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Abstract: The complete next-to-next-to-next-to-leading order short-distance and bound-

state QCD corrections to Υ(1S) leptonic decay rate Γ(Υ(1S)→ `+`−) has been finished by

Beneke et al. [8]. Based on those improvements, we present a renormalization group (RG)

improved pQCD prediction for Γ(Υ(1S) → `+`−) by applying the principle of maximum

conformality (PMC). The PMC is based on RG-invariance and is designed to solve the

pQCD renormalization scheme and scale ambiguities. After applying the PMC, all known-

type of β-terms at all orders, which are controlled by the RG-equation, are resummed to

determine optimal renormalization scale for its strong running coupling at each order. We

then achieve a more convergent pQCD series, a scheme- independent and more accurate

pQCD prediction for Υ(1S) leptonic decay, i.e. ΓΥ(1S)→e+e− |PMC = 1.270+0.137
−0.187 keV, where

the uncertainty is the squared average of the mentioned pQCD errors. This RG-improved

pQCD prediction agrees with the experimental measurement within errors.
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1 Introduction

Heavy quarkonium provides an ideal platform for studying the non-relativistic theories,

such as the non-relativistic Quantum Chromodynamics (NRQCD) [1] and the potential

NRQCD (PNRQCD) [2, 3]. In general, because v2
b < v2

c and αs(mb) < αs(mc), the pertur-

bative results for the bottomonium will be more convergent over the αs- and v2- expansion

than the charmonium cases, where v(b,c) stands for the relative velocity of constituent b or

c quark in the bottomonium or charmonium rest frame. If enough bottomonium events

can be generated at an experimental platform, we can achieve a relatively more definite

test of those non-relativistic theories than the charmonium cases.

Being an important high-energy process, the leptonic decay of the ground-state bot-

tomonium Υ(1S) has been studied up to next-to-leading order (NLO) [4, 5], next-to-

next-to-leading order (N2LO) [6, 7], and next-to-next-to-next-to-leading order (N3LO) [8].

However, even by including the recently finished complete N3LO pQCD corrections for

both the short-distance and the bound-state parts, the pQCD prediction for the decay

rate ΓΥ(1S)→e+e− is still about 30% lower than the PDG value, i.e. ΓΥ(1S)→e+e− |Exp. =

1.340(18) keV [9]. Even worse, its pQCD convergence is questionable and one does not

know what’s the optimal behavior of the running coupling. It is noted that the questionable

pQCD series is caused by using conventional scale setting, in which the renormalization

scale is simply fixed to be ∼ 3.5 GeV that leads to maximum decay rate and the renormal-

ization scale uncertainty is predicted by varying it within the range µr ∈ [3, 10] GeV [8]. To

solve such renormalization scale ambiguity and to improve the pQCD prediction, we shall

use the principle of maximum conformality (PMC) [10–15] to deal with Υ(1S) leptonic

decay rate up to N3LO level.

The PMC provides a systematic procedure to set the optimal renormalization scale for

high-energy processes at any order. The behavior of the running coupling is governed by
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renormalization group (RG)-equation, i.e. the β-function [16–19],

β(as) = das(µr)/d lnµ2
r = −a2

s(µr)

∞∑
i=0

βia
i
s(µr), (1.1)

where as = αs/4π and µr is the renormalization scale. This provides the underlying prin-

ciple of PMC, i.e. the optimal behavior of running coupling can be achieved by resumming

all the {βi}-terms of the process that correctly determine the αs-running behavior into the

coupling constant. Following the PMC Rδ-scheme, the β-pattern at each perturbative or-

der is a superposition of the {βi}-terms coming from all the lower-order αs-factors [14]. The

PMC then resums the {βi}-series according to the skeleton-like expansion that correctly

reproduces the QED limit of the observable [20]. The resultant PMC scales are functions of

the running coupling and are in general different for different orders [21], and the resultant

pQCD series is thus identical to a scheme-independent β = 0 conformal series [13, 14].

After applying the PMC, the pQCD convergence can be generally improved.1 One reason

for such improvement lies in that: being consistent with the previous treatment in which

the β0-series are eliminated systematically via the large β0-approximation [23–27], the di-

vergent terms (n!βni α
n
s ) disappear in the PMC pQCD series due to the elimination of the

RG-{βi}-terms. It has been found that the PMC follows the RG-invariance and satisfies

all the RG-properties [28]. In the paper, we shall show that after applying the PMC, a

more accurate Υ(1S) leptonic decay rate can indeed be achieved.

The remaining parts of the paper are organized as follows. In sectionII, we will present

our calculation technology for the Υ(1S) leptonic decay rate up to N3LO level. In sectionIII,

we present numerical results. SectionIV is reserved for a summary and conclusions. One

appendix provide some computational details for PMC.

2 Calculation technology

The decay rate for the channel, Υ(1S)→ `+`−, can be formulated as

ΓΥ(1S)→`+`− =
4πα2

9m2
b

Z1, (2.1)

where α is the fine structure constant, mb is the b-quark pole mass, and Z1 stands for the

residue of the 1S-wave two-point correlation function near (bb̄)-threshold, which can be

written as [29]

Z1 = |ψ1(0)|2 cv
[
cv −

E1

mb

(
cv +

dv
3

)
+ · · ·

]
, (2.2)

where cv and dv are matching coefficients of the leading and sub-leading (bb̄)-currents

within the NRQCD framework, whose perturbative forms are

cv = 1 +
n∑
k=1

cka
k
s , dv = 1 +

n∑
k=1

dka
k
s , (2.3)

1It is noted that there may have nf -terms (ultra-violet free and irrelevant to the αs-renormalization)

which should be treated as conformal coefficients [22] and shall not affect our present PMC scale-setting.

