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Abstract We examine whether F-term supersymmetric
hybrid inflation can in a natural way be embedded within
the minimal SO(10) model. We show that none of the sin-
glets of the Standard Model symmetries in the minimal set
of SO(10) representations can satisfy the conditions which
are necessary for a scalar field to play the rôle of the inflaton.
As a consequence, one has to introduce an extra scalar field,
which, however, may spoil the naturalness of inflation within
the context of SO(10). Nevertheless, if we add an extra scalar
field, we are then able to construct a model that can accom-
modate flat directions, while it preserves the stability of the
inflationary valley.

1 Introduction

Cosmological inflation is clearly the most studied and popu-
lar scenario that can provide an answer to some of the short-
comings that plague the hot big bang model, while it pre-
dicts a spectrum of adiabatic fluctuations that can fit the cos-
mic microwave background (CMB) temperature anisotropies
measurements [1]. Despite its success, one must, however,
keep in mind that the inflationary scenario faces some prob-
lems, like the onset of inflation [2–4] and the fine tuning of
the parameters in the inflationary potential so that the infla-
tionary predictions satisfy the data [5–8]. Moreover, despite
the more than three decades of work on the subject, infla-
tion still remains a paradigm in search of a model [9]. If
one accepts the validity of Grand Unified Theories (GUTs)
and the standard thermal history of the universe, then one
finds that the universe started at a symmetric phase with
high temperature and then as the universe expanded and the
temperature dropped, it underwent a series of Spontaneous
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Broken Symmetries (SSBs), followed by phase transitions
(PTs), which could have left behind topological defects, as
remnants of a previous more symmetric phase. Combining
GUTs with Supersymmetry (SUSY), one can consider hybrid
inflationary models, which may be of the type with the F-term
(often plagued by the η-problem, where contributions to the
slow-roll parameters of the order of 1, due to Planck mass
suppressed corrections to the inflaton potential, may impede
a sufficiently long slow-roll period) or with the D-term type
(leading always to cosmic string formation, due to the break-
ing of an extra U(1) symmetry)1. Given the plethora of pre-
cise data, arriving either from astrophysical (in particular,
the CMB), or from particle physics (in particular, the large
Hadron Collider (LHC)) experiments, one can examine the
validity of the various inflationary models and constrain their
free parameters. Moreover, one can also study whether such
models can arise naturally within the framework in which
they have been proposed. Following the latter approach we
will study whether, within minimal supersymmetric SO(10),
there is a singlet field that could play the rôle of the inflaton
and thus realise an F-term hybrid supersymmetric inflation-
ary model [9].

In the first part of our study, we show that none of the
(existing) scalar fields can satisfy the conditions necessary
in order to play the rôle of the inflaton. We thus introduce,
in the second part of our analysis, an extra SO(10)-singlet
superfield and write down the most general Higgs superpo-
tential. We may thus propose a model of F-term inflation
embedded in SO(10) that can be in agreement with all cur-
rent particle physics constraints. Certainly F-term inflation
can be realised within SO(10), but the necessity to intro-
duce an extra singlet renders SO(10) less appealing as a
gauge group describing the early evolution of our universe.

1 F-term inflation can be studied in the context of global supersym-
metry, whereas D-term inflation must be addressed within supergravity
[5].

123



2779 Page 2 of 9 Eur. Phys. J. C (2014) 74:2779

We study the realisation of inflation within SO(10), because
it is a well-studied gauge group in the context of hybrid
inflation.

2 Spontaneous symmetry breaking schemes
within SO(10)

The framework we will perform our analysis in is specified
as follows:

• F-term hybrid inflation with superpotential [10],

W F = κS(��̄ − M2), (1)

where S is a GUT singlet, �̄ and � are GUT Higgs fields
in complex conjugate representations which lower the rank
of the group by one unit when acquiring non-zero vacuum
expectation values (VEVs), and κ and M are two constants
(M has dimensions of mass) which can both be taken pos-
itive with field redefinitions.
The superpotential in Eq. (1) is the most general super-
potential consistent with an R-symmetry under which
W F → eiβ W F, �̄ → e−iβ�̄,� → eiβ� and S → eiβ S.
The scalar potential has a valley of local minima for
S > Scrit = M, �̄ = �, and one global supersymmet-
ric minimum at S = 0, �̄ = � = M . Imposing initial
conditions such that S � Scrit , the fields quickly settle
down the valley of local minima; the potential becomes
V = κ2 M4 �= 0, supersymmetry is broken and inflation
can take place. One-loop corrections to the effective scalar
potential introduce a tilt and assist the scalar field S to
slowly roll down the valley of minima. When S reaches
a value below Scrit , inflation stops by a waterfall regime
and the fields settle down to the global minimum of the
potential and supersymmetry gets restored.

