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Abstract

Advances in research in the past few years on the ornamental plant torenia (Torenia spps.) have made it notable as
a model plant on the frontier of genetic engineering aimed at studying ornamental characteristics and pest control
in horticultural ecosystems. The remarkable advantage of torenia over other ornamental plant species is the
availability of an easy and high-efficiency transformation system for it. Unfortunately, most of the current torenia
research is still not very widespread, because this species has not become prominent as an alternative to other
successful model plants such as Arabidopsis, snapdragon and petunia. However, nowadays, a more global view
using not only a few selected models but also several additional species are required for creating innovative
ornamental traits and studying horticultural ecosystems. We therefore introduce and discuss recent research on
torenia, the family Scrophulariaceae, for secondary metabolite bioengineering, in which global insights into
horticulture, agriculture and ecology have been advanced. Floral traits, in torenia particularly floral color, have been
extensively studied by manipulating the flavonoid biosynthetic pathways in flower organs. Plant aroma, including
volatile terpenoids, has also been genetically modulated in order to understand the complicated nature of
multi-trophic interactions that affect the behavior of predators and pollinators in the ecosystem. Torenia would
accordingly be of great use for investigating both the variation in ornamental plants and the infochemical-mediated
interactions with arthropods.

Keywords: Flavonoid, Flower color, Herbivore-induced plant volatiles (HIPVs), Indirect defense, Metabolic
engineering, Torenia
Introduction
Torenia spps. are dicotyledonous plants that belong to
the class Magnoliopsida, order Scrophulariales and fam-
ily Scrophulariaceae, and include annuals and perennials.
Torenia is the common name for several species in the
genus Torenia (e.g. T. fournieri Lind., T. concolor Lind.,
T. asiatica L. and T. hybrida [T. fournieri x T. concolor])
[1]. In addition, T. fournieri and its hybrids, such as T.
hybrida, are often called wishbone flowers or blue wings.
Almost all species of torenia occur in tropical and
subtropical Asia, Africa or Madagascar [2]. There are 50
species, 20 of which are from Cambodia, Laos and
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Vietnam, and 19 from Thailand [2]. Many hybrids have
been produced in the last 30 years, with a variety of
flower colors ranging from white with yellow throats to
blue, cobalt, lavender and violet. However, torenia is not
only a horticultural plant but also an experimental one
with several useful characteristics. These include ease of
genetic transformation, ability to differentiate adven-
titious shoots and roots, and capacity for in vitro
flowering. Especially, a high-efficiency Agrobacterium-
mediated transformation system has been established in
torenia, and this gives torenia a great advantage when
conducting basic research using transgenic plants. The
method can achieve a transformation rate of approxi-
mately 5% [3]. The short generation time and small
plant size of torenia make it possible to reduce the space
and effort needed for maintenance compared with other
ornamental model plant species such as the snapdragon
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and petunia. Torenia plants can be propagated vege-
tatively by stem cuttings, making it easy to obtain suffi-
cient amounts of samples in a short time. Also useful is
its small genome size of 171 Mb [4], similar to that of
Arabidopsis [5].
In addition, because torenia is a unique plant with a

protruding embryo sac, it has been possible to establish
an in vitro system for observing the guidance of pollen
tubes using the naked embryo sac [6]. This feature has
put torenia in the forefront of research on the ferti-
lization process in higher plants in which torenia and
Arabidopsis were used together for studies that, for
instance, revealed the function of AtLURE1 peptides as
pollen tube attractants [7]. In spite of these advantages,
most torenia research is, unfortunately, not widespread
over the world but rather remains restricted to a few
research groups, mainly in Japan.
Flower color is one of the most noteworthy character-

