9037 0.9755 1

 , (32)

respectively. They are obtained by using (21) from the ex-
tended “one-ring”model. The distance between two adjacent
antennae is λ/2, and the angle spread is ∆ = 0.1 radian.

From the plots, we can see that for very low SNR, the
optimal transformation is equivalent to beamforming, as ex-
pected. For the other SNR regions, the performance of the
optimal scheme is better than both beamforming and STBC.
Furthermore, the optimal scheme approaches STBC as SNR
increases, again as expected.

Figure 4 shows the performance of the optimal scheme
with two transmitters when the channel correlation varies
from 0 to 1. The SNR value is fixed at 5 dB. From this plot we



STBC Precoding Based on Channel Covariance Feedback 1263

STBC
Beamforming
Water filling

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ
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Figure 4: BEP versus channel correlation ρ. M = 2, N = 1, SNR =
5 dB. Performance of three schemes.

can see that when the correlation coefficient is low (ρ < 0.3),
the performance of the optimal scheme is a little better than
STBC; while with high correlation (ρ > 0.8), the optimal
scheme is the same as beamforming. In between, a relatively
large performance improvement can be achieved by using the
optimal scheme. This plot is remarkably similar to the corre-
sponding plot in [17] which deals with a capacity analysis.

5.2. Numerical solutions forMIMO systems

As discussed in Section 3.1, the optimal transformation for
MIMO system is found through a generalized water-filling
problem. No closed-form solution has been found, but nu-
merical methods, such as SQP, can be used to solve (14)
with a trace constraint. Here we use the MATLAB function
fmincon to solve the problem.

Figures 5 and 6 show the performance curves obtained
with the optimal transformation. In both cases the receive
correlation is set to be

RR2 =
[

1 −0.3042
−0.3042 1

]
, (33)

which is based on (22), and RT is the same as in MISO cases.
It is clear that the same conclusions about the optimality of
water filling versus beamforming and O-STBCmentioned in
the last section apply in this scenario as well.

5.3. Simplified schemes

Figure 7 shows the performance when we ignore receiver cor-
relation. A system with four transmit and two receive anten-
nae is considered. The transmit correlation is given in (32),
and at the receiver side, the correlation between the two an-
tennae is set to be a very high value of 0.7. From the figure we
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10−6

10−5

10−4

10−3

10−2

B
E
R

Figure 5: Optimal scheme for MIMO system.M = 2, N = 2.
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Figure 6: Optimal scheme for MIMO system.M = 4, N = 2.

can find that there is nearly no performance loss when ignor-
ing the receive correlation, even when the correlation is quite
large.

Figure 8 shows the performance of the simplified switch-
ing scheme compared to the water-filling scheme for MISO
systems with two or four transmit antennae. The transmit
correlation uses the “all-equal” model and the correlation is
set as ρ = 0.8. ForM = 4, the SNR threshold was found to be
4 dB; for M = 2, it was 6.5 dB. As analyzed in Section 4.2,
the switching scheme achieves the same performance as
water-filling in the low SNR region; in high SNR region, it
should come very close to water filling. A relatively larger loss
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Figure 7: BEP curves when receive correlations are ignored.M = 4,
N = 2.

occurs in the intermediate SNR region, in the vicinity of the
threshold SNR. But considering the much simpler transmit-
ter structure and low computation complexity, the switching
scheme can be seen as a good alternative to the water filling
scheme, if the SNR is known at the transmitter.

Figure 9 shows the performance of the EPA scheme for a
MISO system with 4 transmit antennae. The transmit corre-
lation is again set as in (32). We can see that the switching
scheme has a large performance loss in this unequal correla-
tion case, while the EPA scheme performs very close to the
optimal water-filling scheme.

6. CONCLUSIONS

Orthogonal space-time block codes (OSTBC) are widely
used in MIMO systems to achieve diversity gain, but the per-
formance of the conventional OSTBC over correlated fading
channels deteriorates rapidly with increasing channel corre-
lation. With feedback of the channel correlation matrix, the
transmitter can employ a linear transformation unit follow-
ing the STBC encoder to improve performance. One such
scheme chooses the transformation matrix which minimizes
the maximum pairwise error probability.

Based on the performance criterion derived in previous
work, we provide a water-filling solution for the optimal
transformation matrix for a MISO system. The same scheme
is proven to be optimal for a receive-uncorrelatedMIMO sys-
tem. More generally, for arbitrary MIMO systems, we derive
a “generalized water-filling” solution which can be found us-
ing numerical algorithms such as sequential quadratic pro-
gramming.

Interestingly, the water-filling scheme to minimize error
probability is quite similar to capacity-achieving schemes.
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Figure 8: Switching scheme versus water filling.
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Figure 9: Performance of the EPA scheme.M = 4, N = 1.

The best transmission strategy is allocating power over the
eigenchannels of the transmit correlation matrices according
to their eigenvalues. For both approaches, beamforming is
shown to be optimal for low SNR or high correlation, while
full diversity is best for high SNR and low correlation.

Based on the “one-ring” model, the correlations between
receive antennae are much smaller than those between trans-
mit antennae in the downlink of the cellular system. A sim-
plified scheme for MIMO system is introduced by ignoring
the receive correlation and using water-filling scheme with
the transmit correlation only. Finally, two schemes are intro-
duced to reduce the complexity of implementing the optimal
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technique. The switching scheme uses STBC or beamform-
ing directly based on the SNR level and channel correlation.
It reduces the transmitter complexity dramatically. The EPA
scheme uses the same diversity order as the optimal one, but
all the active eigenchannels have the same power. We show
that these schemes suffer from minimal performance loss in
realistic scenarios.
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