• A series of SSBs from SO(10) down to the Standard Model
(SM) times Z2 that does not generate harmful topological
defects, like monopoles and domain walls, at the end of
inflation. The discrete symmetry Z2 must remain unbroken
down to low energies, to ensure proton stability. Following
the detailed study presented in Ref. [11], the SSB cascade
should take one of the following paths:

SO(10) → · · · → G3,2,2,B-L → GSM × Z2

→ SU(3)C × U(1)Q × Z2, (2)

SO(10) → · · · → G3,2,1,B-L → GSM × Z2

→ SU(3)C × U(1)Q × Z2, (3)

where the (compact) notation G3,2,2,B-L stands for the
SU(3)C×SU(2)L×SU(2)R×U(1)B-L, similarly G3,2,1,B-L

stands for SU(3)C × SU(2)L × U(1)R × U(1)B-L, and Z2

is the R-parity.

• Conservation of R-parity at low energies to accommo-
date proton lifetime stability. This requires the use of
only ‘safe’ Higgs representations [12]; thus one can use
10, 45, 54, 120, 126, 210 but not 16, 144, 560.

• Only renormalisable contributions to the superpotential.
• Type I or II see-saw mechanism. This requires a 126H

to participate to the Yukawa couplings to fermions and
appropriate Higgs couplings [13]. The type II may be more
natural in the context of SO(10).
The above assumptions are compatible with the framework
of Ref. [11], where the formation of cosmic strings were
found to be generic for a large number of SUSY GUTs. To
accommodate the CMB measurements one will then have
to either fine tune the parameters [5–8], or to complicate
the models and render the strings unstable [14].
Note that the GUT singlet S in Eq. (1) needs not be a sin-
glet of SO(10): in fact, inflation can be triggered at any
stage in the SSB cascade that finally leads to the SM. In
the spirit of a minimal GUT SO(10), we will not add any
SO(10) singlet, but we will rather look for the possibility
that F-term hybrid inflation is triggered during the sym-
metry breaking cascade initiated by a minimal GUT Higgs
field content.

3 Inflation purely within minimal SO(10)

Let us consider the following two well-studied classes of
SO(10) models: the first one is based on the Higgs con-
tent 210, 126, 126, 10 [15]; the second one focuses on real-
ising a doublet-triplet splitting and its Higgs content is
54, 45, 45′, 16, 16, 10, 10′ [16], sometimes extended by the
introduction of singlets [17].

In the vein of the first class, it has been noticed that its
minimal Higgs content is not fully able to account for the
observed masses and mixings of the fermions when the neu-
trino see-saw mechanism is implemented [18]. To cure this
problem, it has been proposed [19] to enlarge the model with
a 120. In what follows, we will adopt this context to per-
form our study, following the principle of minimal number
of Higgs fields. An example of inflation embedded in the
second class can be found in [20].

3.1 Higgs content and scalar superpotential

The Higgs sector of the Lagrangian is based on the minimal
model (see, e.g., Refs. [15,18,21]) and contains the following
superfields:

• � in the representation 210. In tensor notation, it is written
as a fourth rank symmetric tensor �i jkl .

• � and �̄ in the representations 126 and 126, respectively.
In tensor notation, they are written as an antisymmetric
fifth rank tensor �i jklm .
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• H in the representation 10. In tensor notation, it is written
as a 10-dimensional vector Hi .

• � in the representation 120. In tensor notation, it is written
as a third rank antisymmetric tensor �i jk .

Note that all indices in the tensor notation are SO(10)
indices and run from 1 to 10. We will first examine whether
inflation can be fully embedded within this (minimal) field
content, without introducing any additional superfields.

Imposing that the requirement that the superpotential is
an SO(10) invariant with these superfields, the most general
Higgs superpotential can be written as

W̃H = m �2 + λ �3 + m H H2 + m� ��̄ + η ���̄

+�H(α � + ᾱ �̄) + m� �2 + β H��

+γ �2� + ��(ζ � + ζ̄ �̄) . (4)

In the above expression, it should be understood that �2

means Tr �2 = �i jkl�i jkl , where a summation is implicit on
any repeated indices 2. The first line was obtained in Ref. [15].
The second one adds all the terms that the new 120 Higgs
allows [18]; this contribution is relevant only for the precise
fit of the SM fermion masses and will be omitted in the fol-
lowing. Note that we have omitted contributions from the
vector field H , since it corresponds to the MSSM sector.