istics of ornamental plants, including torenia. Conse-
quently, much effort has been devoted to understanding
the molecular and biochemical mechanisms underlying
pigment formation in flowers. Early research using
transgenic plants indicated that the main pigments in
torenia flowers consist of visible flavonoids, i.e., anthocy-
anins [8]. Torenia flowers also contain unpigmented or
pale yellow flavonoids, flavones. This knowledge has
allowed the successful modification of torenia flower
color by genetic engineering. Torenia has thus joined
the group of ornamental horticultural model plants in
which flower color modification has been successfully
achieved, such as Petunia hybrida (petunia), Dendranthema
grandiflorum (chrysanthemum), Dianthus caryophyllus
(carnation) and Rosa hybrida (rose) [9]. A particular
advantage of using torenia as a model system is that it is
related to the snapdragon, Antirrhinum majus, which has
been a model plant in biochemical and developmental
genetics for 80 years [10]. Since torenia is easy to trans-
form and belongs to the same family (Scrophulariaceae) as
snapdragon, torenia is an excellent platform for testing
the function of genes isolated from torenia itself as well as
those isolated from snapdragon.
Floral and foliar odors have been little investigated in

torenia compared to the large amount of research on
petunia and snapdragon. These two plants have been in
the forefront of genetic and biotechnological applica-
tions, resource development (mutants, transcriptome
datasets, genome and EST information) as well as floral
studies [11-14]. We provided novel insight into the effects
of foliage volatiles on ecological interactions between torenia
plants and arthropods [15]. Indeed, such insights are critical
for assessing the impact of metabolic engineering of volatiles
on horticultural pest control, because volatiles affect the be-
havior of herbivores, carnivores, flower-visiting generalist
predators and parasitoids (of the herbivores), and pollinators.
Significance of the flavonoid biosynthetic pathway in
torenia flowers
Wild torenia species have flowers that range in color from
blue to violet, and some of the species such as T. fournieri
have a yellow splotch in the center. These colors are pre-
dominantly due to flavonoid pigments. The flavonoid bio-
synthesis pathway branches from the phenylpropanoid
pathway leading to lignins and phytoalexins. Flavonoids
are classified into several subclasses, such as flavones,
flavonols, proanthocyanins, and anthocyanins [16]. Of
these, anthocyanins and flavones in particular accumulate
in torenia petals. For example, the blue petals of Torenia
hybrida Summerwave blue contain mainly malvidin 3-
O-β-D-glucoside-5-O-(6-O-p-coumaroyl)-β-D-glucoside
together with minor anthocyanins, malvidin 3,5-diglucoside
and peonidin derivatives (Figure 1) [17]. The violet petals of
T. fournieri Crown violet accumulate five anthocyanins,
delphinidin 3,5-O-diglucoside, cyanidin 3,5-O-diglucoside,
petunidin 3,5-O-diglucoside, peonidin 3,5-O-diglucoside
and malvidin 3,5-O-diglucoside (Figure 1) [8]. This cultivar
contains, in addition, three major flavones, luteolin 7-
glucoside, luteolin 7-glucuronide and apigenin 7-glucuronide.
The flavonoid biosynthetic pathway has been well studied
and the genes related to it have also been identified in
petunia, snapdragon, Arabidopsis and maize [18]. Flavo-
noids also play extensive roles in various biological and
environmental responses. In particular, they have a crucial
role in plant-insect interactions [19].
The phenylpropanoid pathway, leading from phenylalan-

ine to p-coumaroyl-CoA, is the entry point to downstream
pathways including flavonoid biosynthesis. Structural genes
required for flavonoid biosynthesis have been characterized
in a variety of plant species, including torenia, as mentioned
above. Transcriptional regulation of flavonoid biosyn-
thesis is a particularly active research topic, and notably
shows combinatorial regulation by the MYB/bHLH/WDR
(MBW) transcriptional complex in a suite of plant species
[20,21]. Such a tripartite MBW complex was found to
regulate anthocyanin biosynthesis in petunia flowers [22]
and grapes [23], and proanthocyanidin (PA) accumulation
in Arabidopsis seed coats [24]. Moreover, ANTHOCYA-
NIN2 (AN2), a well-defined MYB-type transcription factor
that is a major determinant of flower color variation in
petunia, has important effects on pollinator preference.
Variation in AN2 homologues may also account for flower
color variation in more distantly related taxa, such as
snapdragon [25], suggesting that variation in highly specific
transcription factors may be a major source of natural
phenotypic variation and perhaps the favored target of
natural selection in other species as well [26]. This is in line
with the significance of gene duplication of anthocyanin-
regulating MYB transcription factors as a genetic basis of
the flower color diversification found in the Mimulus
genus, which contains five species native to central Chile