Their values may be large and may break the pQCD convergence in special cases.
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where as = αs/4π. Here |ψ1(0)| and E1 are renormalized wavefunction at the origin and

binding energy of Υ(1S), which represent the bound-state contributions and also receive

perturbative corrections from high-order heavy quark potentials and dynamical gluon ef-

fect, i.e.

E1 = E
(0)
1

(
1 +

n∑
k=1

eka
k
s

)
, (2.4)

|ψ1(0)|2 = |ψ(0)
1 (0)|2

(
1 +

n∑
k=1

fka
k
s

)
. (2.5)

The LO Coulomb wavefunction at the origin and the LO Coulomb binding energy are given

by [30–34] ∣∣∣ψ(0)
1 (0)

∣∣∣2 =
(mbCFαs)

3

8π
, (2.6)

E
(0)
1 = −1

4
mb(CFαs)

2, (2.7)

where CF = 4/3. As a further step, those perturbative coefficients ei and fi can be sepa-

rated as

ei = eC
i + enC

i + eus
i , fi = fC

i + fnC
i + fus

i , (2.8)

where ‘C’, ‘nC’ and ‘us’ denote the corrections from the Coulomb potential, all other non-

Coulomb potentials and ultrasoft gluon exchange, respectively. The one-loop and two-loop

corrections for the Wilson coefficient cv have been given by refs. [35–38]. The fermionic

and the purely gluonic three-loop corrections to cv can be found in refs. [39–41]. The one-

loop correction for dv can be obtained from ref. [42]. For the bound state contributions,

its NLO term is from the Coulomb potential, and the ultrasoft correction appears first at

the third order. Thus, we have enC
1 = eus

1 = 0 and fnC
1 = fus

1 = fus
2 = 0. The Coulomb,

non-Coulomb and ultrasoft corrections to E1 and |ψ1(0)|2 have been calculated up to N3LO

level in refs. [29, 43–47].

Up to NnLO level, one can reformulate the pQCD approximate of the decay rate

ΓΥ(1S)→`+`− in a perturbative series as

Γn =

n∑
i=0

Ci ai+3
s (µr). (2.9)

The LO C0 can be derived from eqs. (2.1)–(2.7), and Ci(i ≥ 1) at each order is a combination

of the coefficients ck, dk, ek and fk at different orders. There are three energy regions for

Υ(1S) leptonic decay, which are characterized by three typical scales, i.e. the hard one µh ∼
mb, the soft one µs ∼ mbvb and the ultra-soft one µus ∼ mbv

2
b . Because vb ∼ αs(mbvb) [1],

the soft scale mbvb is usually replaced by mbCFαs, which is the characteristic scale of

bottomonium and is connected to its Bohr radius via the relation, rBohr = 2/(mbCFαs).

Practically, one can adopt any value µinit
r as the initial renormalization scale to do

the renormalization, whose value should be large enough to ensure the pQCD calculation.

Under the conventional scale setting, i.e. the renormalization scale is fixed to be µr ≡ µinit
r

– 3 –
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that is usually choose as the typical momentum of the process, the short-distance and

bound-state corrections possess both renormalization and factorization scale ambiguities

due to the truncation of perturbative series. The factorization scale problem is another

important QCD problem, especially for the present case with several energy scales [21].

It has been noted that a proper choice of renormalization scale can lead to a smaller

factorization scale dependence [48]. In the paper, we shall concentrate our attention on

solving the renormalization scale ambiguity and shall take the same choices for factorization

scales in different energy regions as those suggested in the literature, that is, we fix the

factorization scales as: µh ≡ mb, µs ≡ CFαs(µs)mb and µus ≡ C2
Fα

2
s(µs)mb [29, 36–38, 43–

46, 49–52].

We note that there exist logarithmic corrections such as the double-logarithmic ln2 αs-

terms [53, 54] and the single-logarithmic lnαs-terms [55, 56] in the perturbative bound-state

contributions. The origin of those logarithmic corrections is the presence of several scales

in the threshold region. They represent a logarithm of the ratio of scales, e.g. a ratio of the

hard scale (mb) to the soft one (mbvb) or a ratio of the soft one (mbvb) to the ultra-soft one

(mbv
2
b ); the resultant ln vb equals lnαs for bound states that are approximately Coulombic,

vb ∝ αs [55]. These corrections are not generated by the renormalization group but are

related to the anomalous dimensions of the operators in the effective Hamiltonian [5]. Thus

in the following PMC treatments, the value of ln(αs) is fixed and treated as conformal

coefficients, e.g. ln(αs) = ln(αs(µs)) ≈ −1.1782.

