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Impact of vascular calcification on
cardiovascular mortality in hemodialysis
patients: clinical significance, mechanisms
and possible strategies for treatment

Takayasu Ohtake* and Shuzo Kobayashi
Abstract

Vascular calcification has now been recognized as a major problem in dialysis patients because of its strong
influence on the prognosis. Along with the regulatory failure of calcification-inhibitory system, active phenotypic
change of vascular smooth muscle cells (VSMCs) to osteoblast-like cells is also involved in the progression of
vascular calcification.
Delaying or improving the vascular calcification is thought to be very important to improve the cardiovascular
mortality in dialysis patients. Several interventional trials against vascular calcification using non-calcium-containing
phosphate binders, low-dose active vitamin D plus cinacalcet, modification of dialysate calcium concentration, and
sodium thiosulfate have been done, and some trials including non-calcium-containing phosphate binders showed
beneficial effect on delaying vascular calcification in dialysis patients. However, delaying or improving vascular
calcification has not been clearly proved to result in improved cardiovascular event and/or mortality rate by
prospective interventional randomized controlled trials in dialysis patients. Whether the improvement of vascular
calcification could directly lead to the improvement of survival is an urgent issue of clinical trials in dialysis patients.
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Background
As mentioned in a recent review [1], active atherosclerotic
process has already begun in the early stages of chronic
kidney disease (CKD), and atherosclerotic organ damages
deteriorate along with the decreasing renal function. By
the time of the initiation of renal replacement therapy
(RRT), major atherosclerotic vascular damages have
already been completed in many patients. Coronary artery
stenosis (CAS) has been shown in almost 50% in patients
with end-stage renal failure (ESRD) [2, 3], and almost
80% of diabetic ESRD patients have significant occult
CAS at the initiation of RRT in spite of no chest
symptom or no previous history of ischemic heart
disease [2]. However, as Lindner et al. rung an alarm
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42 years ago [4], atherosclerotic process intensively
accelerates after the initiation of RRT.
One of the most characteristic features of atherosclerosis

seen in dialysis patients is vascular calcification, especially
“medial calcification.” Medial calcification was initially
described in 1903, a hundred years ago by Johann Georg
Mönckeberg, a German pathologist. Therefore, medial cal-
cification may be called as “Mönckeberg’s mediasclerosis”
or “Mönckeberg’s mediacalcinosis” [5]. Vascular calcifica-
tion crossly associates with several target organ damages
(TODs) including stroke, ischemic heart disease, and per-
ipheral arterial disease. Vascular calcification causes TODs
via the disturbance of vascular function, i.e., “vascular
failure.”
Vascular calcification affects on the future cardiovascu-

lar events and/or mortality in dialysis patients [6–20].
Several clinical trials to aim to improve cardiovascular
events and/or mortality in dialysis patients have been
planned or reported. Among these trials, the largest
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randomized controlled trial (RCT), the LANDMARK
study, which compares the effect of non-calcium-
containing phosphate binder, lanthanum carbonate, with
calcium-containing phosphate binder, is now ongoing in
Japan [21]. The result of the LANDMARK study will soon
be open.
Here, we want to summarize in the present situation

about the clinical significance, mechanisms, and the
behavior of vascular calcification by interventional trials
and provide update information about clinical trials
against vascular calcification in dialysis patients.

Clinical impact of vascular calcification
Several reports have shown the strong relationship
between vascular calcification and clinical outcomes
including cardiovascular events, and cardiovascular and
all-cause mortality.
The number of calcified sites including carotid artery,

abdominal aorta, ilio-femoral axis, and legs was a strong
predictor of cardiovascular and all-cause mortality in an
early study [6]. As to the relationship between coronary
artery calcification score (CACS) and clinical outcomes,
dialysis patients with higher CACS showed significantly
higher rate of cardiovascular and all-cause mortality
compared with those with mild or no CACS (Fig. 1)
[7–13]. In these reports, cardiovascular events were
also significantly correlated with high CACS. Aortic
calcification also significantly correlated with cardio-
vascular and all-cause mortality and was an independ-
ent predictor of cardiovascular and all-cause mortality
Fig. 1 Impact of CACS on cardiovascular events, cardiovascular mortality, a
significantly higher cardiovascular event rate, cardiovascular mortality rate,
(N = 37), according to the median value of CACS (748.2) of all 74 patients. a
Abbreviation: CACS coronary artery calcification score
[14–19]. These associations between vascular calcification
and clinical outcomes were independent even after adjust-
ing traditional risk factors such as age, hemodialysis dur-
ation, hypertension, diabetes, smoking, and dyslipidemia.
Clinical significance in other vascular sites has also been
reported. Carotid artery calcification at the initiation of
hemodialysis was an independent associating factor for
cardiovascular events in incident hemodialysis patients
[20]. Furthermore, lower limbs’ arterial calcification was
crossly associated with the presence and severity of per-
ipheral arterial disease (PAD) in hemodialysis patients
[22]. Critical limb ischemia (CLI) strongly impacts on the
prognosis of hemodialysis patients, and lower limbs’
arterial calcification in CLI patients was extremely
high compared with non-PAD or non-CLI patients on
hemodialysis (Fig. 2).
Vascular calcification positively correlates with arterial

stiffness. Aortic stiffness represented by aortic pulse
wave velocity (PWV) was significantly associated with
abdominal aortic calcification [23] and CACS [24]. In-
creased aortic stiffness (increased cardiac afterload) con-
sequently leads to left ventricular hypertrophy (LVH).
LVH could be also induced by elevated fibroblast growth
factor 23 (FGF23) as proven in an animal experiment
[25]. Both calcification-related cardiac ischemia and
LVH concomitantly increase the risk of cardiovascular
mortality (Fig. 3). Hemodynamic and functional changes
associated with vascular calcification have strong clinical
impact on morbidity and mortality in dialysis patients.
Therefore, clarifying the mechanisms and accelerating
nd all-cause mortality [10]. Patients with CACS >750 (N = 37) showed
and all-cause mortality rate compared with patients with CACS <750
Cardiovascular events, b cardiovascular mortality, c all-cause mortality.