Figure 1 Genetic engineering of torenia flower color. Various species of torenia used for transformation: Torenia fournieri cv. Crown violet
(Left in a)), Crown white (Right in a)) and T. hybrida b). c) Flower of Crown violet. d) Transgenic flower of Crown violet with reduced flavone
derivatives. e) Flower of Crown white. f) Transgenic flower of Crown white that accumulated pelargonidin derivatives. g) Representation of
torenia floral anthocyanins.
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[27]. More recently, it was reported that the genes TfMYB1
and TfbHLH1 are expressed in torenia flowers and involved
in anthocyanin biosynthesis [28].
The genera of Scrophulariaceae are mainly insect polli-

nated. For instance, T. fournieri is known to be mainly
pollinated by stingless bees in Thailand, and potentially
by hummingbirds in North America [1]. Each class of
pollinator exhibits a particular color preference. Bees
typically tend to prefer blue, purple and mauve flowers,
whereas butterflies choose pink and red flowers [29].
The flowers of T. fournieri exhibit most of these flower
colors, and bumblebees, attracted by the floral character-
istics, play a role in the pollination [30]. Bee vision is tri-
chromatic but more sensitive to short wave length light
than human vision. Bees, therefore, can see not only
colors created by anthocyanins visible to humans but
also those in the ultra-violet range that humans cannot
see. This means that bees can detect nectar guides,
which are ultra-violet absorbing zones on petals that at-
tract particular pollinators [31]. Nectar guides contain,
in particular, flavonols and flavones which have intense
spectral absorption in the 340-380 nanometer region
[31]. Flavones are likely to act as copigments, because
considerable amounts of flavone derivatives accumulate in
torenia petals and a loss of dihydroflavonol 4-reductase
(DFR) function in torenia causes flavone accumulation,
making the transgenic flowers bluer [8,32]. However, the
yellow splotch of torenia flowers is a prominent mark and
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may function specifically to guide the most effective polli-
nators to the pollen. Yellow pigmentation is attributed to
carotenoids in several torenia cultivars (Crown violet, Lemon
drop, and Suzie wong), and carotenogenic genes are respon-
sible for the carotenoid biosynthesis that coordinates petal
carotenoid variegation (pers. comm. Dr. Sanae Kishimoto,
National Institute of Floricultural Science, Japan).

Modulation of torenia floral traits by genetic engineering
A simple and efficient transformation system has been
established in torenia and therefore various transform-
ation studies have targeted ornamental characteristics in
this plant during the past 15 years [5]. These studies have
produced useful phenotypic modifications for ornamental
traits in flowers such as color, pattern, shape, size, and
longevity. In ornamental plants, including torenia, genetic
transformations have been applied for producing novel
flower colors mainly by metabolic engineering of the fla-
vonoid biosynthetic pathway [33,34].
Application of transgenic techniques to torenia has

produced a diversity of flower colors, including white,
yellow, pink and red instead of the original violet or blue
Table 1 Summary of flower color modification of torenia plan