With all the known results, we are ready to do a PMC analysis of Υ(1S) leptonic decay

rate up to N3LO level. The three-loop Γ3 can be written as

Γ3 = c1,0a
3
s(µ

init
r ) + (c2,0 + c2,1nf )a4

s(µ
init
r )

+(c3,0 + c3,1nf + c3,2n
2
f )a5

s(µ
init
r )

+(c4,0 + c4,1nf + c4,2n
2
f + c4,3n

3
f )a6

s(µ
init
r ). (2.10)

The coefficients ci,j (i > j ≥ 0) at a certain scale can be read from refs. [29, 41, 43–46]. In

those references, the coefficients are usually given by setting the factorization scales to be

equal to the renormalization scale or by directly setting the renormalization scale as mb.

PMC is a kind of β-resummation, all RG {βi}-terms should be resummed to form

the effective PMC scales. It is thus important to get the correct RG {βi}-terms of the

process. Part of the {βi}-terms are proportional to the logarithmic terms as ln[µinit
r /µh],

ln[µinit
r /µs], and ln[µinit

r /µus], which are eliminated by specific choice of renormalization

scale in refs. [29, 41, 43–46]. Thus before applying the PMC, one should first reconstruct

all the coefficients with full factorization and renormalization scale dependence. This goal

is achieved by using the scale displacement relation derived from the β-equation (1.1), i.e.

the coupling aks(µ1) at kth-order can be related to the coupling at any other scale µ2 as

aks(µ1) = aks(µ2) + kβ0 ln
µ2

2

µ2
1

ak+1
s (µ2) + k

(
β1 ln

µ2
2

µ2
1

+
k + 1

2
β2

0 ln2 µ
2
2

µ2
1

)
ak+2
s (µ2) (2.11)

+k

[
β2 ln

µ2
2

µ2
1

+
2k+3

2
β0β1 ln2 µ

2
2

µ2
1

+
(k+1)(k+2)

3!
β3

0 ln3 µ
2
2

µ2
1

]
ak+3
s (µ2)+O[ak+4

s (µ2)].

The derived coefficients ci,j (i > j ≥ 0) with full factorization and renormalization scale

dependence are put in the appendix. As a check of our expressions for ci,j , we recover
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the eq. (3) of ref. [8] by taking their choices of µr ≡ µinit
r , µf = µr (µf = µh, µs, µus) and

nf = 4, and by rewriting ln[µr/mb] as ln[µr/(mbCFαs(µr))] + lnCF + lnαs(µr).

Following the standard PMC procedures as described in detail in ref. [14], we can

obtain the required {βi}-series at each order from eq. (2.10), i.e.

Γ3 = r1,0a
3
s(µ

init
r ) + (r2,0 + 3β0r2,1)a4

s(µ
init
r ) + (r3,0 + 3β1r2,1 + 4β0r3,1 + 6β2

0r3,2)a5
s(µ

init
r )

+

(
r4,0+3β2r2,1+4β1r3,1+5β0r4,1+

27

2
β1β0r3,2+10β2

0r4,2+10β3
0r4,3

)
a6
s(µ

init
r ). (2.12)

The βi-coefficients ri,j (i > j ≥ 0) can be obtained from the nf -coefficients ci,j (i > j ≥ 0)

by applying basic PMC formulas listed in ref. [14]. The non-conformal coefficients ri,j
(j 6= 0) are functions of µinit

r ; while, the conformal coefficients ri,0 are independent of µinit
r .

For convenience, we present the conformal coefficients ri,0 with explicit factorization scale

and/or initial scale dependence in the appendix.

After applying the PMC, the three-loop leptonic decay rate Υ(1S) changes to

Γ3 = r1,0a
3
s(Q1) + r2,0a

4
s(Q2) + r3,0a

5
s(Q3) + r4,0a

6
s(Q4),

where Qi(i = 1, 2, 3, 4) are PMC scales at each perturbative order, whose expressions

with explicit factorization scale and/or initial scale dependence are put in the appendix.

To eliminate the non-conformal β-terms, the renormalization scales at each perturbative

order have been shifted from its initial value µinit
r to the optimal ones Qi at different orders.

The PMC scales at each order are determined unambiguously by resuming all the same

type of non-conformal β-terms governed by RG-equation into the running coupling. The

resulting pQCD series is identical to the one of the conformal theory with β = 0 and

is thus scheme independent. The PMC scales correctly characterize the virtuality of the

propagating gluons and thus also allow one to determine the value of the effective number

of flavors nf . For the present decay process, the number of active flavors is fixed by the

number of quarks in the effective theory. Since the bottom and the top quark have been

integrated out, thus for self-consistency, we shall fix nf = 4 and adopt the four-flavor αs-

running to do our discussions. Because of lacking even higher-order {βi}-terms, we cannot

determine Q4, and we simply set Q4 = Q3 in the following calculation. This treatment will

lead to residual scale dependence, which, however, will be highly suppressed [21].