One can easily notice that no term of the form of the second
contribution to Eq. (1) can be constructed with the current
field content since S would have to be a singlet of SO(10)
for the term SM2 to be SO(10) invariant. However, as shown
in Ref. [11], F-term inflation should not occur during the
first stage of SO(10) breaking, but at a later stage during the
SSB cascade, in order to solve the monopole problem. Thus,
we shall look for the F-term superpotential not in SO(10)
notation but in G3,2,2,B-L. Moreover, F-term inflation should
involve SM singlet components of the superfields of the the-
ory since their value at the end of inflation will not necessarily
vanish. Here we are not limiting ourselves to the SSB cas-
cade via G3,2,2,B-L: the other cascade via G3,2,1,B-L is also
described in our formalism, as the fields that may play the
rôle of the inflaton must have no charge under U(1)R. Limit-
ing ourselves to the fields satisfying the above requirements,
the superpotential effectively reduces to [15]

Wsinglet = m (p2 + 3a2 + 6b2) + 2λ (a3 + 3pb2 + 6ab2)

+m� σ σ̄ + η σ σ̄ (p + 3a − 6b), (5)

where

p = �(1, 1, 1),

a = �(15, 1, 1), b = �(15, 1, 3),

σ = �(1̄0, 1, 3), σ̄ = �̄(10, 1, 3),

2 Using the notation with indices, it is necessary to understand why
other contributions to the superpotential cannot exist, namely they
would not be scalars of SO(10).

and the integers in parentheses indicate the representation
under the Pati–Salam group SU(4)C × SU(2)L × SU(2)R.
In terms of the other SSB cascade containing U(1)R, it is
enough to replace the triplets with their ‘neutral’ component.
Note that �(10, 1, 1) cannot be safely given a VEV without
breaking part of the Standard Model. Furthermore, we do
not consider H as it has a small VEV because it contains
the MSSM Higgs fields, and we do not expect it to play any
significant rôle at the time of inflation. A phase redefinition
of the superfields can be used to set m, m� and η to be real
and positive, while λ can be a complex couplings.

It is clear that the only two fields that belong to conjugate
representations are σ and σ̄ ; therefore, they must be the GUT
Higgses that couple to the inflaton, like the superfields �

and �̄ in Eq. (1). Let us address the question of whether
we have an inflaton candidate. Clearly, a, b and p, though
they all possess a coupling to σ σ̄ , also all have a mass term,
which implies that none of them can play the rôle of the
inflaton field. We therefore want to find a combination of the
fields a, b and p that couples with σ σ̄ and is massless. Other
conditions apply, but firstly we should ensure that there is a
massless combination.

We will assume that the three superfields develop VEVs
(a0, b0 and p0), and they can be expanded around the new
vacuum as

p = p0 + P, a = a0 + A, b = b0 + B.

We also assume that the would-be inflaton is a linear com-
bination of the three superfields, and not of their complex
conjugates. We can then calculate the mass matrix for the
complex scalar components of {A, B, P} and, as a first step,
check if there is a massless combination by imposing the van-
ishing of the determinant of the mass matrix. This will give
some relations between the vacua, and allow one to define
the scalar field that could play the rôle of the inflaton. In a
second step, we will check whether other conditions neces-
sary for inflation to start are satisfied. In the mass matrix,
we set to zero the VEVs of σ and σ̄ , as it should be at the
onset of inflation, and consider the VEVs to be complex. The
determinant, as a function of the VEVs of the fields, is

Det
(
M2

i j

)
= Det

⎛
⎝ ∑

k=A,B,P

∂ Fk

∂φi

∂ F∗
k

∂φ∗
j

⎞
⎠

= 20736
∣∣∣m3 + (4a0 + p0)λm2

+2(2a2
0 + a0 p0 − 7b2

0)λ
2m − 12a0b2

0λ
3
∣∣∣
2
,

(6)

where Fk = ∂Wsinglet/∂φk is the F-term associated with the
scalar component φk of the superfield k = A, B, P , and the
indices i, j = A, B, P label the three relevant superfields.
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In general, Det
(M2

)
is non-zero, unless some special con-

ditions apply on the VEVs; we list below all possible cases.

3.1.1 Case a0 �= − m
2λ

In this case, we can solve for p0 and get

p0 = 12a0b2
0λ

3 − 2(2a2
0 − 7b2

0)λ
2m − 4a0λm2 − m3

mλ(m + 2λa0)
.

(7)

The massless eigenstate, a candidate for the rôle of the infla-
ton, is given by

X = 1

N
[−4mλb0 A + m(m + 2λa0) B

−6λb0(m + 2λa0) P], (8)

with N a normalisation. The other two combinations are mas-
sive, unless

|b0|2 = − m2|m + 2λa0|2
4|λ|2(13m2 + 36m�(λa0) + 36|λa0|2) , (9)

where we define the real part of λa0 by �(λa0). However,
it is easy to show that the above condition, Eq. (9), is never
satisfied: in fact, the numerator is positive definite, so there
exists a solution only if the denominator is negative, more
precisely if �(λa0) < 0 and

|λa0| > |�(λa0)| >
36|λa0|2 + 13m2

36m

⇒
( |λa0|

m

)2

− |λa0|
m

+ 13

36
< 0. (10)

The latter inequality is, however, never satisfied. Hence for
a0 �= − m

2λ
, there can be only a single massless scalar, denoted

by X and given in Eq. (8).