Target material Gene and method G

Torenia fournieri

cv. Crown violet Sense CHS or DFR, antisense CHS or DFR To

cv. Crown reddish-purple Sense CHS or DFR, antisense CHS or DFR To

cv. Common violet Sense CHS or DFR, antisense CHS or DFR To

cv. Crown violet GPT-RNAi To

cv. Crown violet DEF-SRDX To

cv. Crown violet Transcription factors-SRDX A

cv. Crown violet MYB24-SRDX A

cv. Crown violet TCP3-SRDX A

T. hybrida
(T. fournieri x T. concolor)

cv. Summerwave blue Sense CHS, sense DFR To

Inbred line T-33 Sense CHS or DFR, sense F3′5′H To

cv. Summerwave blue Sense F3′H, sense F3′5′H To

cv. Summerwave blue Sense FNSII To

cv. Summerwave blue CHS-RNAi To

cv. Summerwave blue Sense AS1 and sense 4′CGT Sn

F3H-RNAi, DFR-RNAi To

cv. Summerwave blue Sense or antisense ANS, ANS-RNAi To

cv. Summerwave blue F3′H-RNAi, F3′5′H-RNAi To

Sense DFR Ro

cv. Summerwave violet F3′H-RNAi, F3′5′H-RNAi To

Sense DFR Ro

Abbreviations: ANS anthocyanidin synthase, AS aureusidin synthase, 4′CGT chalcone
dihydroflavonol 4-reductase, F3H flavanone 3-hydroxylase, F3′H flavonoid 3′-hydroxy
GLOBOSA, GPT glucose 6-phosphate/phosphate translocator, TCP TEOSINTE BRANCH
color in cultivars of T. fournieri or T. hybrida (Table 1).
The genes for flavonoid biosynthesis (e.g., chalcone syn-
thase (CHS) and DFR) were manipulated to reduce flower
pigmentation by down-regulation of these genes with
cosuppression or antisense strategies [8,17,35,36] and,
more recently, by RNA interference (RNAi) technology
[37,38]. Similarly, overexpression and/or downregulation
of a suite of genes involved in the flavonoid biosynthetic
pathway resulted in variation of flower colors in torenia
[32,39,40]. In addition to these classical strategies, a recent
innovation has been to divert the metabolic flux towards
non-native pigments (e.g., aurone). The coexpression of
chalcone 4'-glucosyltransferase (Am4'CGT) and aureusidin
synthase (AmAS1) genes, responsible for the biosynthesis
of the yellow aurone pigment in snapdragon, and knock-
down of a toreniaflavanone 3-hydroxylase gene (F3H) or
DFR successfully produced aureusidin 6-O-glucoside and
thus yellow flowers [41].
Chimeric REpressor gene-Silencing Technology (CRES-

T; [42] has notably been applied to torenia and other flori-
cultural plants such as chrysanthemum, gentian, cycla-
men, lisianthus, and morning glory [43,44]. In this system,
ts by genetic engineering

ene origin Flower phenotype Reference

renia White to pale blue [8,35,36]

renia Wavy-patterned [8,35,36]

renia Wavy-patterned [8,35,36]

renia Lighter colored [39]

renia Partially decolorized [50]

rabidopsis Various color patterns [43,44,48]

rabidopsis Lacked color at both sides of the petal [47]

rabidopsis Various color patterns [46]

renia White to pale blue [17]

renia Yellow, pink [17]

renia Reddish [32]

renia Pale blue [32]

renia White to pale blue [37]

apdragon Yellow [41]

renia

renia White to pale blue [38]

renia Pink [40]

se or pelargonium

renia Darker pink [40]

se or pelargonium

4-O-glucosyltransferase, CHS chalcone synthase, DEF DEFICIENS, DFR
lase, F3′5′H flavonoid 3′,5′- hydroxylase, FNSII flavone synthase II, GLO
ED1/CYCLOIDEA/PROLIFERATING CELL FACTORS 1/2.
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intriguingly, the transcription factor is able to switch from
being an activator to being a repressor by fusion to the
EAR motif (SRDX), consisting of only 12 amino acids ori-
ginally derived from SUPERMAN, which acts as strong
repressor [45]. Because chimeric repressors can suppress
expression of the target genes even in the face of active
endogenous transcription factors, transgenic plants ex-
pressing the chimeric repressors produce phenotypes
similar to those from loss-of-function mutants in the
CRES-T system. In general, efficient suppression of redun-
dantly expressed genes and genes in different plant species
is rarely achieved by genetic engineering. However, the
CRES-T system, an efficient gene suppression system,
offers a powerful tool for this purpose. For example, dis-
tinctive color patterns in torenia and Chrysanthemum
morifolium flowers have been created as a result of re-
duced anthocyanin accumulation caused by the expression
of the repressor of Arabidopsis TCP3 transcription factor
[46]. Petals inside the flower buds also exhibited a distinct
color pattern in transgenic torenia plants as a conse-
quence of overexpression of the Arabidopsis MYB24 re-
pressor with a transcriptional repression domain (MYB24-
SRDX) [47]. Of interest is that transgenic torenia plants
with variously modified traits have been produced by the
collective transformation of about 50 transcription factors
using CRES-T [48]. Moreover, morphological change in
the shapes and sizes of flowers or leaves has been achieved
by the overexpression of chimeric repressors of the B- and
C-class homeotic genes. AGAMOUS (AG) terminates the
floral meristem and promotes the development of stamens
and carpels in Arabidopsis, but transgenic torenia plants
expressing AG-SRDX showed pleiotropic changes such as
serration in petal margins, anthocyanin accumulation and
morphological change in the stigma surface, and forma-
tion of extra vascular bundles in petals and styles [49]. Up
or down-regulation of these orthologue genes in torenia,
TfGLO and TfDEF, also resulted in various interesting
phenotypes such as purple-stained sepals, or serrated
petals and partially decolorized petals [50].
Finally, it should be taken into account that, in