3 Numerical results

We adopt Nc = 3 for the SU(Nc)-color group and adopt the four-loop αs-running to do the

numerical analysis of the Υ(1S) leptonic decay rate up to three-loop QCD corrections. By

taking αs(MZ) = 0.1185 [9], we obtain Λ
(nf=4)
QCD = 0.301 GeV. We take the fine structure

constant α(2mb) = 1/132.3 [57]. Using the highest known three-loop relation between the

pole mass and MS-running mass and taking the b-quark MS-mass m̄b(m̄b) = 4.180 GeV [9],

we obtain the b-quark pole mass mb = 4.922 GeV.2

2The choice of b-quark pole mass and also |ψ(0)
1 (0)|2 and E

(0)
1 in final expresses ensure the correct us-

ing of PMC, since only those β-terms that are pertained to the renormalization of the running coupling

should be absorbed into the running coupling. Here we also do not consider the non-perturbative correc-

tions/uncertainties for |ψ(0)
1 (0)| and E

(0)
1 .
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Figure 1. The decay rate Γn with n = (0, 1, 2, 3) under the conventional sale setting method as

a function of the initial choice of renormalization scale µinit
r , where Γn is defined by eq. (2.9) and

stands for the decay rate with up to nth-loop QCD corrections.

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

µinit
r (GeV)

P
M
C

sc
a
le

(G
eV

)

 

 

Q1

Q2

Q3

Figure 2. The PMC scales Qi with i = (1, 2, 3) at each perturbative order versus the initial

renormalization scale µinit
r . The solid, the dashed, and the dotted lines are for Q1, Q2, and Q3,

respectively.

We first present the decay rate ΓΥ(1S)→`+`− with different loop corrections in figure 1,

in which the conventional scale setting method with the renormalization scale µr ≡ µinit
r is

adopted. To be self-consistent, when calculating Γn, the (n+1)th-loop αs-running together

with its own ΛQCD value are adopted. Figure 1 agrees with the conventional wisdom

that with the increment of loop corrections, the conventional scale dependence becomes

smaller. It also indicates that the higher-order terms are important for an accurate pQCD

prediction.

In figure 2, we present the initial scale dependence for the PMC scales Q1, Q2 and

Q3. Figure 2 shows that the PMC scales Qi are almost independent on the choice of

initial renormalization scale µinit
r by varying it within a large perturbative region such as

2 ∼ 20 GeV. If setting µinit
r = mb, we find the LO PMC scale Q1 ' 1.31 GeV, the NLO PMC

scale Q2 ' 2.02 GeV and the N2LO PMC scale Q3 ' 5.10 GeV. Those scales are different

from the guessed value ∼ 3.5 GeV that leads to maximum decay rate under conventional

scale setting.

The non-conformal terms determine the renormalization scales at each perturbative

order and the conformal terms as well as the resultant PMC scales accurately display the
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LO NLO N2LO N3LO sum

Conv. +0.374 +0.125 +0.322 +0.061 +0.882

PMC +2.292 -1.198 +0.191 -0.015 +1.270

Table 1. Contributions from each order for the three-loop decay rate Γ3 (in unit: keV) under the

conventional (Conv.) and the PMC scale settings, respectively. µinit
r = mb.

K1 K2 K3

Conv. 33.3% 64.7% 7.4%

PMC 52.3% 17.5% 1.1%

Table 2. The defined K factor (Kn) for the NnLO term of Γ3 before and after the PMC scale

setting, where n = 1, 2 and 3, respectively. µinit
r = mb.

2 4 6 8 10 12 14 16 18 20
0

0.4

0.8

1.2

1.6

2

2.4

µinit
r (GeV)

Γ
Υ
(1
S
)→

ℓ+
ℓ−

(k
eV

)

 

 

Conv.

PMC

Figure 3. The Γ3 versus the initial renormalization scale µinit
r before and after the PMC scale

setting. The dashed and solid lines are for the conventional (Conv.) and the PMC scale settings,

respectively.

magnitude of the pQCD correction at each perturbative order. We present the contributions

from each order for Γ3 in table 1, in which the results before and after the PMC scale setting

are presented. Under conventional scale setting, the N2LO term is about 90% of the LO

term, and is almost three times of the NLO term, breaking the pQCD nature of the series.

After applying the PMC, the pQCD convergence is improved: the magnitude of N2LO

term is about 16% of the NLO term and the magnitude of N3LO term is about 8% of the

N2LO term. This can be show more clearly by defining a K factor (Kn) that equals to the

magnitude of the ratio between the nth-order term and the sum of all lower-order terms.

The K factors for NLO, N2LO and N3LO terms are presented in table 2.

In figure 3, we present the three-loop Γ3 versus the choice of initial scale µinit
r , in which

the results before and after the PMC scale setting are presented as a comparison. Under

conventional scale setting, the decay rate Γ3 shall first increase and then decrease with the

increment of µinit
r ; if setting µr ≡ µinit

r ∼ 3.5 GeV, we obtain its maximum value, which

however is still lower than the central PDG value by about 30%. After applying the PMC,

the decay rate Γ3 monotonously raises with the increment of µinit
r , and the renormalization

– 7 –
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scale dependence has been greatly suppressed. By taking a hard enough scale such as

µinit
r > 4 GeV, the computed PMC scales and the final PMC prediction for the leptonic

Υ(1S) decay are highly independent to its exact values. If taking µinit
r = mb, we obtain

ΓΥ(1S)→`+`− = 1.270 keV, (3.1)

which is consistent with the central PDG value within 5% error [9]. In ref. [7] the au-

thors achieved a better NNLO prediction by including full resummation of logarithms at

next-to-leading-logarithmic accuracy and partial contributions at next-to-next-to-leading

logarithmic accuracy. The improvement of the pQCD convergence and scale dependence

is in some sense consistent with the PMC prediction. This can be explained by the fact

that the large logarithmic terms are usually accompanied by certain {βi}-terms, thus the

resummation of large log-terms could be consistent with the PMC β-resummation.