Subcase b0 = 0 (and a0 �= − m
2λ

)

The previous case simplifies considerably for b0 = 0.
Imposing Eq. (7), the mass matrix in the basis {A, B, P}
reads

M2 =
⎛
⎝

36|m + 2λa0|2 0 0
0 0 0
0 0 4m2

⎞
⎠ . (11)

The inflaton candidate is therefore B itself, while the other
two fields A and P are always massive.

3.1.2 Case a0 = − m
2λ

In this case one cannot solve for p0, which disappears from
Eq. (6), and the determinant reduces to

Det(M2) = 1327104 m2|λb0|4, (12)

therefore the presence of a massless mode requires b0 = 0.
In this case, the mass matrix simplifies to

M2 =
⎛
⎝

0 0 0
0 144|λp0|2 0
0 0 4m2

⎞
⎠ (13)

and the massless field is A. There is a second massless field
B only if p0 = 0.

3.2 Conditions for inflation

We now study in detail the further conditions that ensure the
existence of an inflationary potential, in order to pin down
the successful VEV configurations.

3.2.1 Case a0 = − m
2λ

, b0 = 0, p0 �= 0

Let us start with the simple case a0 = − m
2λ

, b0 = 0 and
p0 �= 0. The massless field is A and one can expand the
superfields around the vacua, namely

a = − m

2λ
+ A, b = B, p = p0 + P, (14)

to obtain the following superpotential for the superfields of
the would-be inflaton A:

Wsinglet = 3

(
ησ σ̄ − m2

2λ

)
A + 2λA3 + 12λB2 A

+other terms. (15)

The first term in the superpotential is exactly of the form
of Eq. (1); however, A cannot play the rôle of the inflaton
since its superpotential contains a trilinear coupling. Thus,
this case is excluded.

3.2.2 Case a0 = − m
2λ

, b0 = p0 = 0

In this case there are two massless fields, A and B, hence
the field that could play the rôle of the inflaton must be a
linear combination of these two fields. Expanding around
the VEVs, the superpotential for the massless scalars reads

Wsinglet = 3ησ σ̄ (A − 2B) − 3
m2

2λ
A + 2λA(A2 + 6B2)

+6λP B2 + other terms. (16)

This superpotential contains dangerous trilinear terms involv-
ing A and B: in order to check the feasibility of this config-
uration of vacua, we can study the potential for the scalar
components of the superfields, which contains

Vscalar = 4m2φ∗
PφP − 9m2(φ2

A + (φ∗
A)2)

−18m2(φ2
B + (φ∗

B)2) + other terms. (17)

The potential, therefore, contains mass terms for the real and
imaginary parts of A and B, and the mass has the wrong
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sign for the real parts. This signals the fact that the vacuum
configuration is not a local minimum of the scalar potential,
therefore it cannot be used to trigger inflation.

3.2.3 Case a0 �= − m
2λ

One can also in this case expand the superfields around the
VEVs, as

a = a0 + A, b = b0 + B, p = p0 + P

where p0 is related to a0 and b0 by Eq. (7), in order for the
fields A, B and P to contain a massless eigenstate. The field
X that could play the rôle of the inflaton is therefore given by
Eq. (8), and we can express the fields A, B, and P in terms
of X , as

A = 1

N

(−4λ∗mb∗
0 X + · · · ) ,

B = 1

N

(
m(m + 2λ∗a∗

0)X + · · · ) ,

P = 1

N

(−6λ∗(m + 2λ∗a∗
0)b∗

0 X + · · · ) . (18)

to obtain a superpotential for X , which contains a trilinear
term:

Wsinglet ⊂ −4m2(λ∗)2b∗
0

N 3

[
21m3 + 102m2λ∗a∗

0

+4m(λ∗)2(39(a∗
0 )2 + 8(b∗

0)2) + 72(λ∗)3a3
0

]
X3

+interactions + other terms. (19)

For the trilinear term to vanish, one should impose a con-
dition on the VEVs a0 and b0, namely

b0 = 0 or b0 = ±i
m + 2λa0

4λ

√
3(7m + 6λa0)

2m
. (20)

Let us now study these two subcases in detail.
Subcase a0 �= − m

2λ
, b0 = 0

In this case, the field that could play the rôle of the inflaton
is X = B, with superpotential given by

Wsinglet = −6ησ σ̄ B + 6λ(2A + P)B2 + other terms . (21)

Since B does not have a linear term, this subcase is excluded.