addition to genetic engineering based on gene delivery,
pigment mutations are also produced in torenia by heavy
ion beam irradiation [51-53]. Moreover, mutations of
petal color are also caused by gamma irradiation [54].
These findings suggest that combining transgenic strat-
egies and radiation breeding would greatly facilitate
changes in several flower traits. For instance, the torenia
mutant (no. 252), generated by ion-beam irradiation of a
transgenic torenia with modified flower color, formed
flower buds but did not open flowers, whereas wild-type
torenia plants usually open flowers until flower buds
have developed at the upper joint [55]. This mutant
exhibited a missense mutation in the coding region of the
UFO (UNUSUAL FLORAL ORGANS) gene that induced a
sepaloid phenotype in which the second whorls were
changed to sepal-like organs [55].
Insertional mutagenesis provides a powerful tool for

studying gene functions by the forward genetic approach,
and especially retrotransposons have several advantages
over traditional DNA-type insertion elements (Kumar and
Hirochika 2001). It is also likely that transposon-tagging
in torenia may be possible, as we have recently identified a
retrotransposon in genes required for anthocyanin synthe-
sis (Nishihara et al., unpublished). Similar approaches have
been used successfully in Lotus japonicus [56] and rice
[57,58] using the LORE1 and Tos17 transposons, res-
pectively. Moreover, a DNA-type transposon (Ttft1) that
belongs to the En/Spm superfamily has been identified in
EMS-induced torenia mutants (Nishijima et al., 2013) and
this element might be also useful for transposon tagging
in torenia. There has been little thorough investigation,
however, of other transient assay systems, such as agro-
infiltration, biolistics and virus-induced-gene-silencing
(VIGS), that are of use in other plant species. However,
novel methods for transient foreign-gene introduction
into torenia cells have been developed using ArF excimer
laser-induced shock waves [59].

Modulation of defense properties in torenia by genetic
engineering
Plants produce a diversity of volatile compounds from
their flowers, leaves and other organs. These compounds
include terpenoids, phenylpropanoids/benzenoids, fatty
acid derivatives and amino acid derivatives. These com-
pounds play a number of roles in the interaction of plants
with the environment [60,61]. Floral volatiles are well
known to attract pollinators and can also function as
repellants against herbivores or as phytoalexins against
plant pathogens [62]. Also of interest is that leaf volatiles
emitted from plants damaged by herbivorous arthropods
(HIPVs: Herbivore-induce plant volatiles), attract natural
enemies of the herbivores [63]. These volatiles therefore
function as indirect plant defenses against herbivores.
HIPVs also induce or prime defense responses against
future herbivore attack in neighboring plants [64,65], in-
fluence the behavior of insect herbivores or pollinators
[66], and interfere with infection by plant pathogens [66].
Torenia is frequently susceptible to thrips, aphids and