For the present process, the perturbative series starts at α3
s-order, slight change of its

argument shall result in large pQCD error, thus this process provides a good platform for

testing the correct running behavior of the coupling constant. On the one hand, the PMC

prediction for Υ(1S) leptonic decay reads

ΓΥ(1S)→`+`− |PMC = 1.270+0.130+0.043
−0.182−0.042 ± 0.015 keV (3.2)

= 1.270+0.137
−0.187 keV, (3.3)

where the first error is the residual initial scale dependence for µinit
r ∈ [3, 10] GeV, the

second error is for αs(MZ)Exp. = 0.1185 ± 0.0006 [9], and the third error is the esti-

mated unknown high-order contributions. The errors in the second line stand for the

squared averages of those errors. The unknown high-order contribution is predicted as

±|C3a
6
s|MAX [15], where the symbol “MAX” stands for the maximum |C3a

6
s| within the

region of µinit
r ∈ [3, 10] GeV. This RG-improved pQCD prediction agrees well with the

experimental measurement. It is noted that for the present case, even though the PMC

scales themselves are almost flat within the region of µinit
r ∈ [3, 10] GeV, cf. figure 2, there

is large residual scale dependence in comparison to the previous PMC examples, such as

refs. [58–61]. Thus we need to know even higher-order β-terms for this particular process

so as to achieve accurate PMC scales and PMC predictions.

On the other hand, the present PMC prediction on the Υ(1S) decay rate together with

its errors can be compared with the prediction under the conventional scale setting

ΓΥ(1S)→`+`− |Conv. = 0.882+0.022+0.023
−0.180−0.022 ± 0.443 keV (3.4)

= 0.882+0.444
−0.479 keV, (3.5)

where the first error is initial scale dependence for µinit
r ∈ [3, 10] GeV, the second error is

from αs(MZ)|Exp. uncertainty, and the third error is the estimated unknown higher-order

contributions. The errors in the second line stand for the squared averages of those errors.

The central decay rate is lower than the central PDG value by about 34%, and the much

larger errors in comparison to the PMC prediction are caused by the large value of N3LO

term at the scale 3 GeV, which are consistent with observation shown in ref. [8].
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µh µs µus

+0.004 +0.039 +0.002
∆Γ3|Conv. −0.004 −0.033 −0.003

+0.003 +0.120 +0.002
∆Γ3|PMC −0.004 −0.091 −0.003

Table 3. The factorization uncertainties ∆Γ3 (in units of keV) for the three-loop decay rate Γ3

before and after the PMC scale setting, which are caused by separately varying µh, µs and µus by

±10% of their center values, respectively.

0.4

0.8

1.2

1.6

2

 

 

Exp.

Conv.

PMC

Γ3|PMCΓ3|Conv.

Figure 4. A comparison of Γ3 together with its pQCD errors before and after the PMC scale

setting. The theoretical errors are squared average of all the mentioned uncertainties. The PDG

value, ΓΥ(1S)→e+e− |Exp. = 1.340(18) keV [9], is included as a comparison.

Let us end with a final comment on the factorization scale dependence. At present, we

have no strict and systematic way to set the factorization scale, and the question is much

more involved when there are several scale regions. As a reference, we present a discussion of

factorization scale uncertainties under several simple choices of factorization scales, whose

values before and after the PMC sale setting are presented in table 3. Here, to ensure the

effectiveness of the NRQCD and pNRQCD factorization approaches, we vary the scales µh,

µs and µus separately by±10% of their center values; e.g. when discussing the uncertainty of

µh, we take µh = (1±10%)mb and fix µs and µus to be their central values; the uncertainties

for µs and µus are done via the same way. Table 3 shows that after applying the PMC,

the factorization scale uncertainties are still there and the largest uncertainty is caused by

the soft scale µs. As shown by eqs. (A.19), (A.20), (A.21), the PMC scales depend on the

factorization scales. More explicitly, when setting µs = 90%CFαs(µs)mb, the value of Q1

changes from 1.31GeV → 1.27GeV, the value of Q2 changes from 2.02GeV → 1.96GeV,

and the value of Q3 changes from 5.10GeV → 4.78GeV. Those are slight scale changes,

however they shall lead to sizable contributions, since the decay rate starts at α3
s-order.
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4 Summary

We have studied the N3LO short-distance and bound-state QCD corrections to Υ(1S) lep-

tonic decay rate of Υ(1S) → `+`− by applying the PMC. A comparison of the three-loop

Γ3 together with its pQCD errors before and after the PMC scale setting is presented

in figure 4, where the theoretical errors are squared average of all the mentioned pQCD

uncertainties. It shows that our present RG-improved pQCD prediction agrees well with

the experimental measurement within errors. After applying the PMC, the pQCD conver-

gence of the resultant series is improved. Thus, the PMC does provide a systematic and

unambiguous way to set the renormalization scale for any QCD processes and the accuracy

of the pQCD prediction can be greatly improved. It is noted that we have not consid-

ered the non-perturbative corrections/uncertainties for |ψ1(0)| and E1, and for the decay

rate Γ(Υ(1S)→ `+`−). Those studies shall further improve our present PMC predictions,

which are out of the range of the present paper.
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A The coefficients ci,j, the conformal coefficients ri,0 and the PMC scales

for Γ3

As mentioned in the body of the text, before applying the PMC scale setting, one should

reconstruct all the coefficients with full factorization and renormalization scale dependence.