Subcase a0 �= − m
2λ

, b0 �= 0

Fixing the vacuum b0 to the second solution in Eq. (20),
the superpotential for X contains both a linear term in X and
a coupling σ σ̄ X , as required, but also a dangerous quadratic
term. The quadratic term only vanishes when a0 is real, i.e.
a0 = a∗

0 , so that we will impose this condition from now on.
The vanishing of the quadratic term is, however, still not

enough to ensure that the would-be inflaton is massless: in
fact, we assumed that the inflaton X is a superposition of the
chiral superfields. The condition we imposed at the begin-
ning, makes sure that a mass in the form φ∗

XφX is zero; how-

ever, it does not ensure the vanishing of mass terms in the
form (φ∗

X )2 + φ2
X . We numerically checked that there is no

massless state once the full mass matrix, written in terms of
real scalar fields, is considered in this vacuum structure. We
can therefore conclude that this last subcase is excluded.

Below we will therefore assume that the minimal SO(10)
is extended with the introduction of a singlet S that will play
the rôle of the inflaton field.

4 Extending the minimal SO(10)

Let us then introduce an extra scalar field S, which could play
the rôle of the inflaton and examine whether we can find flat
directions with a stable inflationary valley. We will focus on
the simple case where S is a singlet of SO(10), while non-
singlets may also be used to play the rôle of the inflaton [22].

4.1 Higgs content and scalar superpotential

The Higgs sector is based on the minimal model described
in Refs. [15,18,21], with the additional introduction of an
SO(10) singlet superfield S. By imposing that the superpo-
tential is a scalar function of the superfields, the most general
Higgs superpotential takes the form

W̃H = m �2 + λ �3 + m H H2 + m� ��̄

+η ���̄ + �H(α � + ᾱ �̄)

+m� �2 + β H�� + γ �2� + ��(ζ � + ζ̄ �̄)

+κ S(��̄ − M2) + mS S2 + λS S3

+S(δ1 H2 + δ2 �2 + δ3 �2). (22)

The first three lines contain the superpotential in Eq. (4); the
terms in the last two lines of the above expression appear
because of the presence of an extra singlet in the theory,
included in order to realise inflation.

Of the above superpotential, we can safely neglect terms
involving �, because it does not contain a singlet component
under the SM gauge symmetries, and H , since this superfield
realises the electroweak SSB and has therefore a very small
VEV. The third line in Eq. (22) contains the superpotential
terms required for F-term inflation. The terms in the fourth
line, containing the singlet field, are potentially dangerous as
they can spoil hybrid inflation by generating mass or quartic
terms for the inflaton field. In the following, therefore, we
will set all the extra terms containing S to zero3: this shows
that some tuning is necessary in order to obtain inflation.

3 After carefully studying the general case, we found that an inflationary
valley can also be found for tuned values of the extra couplings mS, λS
and δ3. However, the minimum of the valley sits on a supersymmetric
vacuum with vanishing scalar potential, therefore it cannot be used
for hybrid inflation. One such solution is δ3 = λ2κM2/(3m2), λS =
−δ3

3/λ2 and mS = −3mδ2
3/λ2.
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The Higgs superpotential, relevant for our study, reads

W̃H = m �2 + λ �3 + m� ��̄

+η ���̄ + κ S(��̄ − M2). (23)

Here, we can use the phases of the superfields to set m, m� , κ
and M to be real and positive, while λ and η may be complex
couplings. Following our results from the previous section,
the inflaton must be contained in the SO(10) singlet S.

4.2 Vacuum expectation values and superfields

We will follow the procedure of Ref. [15] to describe how
the cascade of SSB, given in Eq. (3), can be realised. We
need first to identify the components of the Higgs fields that
can take a non-vanishing VEV; they are necessarily singlets
under the SM. Using Ref. [23], the only superfields that can
be considered are

p = �(1, 1, 1), a = �(15, 1, 1

b = �(15, 1, 3), σ = �(1̄0, 1, 3

σ = �̄(10, 1, 3), s = S(1, 1, 1).

(24)

This is the same set used in the previous section, with the
addition of the SO(10) singlet. The superpotential that one
has to study reads

WH = m (p2 + 3a2 + 6b2) + 2λ (a3 + 3pb2 + 6ab2)

+m� σ σ̄ + η σ σ̄ (p + 3a − 6b)

+κ s(σ σ̄ − M2). (25)

4.3 Minimisation of the superpotential

In the absence of a Fayet–Iliopoulos term ξ , as in our case, the
condition for the D-term, (ξ + 1/2

∑
i qi 〈�i 〉2)2, to vanish

is
∑

i

qi 〈�i 〉2 = 0,

where q stands for the charge under U(1) and 〈�i 〉 denote the
VEVs of the superfields in question. Since the only charged
superfields are σ and σ̄ , which have opposite charges, the
condition for the D-term to vanish is 〈σ 〉 = ±〈σ̄ 〉. The
F-terms, Fi ≡ ∂WH /∂�i , read

Fp = 2mp + 6λb2 + ησ σ̄ ,

Fa = 3[2ma + 2λ(2b2 + a2) + ησ σ̄ ],
Fb = 6[2mb + 2λb(2a + p) − ησ σ̄ ],
Fσ = σ̄ [m� + η(p + 3a − 6b) + κs],
Fσ̄ = σ [m� + η(p + 3a − 6b) + κs],
Fs = κ(σ σ̄ − M2),

(26)

and the scalar potential is the sum V = ∑
i |Fi |2. The VEVs

of the fields will take values in order to minimise the scalar
potential V .