mites [1]. Moreover, the accelerated reproductive rate
allows these pest populations to adapt quickly to resist
pesticides, so chemical control methods can become
somewhat ineffectual when the same pesticide is used
over a prolonged period. Accordingly, semiochemical-
based pest management methods are being developed
for ornamental plants with plant volatile-based attrac-
tants/repellents that may be used as synthetic chemicals
or products of genetic engineering. However, little is
known about the characteristics of torenia in ecological
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interaction networks. To correctly assess the impact of
genetically engineered alterations of plant odor in horti-
cultural pest control, it is essential to understand the
complicated nature of arthropod attraction mediated
by volatile blends. For example, natural enemies of pest
herbivores may tend not to respond strongly to novel
HIPV blends from transgenic plants at the flowering
stage so as to protect themselves against intraguild
predation by flower-visiting generalist predators. To
evaluate carnivore responses to HIPV blends and to
floral volatiles, the ability of transgenic T. hybrida plants
to attract predatory mites (Phytoseiulus persimilis) has
recently been studied [15]. The transgenic plants, when
infested with two-spotted spidermites (Tetranychus urticae),
emitted a blend of HIPVs comprising a monoterpene (linal-
ool), a homoterpene [(E)-4,8-dimethyl-1,3,7-nonatriene]
and sesquiterpenes (α-zingiberene, α-bergamotene, γ-
curcumene and unidentified sesquiterpene), as well as a
trans-volatile [(E)-β-ocimene] (Figure 2) [15]. The trans-
volatile enhanced the attraction of P. persimilis when
added to an HIPV blend from the infested trans-
genic plants. However, floral volatiles, comprising 3-ethyl-
4-methylpentanol and a suite of monoterpenes [(+)-2-
carene, α-terpinene, p-cymene and limonene], abolished
the supporting effect of the trans-volatile embedded in
the natural HIPVs. Transgenic torenia thus provides an
Figure 2 Tritrophic interaction network in torenia Summerwave blue
responses to spider mites. Arrows and bars indicate positive and negativ
terpinene; 4. 3-ethyl-4-methylpentanol; 5. p-cymene; 6. limonene; 7. (E)-β-oc
zingiberene; 11. α-bergamotene; 12. γ-curcumene; 13. unidentified sesquite
air contamination.
intriguing tritrophic system, as predator attraction was
enhanced only when non-flowering plants were infested
(Figure 2) [15]. The attractiveness of a specific volatile com-
pound thus markedly depends on the background odors,
including both HIPVs and floral volatiles. Because of such
complexity, it is necessary to construct model systems using
torenia and other plant species in order to clarify the eco-
logical and horticultural significance of HIPVs.
Metabolic engineering of torenia also demonstrated the

abilities of plants to resist fungi and arthropod herbivores.
T. hybrida manipulated to produce Arabidopsis agmatine
coumaroyltransferase (AtACT), which is involved in phy-
toalexin biosynthesis, was resistant to a necrotrophic fun-
gus, Botrytis cinerea, unlike the wild-type progenitors
[67]. Collectively, transgenic torenia plants have proven to
be an ideal platform for a wide array of pest controls
according to the results of various gene manipulations.

Concluding remarks
In summary, recent advances in torenia research have
made this ornamental plant notable for genetic engineer-
ing aimed at studying both flower characteristics [5] and
pest control [15]. Torenia plants with manipulated flower
colors and aroma could be used to investigate interactions
between plants and pollinators or floral herbivores. Hor-
ticultural ecosystems are, however, very complicated and
(T. hybrida) for the predatory mite-associated indirect defense
e interactions, respectively. 1. 1-octen-3-ol; 2. (+)-2-carene; 3. α-
imene; 8. linalool; 9. (E)-4,8-dimethyl-1,3,7-nonatriene; 10. α-
rpene; IS, internal standard. An asterisk (*) in volatile profiles indicates
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flexible. For instance, natural enemies of foliage herbivores
(folivores) may occasionally be unresponsive to HIPV cues
from ornamental plants at flowering stages, so as to protect
themselves against intraguild predation by flower-visiting
generalist predators. Moreover, damage by folivores can re-
sult in delayed and shortened flowering periods and smaller
and fewer open flowers. This reduces the floral rewards,
such as nectar and pollen, exploited by flower visitors
(reviewed in [68]). This is the end result of trade-off
between defense and reproduction in plants. Therefore, a
wide range of systematic studies using torenia in addition to
other plant systems should be conducted to understand
realistic horticultural ecosystems, where huge numbers of
plants, animals, and microorganisms interact and achieve
coevolution and biodiversity.
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