In this appendix, we first present the coefficients ci,j for nf -power series, and then present

conformal coefficients ri,0 and the PMC scales Qi for the three-loop Υ(1S) leptonic de-

cay rate Γ3. The full renormalization scale and factorization scale dependence shall be

explicitly presented.

We take the two-loop coefficients c3,j as an example to explain the reconstruction

procedures. As this perturbative order, we need to deal with the two-loop QCD corrections

to both cv and |ψ1(0)|. We fix the scale dependence for cv and |ψ1(0)| separately, which

are in different energy regions.

The expression of the two-loop cv(µr = mb, µf = µh) can be found in refs. [36, 37],

which involves only one factorization scale µh. The expression for cv(µr, µh) at arbitrary

choice of µr can be derived by replacing αs(mb) in cv(mb, µh) to αs(µr) with the help

of the scale displacement relation (2.11). By setting µ1 = mb, µ2 = µr and k = 1 in

eq. (2.11), we obtain the required full factorization and renormalization scale dependence

for cv(µr, µf = µh), which is

cv(µr, µh)=1−2CF
αs(µr)

π
+

(
αs(µr)

π

)2[
1

2
CFβ0 ln

µ2
r

m2
b

+

(
22

9
− 2π2

9

)
CFTFnh−

(
1

4
CA+

1

6
CF

)
π2CF ln

µ2
h

m2
b

+
11

18
CFTFnf−

(
89π2

144
− 5

6
π2 ln 2− 13ζ(3)

4
− 151

72

)
CACF +

(
23

8
− 79π2

36
+π2 ln 2− ζ(3)

2

)
C2
F

]
, (A.1)

– 10 –



J
H
E
P
0
6
(
2
0
1
5
)
1
6
9

where CA, CF and TF are quadratic Casimir invariants [62]. For a SU(Nc)-color group, we

have CA = Nc, CF = (N2
c − 1)/2Nc and TF = 1/2. In the present case, nh = 1, however,

we keep nh in eq. (A.1) for convenience.

The expression of the two-loop |ψ1(0)|2 can be found in ref. [43], in which the renor-

malization scale µr is set to be the soft scale µs. To get the expression for µr 6= µs, we can

replace αs(µs) by αs(µr) with the help of eq. (2.11); e.g. by setting µ1 = µs, µ2 = µr and

k = 1 in eq. (2.11), we obtain

|ψ(2)
1 (0)|2 = |ψ(0)

1 (0)|2
{

1+
(

6β0L(µr)+cCψ,1

)
as(µr)+

[
(36+16L(µh))π2CACF +

(
178

9
+

32L(µh)

3

)
π2C2

F

+β2
0

(
24L2(µr)− 12L(µs)

)
+ 6β1L(µr) + 8β0c

C
ψ,1L(µr) + cCψ,2

]
a2s(µr)

}
, (A.2)

where µh and µs stand for the hard and the soft scales, respectively. cC
ψ,1 and cC

ψ,2 are

non-logarithmic parts of the first-order and the second-order Coulomb corrections [33, 50],

and for the present 1S-wave bound state, they can be simplified as

cC
ψ,1 = 2.6229− 1.61351nf ,

cC
ψ,2 = 1800.75− 193.489nf + 3.50376n2

f .

The logarithmic function L(x) is defined as

L(x) = ln[x/(mbCFαs(µs))], (A.3)

where x = µr, µh or µs, respectively.

As a combination, we get the required coefficients c3,j . Following the similar treat-

ment, we can derive the expressions for all the coefficients ci,j (i > j ≥ 0) with full

scale dependence up to three-loop level from the ones at a particular scale presented in

refs. [29, 41, 43–47].

In using the original results of refs. [29, 43, 45], there are some subtleties in deriving the

full scale dependence of the three-loop coefficient f3 = fC
3 + fnC

3 + fus
3 for |ψ1(0)|2. Most of

logarithmic terms for the Coulomb correction fC
3 given in ref. [43] are for µr = µs, and there

is one logarithmic term that has explicit ultrasoft scale dependence, which originates from

the non-Abelian gluon “H-diagram” [51, 52] and should be treated as conformal coefficients.