4.3.1 Global minima

Let us study whether it is possible to choose the VEVs such
that all F-terms vanish, thus the potential itself vanishes,
corresponding to global (SUSY preserving) minima of the
potential. Here we use a subscript 0 to label the VEVs in
order to distinguish them from the superfields, so that s0 is
the VEV of the superfield s, and so on. The F-term associated
to s vanishes only if σ0 = σ̄0 = ±M . To construct a SUSY
preserving global minimum, the other VEVs have to satisfy
the following conditions:

2mp0 + 6λb2
0 + ηM2 = 0,

2ma0 + 4λb2
0 + ηM2 = 0,

2mb0 + 2λb0(2a0 + p0) − ηM2 = 0,

m� + η(p0 + 3a0 − 6b0) + κs0 = 0.

(27)

The latter equation sets the value of s0:

s0 = −m�

κ
+ η

κ
(6b0 − p0 − 3a0). (28)

We first solve the system in the limit ηM2 
 m2, where
we can approximate the equations by setting M = 0. This
approximation is a realistic one, because in our setting M2

is likely to be lower than m2, in order for the B-L symmetry
breaking to occur as a second stage in the SSB pattern, and
for the validity of a perturbation analysis, η is required to
be lower than 1. In this case, the six solutions for the VEVs
a0, b0, p0 and s0 are given by

• p0 = 0, a0 = 0, b0 = 0, s0 = −m�

κ
;

• p0 = 0, a0 = −m
λ
, b0 = 0 s0 = −m�

κ
+ 3 ηm

κλ
;

• p0 = − m
3λ

, a0 = − m
3λ

, b0 = ± m
3λ

, s0 = −m�

κ
+

4±6
3

ηm
κλ

;
• p0 = 3m

λ
, a0 = − 2m

λ
, b0 = ± im

λ
, s0 = −m�

κ
+ 3(1 ±

2i) ηm
κλ

.

When M is not set equal to zero, there are six general solu-
tions. Two of them are found by noticing that p0 = −b0 = a0

is a solution of the system above. It gives

p0 = −b0, a0 = −b0,

b0 = m

6λ

⎛
⎝1 ±

√
1 − 6

ληM2

m2

⎞
⎠ . (29)
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The other four solutions are obtained by solving the following
equation in b0:

6

(
λ

m
b0

)4

+ 2

(
λ

m
b0

)3

+
(

6 + ληM2

m2

)(
λ

m
b0

)2

+2

(
1 + ληM2

m2

)(
λ

m
b0

)
+ ληM2

m2 = 0. (30)

For these solutions, the VEVs a0 and p0 then read

p0 = −m

λ

(
1

2

ληM2

m2 + 3
λ2b2

0

m2

)
,

a0 = m

λ

(
3λ2b2

0

2m2 − 1

2
+ 1

4

ληM2

m2

(
1 + m

λb0

))
. (31)

Let us now discuss the properties of these solutions. It is inter-
esting to note that the SO(10) preserving minimum found in
Ref. [15] (with σ0 = σ̄0 = p0 = a0 = b0 = 0) is not pre-
served by our superpotential; SO(10) must be broken with the
choice of superpotential given in Eq. (23). Note also that if
some SUSY preserving minima exist, they are never reached
at a vanishing VEV for the inflaton s, unless m� is tuned to
vanish on the given solution. The latter situation is, however,
not generic, as the other terms in s0 may have non-trivial
phases, while m� is real and positive. The symmetries pre-
served by these minima are those of the SM, which is what
is required at the end of the B-L symmetry breaking.

The exact equations determining the vacua depend on two
combinations of parameters: m/λ and x = ληM2/m2. To
better understand the vacua, we can expand the solutions for
small x 
 1 (which corresponds, at zero order, to the solu-
tions for M = 0): we will focus on three particular solutions
that will be relevant for the onset of inflation. At leading order
in x , we find

a0 = m

λ

(
−1 + 1

4
x + · · ·

)
,

b0 = m

λ

(
−1

2
x + · · ·

)
,

p0 = m

λ

(
−1

2
x + · · ·

)
,

s0 = −m�

κ
+ ηm

κλ

(
3 − 13

4
x + · · ·

)
; (32)

for the first solution, and

a0 = m

λ

(
−2 + 3 ± i

10
x + · · ·

)
,

b0 = m

λ

(
±i + 1 ± 2i

10
x + · · ·

)
,

p0 = m

λ

(
3 − 2 ± 9i

10
x + · · ·

)
,

s0 = −m�

κ
+ ηm

κλ

(
3(1 ± 2i) + 4 ± 3i

5
x + · · ·

)
, (33)

for the remaining two. From these approximate solutions we
see that the vacua break SO(10) completely to the SM gauge
symmetries.

4.3.2 Local minima at the onset of inflation

As a next step, one has to look for the local minimum of
the potential assuming an initially large value of the VEV
of the inflaton s. Indeed, this is the state of the field usually
assumed in chaotic inflation. To preserve the global picture of
F-term inflation, we will assume that the intermediate stage
of symmetry is obtained while being in the false vacuum
corresponding to σ0 = σ̄0 = 0, in order to minimise the
contribution from Fσ and Fσ̄ to the potential.

It is worth noting that, contrary to the F-term inflation toy
model, where only the large value of s induces a mass term
for the σ and σ̄ fields, in our case here also the mass term
m� as well as the VEVs of p, a and b make a contribution.
Once the VEVs σ0, and σ̄0 vanish, the F-term VEVs read

Fp = 2mp0 + 6λb2
0,

Fa = 3[2ma0 + 2λ(2b2
0 + a2

0)],
Fb = 6[2mb0 + 2λb(2a0 + p0)],
Fσ = 0 = Fσ̄ ,

Fs = −M2κ.

(34)

As a consequence, even if the first three F-terms in the scalar
potential V can be cancelled by an appropriate choice of
p0, a0 and b0, the potential will be constant and given by
V0 = κ2 M4; this is an s-flat direction. The minimum of the
potential is obtained for the VEVs of a0, b0 and p0 that set to
zero the associated F-terms. The six solutions are the same
as the ones we found for the global minima for M = 0:

• p0 = 0, a0 = 0, b0 = 0. This minimum is obviously
invariant under SO(10).

• p0 = 0, a0 = −m
λ

, b0 = 0. Since a0 ≡ 〈�(15, 1, 1)〉, it is
clear that SU(2)L× SU(2)R is preserved by this minimum.
The component of the 15 of SU(4)C ⊃ SU(3)C×U (1)B−L

that can take a VEV is the one that preserves SU(3)C, which
is also uncharged under U (1)B−L [23]. This minimum is
thus invariant under G3,2,2,B-L.

• p0 = 3m
λ

, a0 = − 2m
λ

, b0 = ± im
λ

. For the symmetries
left unbroken by these minima, this case is similar to the
above one (since the VEV p0 has no effect on symmetries),
except that the VEV b0 ≡ 〈�(15, 1, 3)〉 induces the addi-
tional breaking SU(2)R → U(1)R. This minimum is thus
invariant under G3,2,1,B-L.

• p0 = − m
3λ

, a0 = − m
3λ

, b0 = ± m
3λ

. A careful analy-
sis of these minima shows that they are invariant under
SU(5)×U(1) [15].
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Note that we have not made any assumption on the val-
ues of the potential parameters and our solutions are exact.
These solutions, already found in Ref. [15], are now of phe-
nomenological interest even though they do not give rise to
the SM, since inflation will drive the last part of the symmetry
breaking.

4.3.3 Stability of the inflationary valley

The vacua that we are interested in are the ones that have an
unbroken G3,2,2,B-L and G3,2,1,B-L symmetry. To compute
the scalar potential for the former case (a0 = −m/λ and
b0 = p0 = 0), we expand the scalar components of the
superfields around the local vacua

a = ϕa − m

λ
, b = ϕb, p = ϕp ,

σ = ϕσ , σ̄ = ϕσ̄ , s = s0 + ϕs, (35)

where ϕx are the scalar perturbations around the vacuum
expectation value of the field x . The scalar potential then
reads

V =
∣∣∣2mϕp + 6λϕ2

b + ηϕσ ϕσ̄

∣∣∣
2

+
∣∣∣12mϕb + 2λ

(
6ϕpϕb + 12

(
ϕa − m

λ

)
ϕb
)− 6ηϕσ ϕσ̄

∣∣∣
2

+
∣∣∣6m

(
ϕa − m

λ

)
+ 2λ

(
3
(
ϕa − m

λ

)2 + 6ϕ2
b

)+ 3ηϕσ ϕσ̄

∣∣∣
2

+κ2
∣∣∣ϕσ ϕσ̄ − M2

∣∣∣
2

+
(∣∣∣ϕσ |2 + |ϕσ̄ |2

)∣∣∣m� + η
(
ϕp + 3ϕa − 3

m

λ
− 6ϕb

)

+κ
(
s0 + ϕs

)∣∣∣
2
. (36)

Expanding the potential up to quadratic terms, we have

V = κ2 M4 + 36m2ϕ∗
aϕa + 144m2ϕ∗

bϕb + 4m2ϕ∗
pϕp

+
∣∣∣m� − 3ηm

λ
+ κs0

∣∣∣
2
(ϕ∗

σ ϕσ + ϕ∗̄
σ ϕσ̄ )