The logarithmic terms for the non-Coulomb correction fnC
3 should be rewritten as lnµ2

h/m
2
b

and lnµ2
s/(mbCFαs(µs))

2 [29, 47]. The logarithmic terms for the ultrasoft correction fus
3

are for µr = µs [45, 46]. After this clarification, we are ready to derive the full scale

dependence of f3 with the help of eq. (2.11), which reads

|ψ(3)
1 (0)|2 = |ψ(2)

1 (0)|2 + |ψ(0)
1 (0)|2a3s(µr)

{
π2C3

A

[
32− 16π2

3
− 48 ln

µs
mb

+ 64 ln (αs(µs)) + 48L(µus)

]
+π2CFC

2
A

[(
320

3
ln 2− 704

3
+

512

3
H1

)
ln
µs
mb
− 160

3
ln2 µs

mb
+

512

3
ln (αs(µs)) ln

µs
mb

+

(
3328

9
− 256H1 −

512

3
ln 2

)
ln (αs(µs))− 128 ln2 (αs(µs)) +

(
6176

9
+

256

3
ln 2

)
L(µs)

+
256

3
L2(µs)

]
+ π2CAC

2
F

[
8 ln2 µh

mb
− 32

9
ln
µh
mb

+ 32L(µs) ln
µh
mb

+

(
22240

27
+

512

3
ln 2

)
L(µs)

+
592

3
L2(µs) +

(
32

3
+

1280

3
H1 +

64

3
ln 2

)
ln
µs
mb
− 352

3
ln2 µs

mb
+

1280

3
ln
µs
mb

ln (αs(µs))
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+

(
512

3
− 256

3
ln 2− 2048

3
H1

)
ln (αs(µs))−

1024

3
ln2 (αs(µs))

]
+π2CACF

[
− 1744

9
TFnfL(µs)

+

(
128L2(µs)− 160L(µh)L(µs) +

(
16− 32

3
π2

)
L(µs) + 360L(µr) + 160L(µr)L(µh)

)
β0

]
+π2C3

F

[
80

3
ln
µh
mb

+
16

3
ln2 µh

mb
+

64

3
L(µs) ln

µh
mb

+
160

3
L(µs) +

224

3
L2(µs)−

512

3
ln2 (αs(µs))

+

(
512 ln 2− 4096

9
− 1024

3
H1

)
ln (αs(µs)) +

(
1088

3
+

512

3
H1 − 384 ln 2

)
ln
µs
mb
− 64

3
ln2 µs

mb

+
512

3
ln
µs
mb

ln (αs(µs))

]
+ π2C2

FTF

(
64

15
ln
µh
mb

+
128

15
L(µs)−

3776

27
nfL(µs)

)
+ π2C2

Fβ0

×
[(

128

9
− 64

9
π2

)
L(µs) +

256

3
L2(µs)−

320

3
L(µh)L(µs) +

320

3
L(µr)L(µh) +

1780

9
L(µr)

]
+10β0c

C
ψ,2L(µr) + 8β1c

C
ψ,1L(µr) + 8β2

0c
C
ψ,1

(
5L2(µr)− 2L(µs)

)
+ 6β0β1

(
9L2(µr)− 4L(µs)

)
+6β2L(µr)+4β3

0

(
6L(µs)+3L2(µs)−30L(µs)L(µr)+20L3(µr)

)
+cCψ,3+cnCψ,3+cusψ,3

}
. (A.4)

whereH1 = lnCF−1, and for the 1S-wave bound state the non-logarithmic part of the third-

order Coulomb, non-Coulomb and ultrasoft corrections [29, 43, 45] can be simplified as,

cC
ψ,3 = −39854.2 + 2005.08nf + 19.7985n2

f + 3.61806n3
f ,

cnC
ψ,3 = −44754.7− 3126.52nf ,

cus
ψ,3 = 223012.

All the coefficients under the arbitrary choice of initial renormalization scale µinit
r that

are adopted in the body of text are in the following (in unit of GeV):

c1,0=0.0734844, (A.5)

c2,0=−1.37493 + 4.84997L(µinit
r ), (A.6)

c2,1=−0.118568− 0.293938L(µinit
r ), (A.7)

c3,0=168.629− 41.5323L(µinit
r ) + 213.399L2(µinit

r ) + 60.1699L(µh)− 106.699L(µs)

−34.4887 ln
µinit
r

mb
− 60.1699 ln

µh
mb

, (A.8)

c3,1=−10.7309− 10.7761L(µinit
r )− 25.8665L2(µinit

r ) + 12.9333L(µs) + 2.09022 ln
µinit
r

mb
,(A.9)

c3,2=0.257472 + 0.632361L(µinit
r ) + 0.783834L2(µinit

r )− 0.391917L(µs), (A.10)

c4,0=−14311.9− 1283.62L(µh) + 22709.0L(µinit
r ) + 6618.69L(µh)L(µinit

r ) + 832.64L2(µinit
r )

+7824.62L3(µinit
r ) + 8857.05L(µs)− 6618.69L(µh)L(µs)− 11736.9L(µinit

r )L(µs)

+8102.97L2(µs) + 939.94L(µus) + 518.834 ln
µh
mb
− 3971.21L(µinit

r ) ln
µh
mb

+160.453L(µs) ln
µh
mb

+ 40.1133 ln2 µh
mb
− 4651.9 ln

µinit
r

mb
− 2276.25L(µinit

r ) ln
µinit
r

mb

−2647.48 ln
µh
mb

ln
µinit
r

mb
− 758.751 ln2 µ

init
r

mb
− 7097.75 ln

µs
mb
− 511.158 ln2 µs

mb

+7586.97 lnαs(µs) + 3429.11 ln
µs
mb

lnαs(µs)− 2727.7 ln2 αs(µs), (A.11)
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c4,1=1458.98−2785.37L(µinit
r )−401.133L(µh)L(µinit

r )−957.856L2(µinit
r )−1422.66L3(µinit

r )