−κ2 M2(ϕσ ϕσ̄ + ϕ∗
σ ϕ∗̄

σ ) + · · · . (37)

We note that the scalar perturbations in a, b and p correspond
to massive fields, while the scalar perturbations in σ and σ̄

have a mass matrix that depends on the VEV of the inflaton.
For large values of s0, the mass squares are positive and the
vacuum σ0 = σ̄0 = 0 is stable. During inflation, the value of
s0 will slowly roll along the flat direction, until the condition

scrit
0 = −m�

κ
+ 3

ηm

κλ
± M (38)

is met: this is the critical value of the inflaton VEV below
which the ϕσ –ϕσ̄ system will develop a tachyonic mass and
the system will quickly settle on a stable vacuum. For small
M , the unstable point is close to the minimum in Eq. (32), so
it is likely that the fields will settle on this minimum: at this

point, supersymmetry is restored and SU(2)R× U(1)B-L is
broken to the hypercharge by the non-vanishing vacua of σ

and σ̄ at a scale M .
We can now repeat the calculation in the latter case, which

corresponds to the G3,2,1,B-L SSB cascade, by expanding the
fields around the VEVs as follows:

a = ϕa − 2
m

λ
, b = ±i

(
ϕb + m

λ

)
, p = ϕp + 3

m

λ
,

σ = ϕσ , σ̄ = ϕσ̄ , s = s0 + ϕs . (39)

Following the same procedure as for the former case, the
potential up to quadratic terms in the fields is given by

V = κ2 M4 + 900m2ϕ∗
aϕa + 720m2ϕ∗

bϕb + 148m2ϕ∗
pϕp

+432m2(ϕ∗
aϕb + ϕ∗

bϕa) + 288m2(ϕ∗
aϕp + ϕ∗

pϕa)

−24(ϕ∗
pϕb + ϕ∗

bϕp)

+
∣∣∣m� − 3(1 ± 2i)ηm

λ
+ κs0

∣∣∣
2
(ϕ∗

σ ϕσ + ϕ∗̄
σ ϕσ̄ )

−κ2 M2(ϕσ ϕσ̄ + ϕ∗
σ ϕ∗̄

σ ) + · · · . (40)

Once more, the inflaton field is massless, and the first three
lines define a mass matrix for the three complex fields
ϕa,b,p, whose eigenvalues are numerically given by mi =
{1.841, 21.768, 35.927} · m. The valley is stable, until the
inflaton VEV reaches the critical value

scrit
0 = −m�

κ
+ 3(1 ± 2i)ηm

κλ
± M. (41)

For small M , the nearest global vacuum is one of the two
in Eq. (33), which also restore supersymmetry and break the
remaining symmetries down to the SM ones.

We were thus able to propose a model and a superpotential
such that F-term inflation is explicitly embedded in a detailed
and minimal model of SO(10) that has successfully passed
particle physics phenomenology tests. We have found three
local minima (out of six) for the scalar potential for which
the symmetries are such that no harmful topological defects
are formed at the end of inflation and where there are no
tachyonic modes that will destabilise the inflationary valley:

σ0 = σ̄0 = p0 = b0 = 0, a0 = −m

λ
, s0 �= 0,

V0 = κ2 M4, (42)

or

σ0 = σ̄0 = 0, a0 = −2
m

λ
, p0 = 3

m

λ
,

b0 = ±i
m

λ
, s0 �= 0, V0 = κ2 M4. (43)

The first local minimum can give rise to a successful phase
of F-term inflation that will dynamically break G3,2,2,B-L

into the GSM × Z2 symmetry group, thus realising the SSB
patterns of Eq. (2). The latter two minima will do the same
with G3,2,1,B-L. Cosmic strings are formed at the end of infla-
tion [11] at an energy scale related to inflationary physics and
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are expected to have some impact in cosmology [5,6,24]. By
doing so, the system will evolve to one of the minima detailed
in Sect. 4.3.1.

5 Conclusions

The inflationary paradigm has been extensively studied in the
context of Supersymmetric Grand Unified Theories. Given
that SO(10) is a well-studied gauge group, we have investi-
gated whether it can accommodate an inflationary era with-
out the introduction of an extra scalar field to play the rôle
of the inflaton. In particular, we have studied whether F-term
hybrid inflation can be incorporated in a rather natural way.
We have shown that none of the scalar fields of SO(10) can
play the rôle of the inflaton and one has to introduce an extra
scalar field. This result may be considered as an element that
spoils the naturalness of inflation within SO(10).

Adding an extra scalar field, singlet under SO(10), which
could play the rôle of the inflaton, we have shown the exis-
tence of an appropriate superpotential that can have flat direc-
tions preserving the stability of the inflationary valley.
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