−212.745L(µs) + 401.133L(µh)L(µs) + 2133.99L(µinit
r )L(µs)− 534.305L2(µs)

+97.0847 ln
µh
mb

+ 240.68L(µinit
r ) ln

µh
mb

+ 400.066 ln
µinit
r

mb
+ 275.909L(µinit

r ) ln
µinit
r

mb

+160.453 ln
µh
mb

ln
µinit
r

mb
+ 91.9698 ln2 µ

init
r

mb
+ 133.615 ln

µs
mb
− 80.2265 ln2 µs

mb
, (A.12)

c4,2=−13.3227 + 120.457L(µinit
r ) + 89.7734L2(µinit

r ) + 86.2217L3(µinit
r )− 9.85995L(µs)

−129.333L(µinit
r )L(µs) + 12.9333L2(µs)− 5.92731 ln

µinit
r

mb
− 8.36089L(µinit

r ) ln
µinit
r

mb

−2.78696 ln2 µ
init
r

mb
, (A.13)

c4,3=0.265871− 1.71648L(µinit
r )− 2.10787L2(µinit

r )− 1.74185L3(µinit
r ) + 0.320593L(µs)

+2.61278L(µinit
r )L(µs)− 0.261278L2(µs), (A.14)

where µh, µs and µus stand for the hard, the soft and the ultra-soft factorization

scales, respectively. L(µinit
r ), L(µh), L(µs) and L(µus) are corresponding to taking

x = µinit
r , µh, µs, µus for L(x), respectively.

The conformal coefficients ri,0(i = 1, 2, 3, 4) read (in unit of GeV),

r1,0 = 0.0734844, (A.15)

r2,0 = −3.33129, (A.16)

r3,0 = 80.6951 + 60.1699L(µh)− 60.1699 ln
µh
mb

, (A.17)

r4,0 = 7600.61− 1283.62L(µh) + 4102.54L(µs)

+1634.33L2(µs) + 939.94L(µus)

+160.453L(µs) ln
µh
mb

+ 2120.73 ln
µh
mb

+40.1133 ln2 µh
mb
− 4893.09 ln

µs
mb

−1834.9 ln2 µs
mb

+ 7586.97 lnαs(µs)

+3429.11 ln
µs
mb

lnαs(µs)

−2727.7 ln2 αs(µs). (A.18)

As required, these equations show that the conformal coefficients are free of initial scale

dependence. The PMC scales Qi(i = 1, 2, 3) with full initial scale and factorization scale

dependence for each perturbative order read

ln
Q2

1

(µinit
r )2

= −0.806755− 2L(µinit
r )−

(
1.32611− 4L(µs)

)
β0as(µ

init
r ) + a2s(µ

init
r )

[(
10.1− 2.65222L(µinit

r )

−8L(µs) + 8L(µinit
r )L(µs)− 4L2(µs)

)
β2
0 −

(
1.65764− 5L(µs)

)
β1
]
, (A.19)

ln
Q2

2

(µinit
r )2

= −0.0020727− 1.76471L(µinit
r )− 0.235294 ln

µinit
r

mb
+ as(µ

init
r )β0

[
− 2.06665 + 0.998408L(µinit

r )

−0.33218L2(µinit
r ) + 3.84375L(µs)−

(
0.998408− 0.66436L(µinit

r )
)

ln
µinit
r

mb

−0.33218 ln2 µ
init
r

mb

]
, (A.20)
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ln
Q2

3

(µinit
r )2

=

[
5.77145− 3.50367L(µinit

r )− 2L(µh)L(µinit
r )− 0.671837L(µs) + 2L(µh)L(µs)− 1.6L2(µs)

+

(
0.484053 + 1.2L(µinit

r ) + 0.8 ln
µinit
r

mb

)
ln
µh
mb

+ 0.821428 ln
µinit
r

mb
+ 0.66619 ln

µs
mb

−0.4 ln2 µs
mb

]
/

(
1.34112 + L(µh)− ln

µh
mb

)
. (A.21)

As a minor point, we have found that there are some typos for the general coefficients

r4,j with j = (0, 1, 2) at the four-loop level, i.e. eqs. (39b-39d) of ref. [14] (they are correct

for n = 1) should be corrected as

r4,2 =
1

32(n+ 1)(n+ 2)T 3
F

[
2T 2

F c2,1(79CA + 66CF )

−9

(
4(3 + 2n)

n+ 1
TF c3,2(5CA + 3CF )− 33c4,3CA − 4TF c4,2

)]
, (A.22)

r4,1 =
1

64(n+ 2)T 3
F

[
4T 2

F c2,1(−397CACF − 118C2
A − 126C2

F ) + 48T 2
F c3,1(5CA + 3CF )

+
12TF c3,2
n+1

CA
(
(152n+173)CA+33(4n+5)CF

)
−33CA (33c4,3CA+8TF c4,2)−48T 2

F c4,1

]
, (A.23)

r4,0 = c4,0 +
1

64T 3
F

[
2T 2

F c2,1CA(1208CACF − 287C2
A + 924C2

F )− 48T 2
F c3,1CA(7CA + 11CF )

−2904TF c3,2C
2
ACF + 176T 2

F c4,1CA − 1848TF c3,2C
3
A + 484TF c4,2C

2
A + 1331c4,3C

3
A

]
. (A.24)
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