Fig. 2 a, b Lower limbs’ arterial calcification score and severity of peripheral arterial disease in hemodialysis patients [22]. Lower limbs’ arterial
calcification score (above knee, below knee). *p < 0.01 vs. PAD(−) group, #p < 0.01 vs. PAD Fontaine 1 group. Abbreviations: SFA superficial femoral
artery, BKA below-knee arteries, PAD peripheral arterial disease
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factors for vascular calcification in dialysis patients is
very important.
Mechanisms and associating factors for vascular
calcification
Serum levels of both calcium and phosphate in normal
physiological condition are tightly regulated in narrow
ranges. Formation of hydroxyapatite is limited in bones,
and vascular calcification does not occur. Vascular
smooth muscle cells (VSMCs) prevent ectopic calcifica-
tion via inhibitory mechanisms in normal physiological
condition. However, extensive and accelerating medial
Fig. 3 Clinical aspect of vascular calcification leading to cardiovascular
complication. The critical key for vascular calcification is
hyperphosphatemia due to decreased renal function.
Hyperphosphatemia causes vascular calcification through several
mechanisms. Vascular calcification, concomitantly with left ventricular
hypertrophy and cardiac fibrosis, causes cardiovascular complication.
Abbreviations: FGF23 fibroblast growth factor 23, VSMC vascular smooth
muscle cell, iPTH intact parathyroid hormone, PWV pulse wave velocity
calcification ensues in CKD patients, especially in dialysis
patients. Important mechanisms of vascular calcification
in dialysis patients are (1) failure of inhibitory systems for
vascular calcification and (2) differentiation of VSMCs to
osteoblast-like cells (Fig. 4).
Inhibitory factors for vascular calcification include

matrix Gla protein (MGP), pyrophosphate (produced in
VSMCs), and circulating inhibitor fetuin A. On the other
hand, activation of transcription factors “Runx2” and
mineralization regulating protein “alkaline phosphatase
(ALP)” are important key factors for osteochondrocytic
differentiation of VSMCs. Uremic milieu concomitantly
inactivates the production of inhibitors and promotes
phenotypic changes and/or apoptosis of VSMCs resulting
in medial calcification (Fig. 4) [26].

Inhibitory factors (with comment about the risk of
warfarin use)
MGP is expressed in VSMCs and loaded in matrix vesicles
(scaffold of calcification) around VSMCs, consequently
inhibiting their calcification. MGP binds to calcium and
pro-osteogenic factor bone morphologic protein 2 (BMP2)
and inactivates it in normal condition [27]. However, load-
ing of MGP is decreased in high calcium circumstances,
and matrix calcification is promoted [28, 29]. Vitamin K is
essential for MGP activation. Therefore, deficiency of
vitamin K inhibits MGP activity, thus leading to vascular
calcification enhancement. Warfarin, an antagonist to
vitamin K, is a strong promoter of arterial calcification via
blocking the activation of vitamin K-dependent MGP [30].
Many dialysis patients have cardiovascular complications,
including artificial valve replacement, atrial fibrillation, and
cardiogenic cerebral embolism, which might necessitate
warfarin prescription. However, many cardiologists who
prescribe warfarin do not know the profound risk of
warfarin as a strong promoter of vascular calcification in



Fig. 4 Cellular aspect of VSMCs leading to medial calcification.
Elevated P induces Runx2 upregulation and promoted
osteochondrocytic differentiation of VSMCs. At the same time, uremic
milieu decreases endogenous inhibitors. Hyperphosphatemia
stimulated excretion of extracellular matrix with high affinity for
calcium from VSMCs. Concomitant calcium overload (or elevated
calcium) enhances calcium deposition around VSMCs. Abbreviations:
VSMC vascular smooth muscle cell, P phosphate, Ca calcium, MGP
matrix Gla protein, ECM extracellular matrix
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dialysis patients. Not only nephrologists but cardiologists
should be aware of the profound risk of warfarin use in
dialysis patients.
Pyrophosphate binds to hydroxyapatite crystals and

inhibits their further growth. ALP, which is upregulated
in VSMCs in the early stages of vascular calcification
and a key factor for mineralization, degrades pyrophos-
phate, thereby promoting calcification [31–33]. Osteo-
genic transcription factor Runx2 is thought to regulate
the expression of ALP.
Fetuin A is a circulating inhibitor and forms a complex

with calcium and phosphate, forming a calciprotein
particle (CPP), thus preventing mineral deposition in vas-
cular walls [34, 35]. Furthermore, fetuin A is taken up by
synthetic VSMCs and secreted in a matrix around
VSMCs, where it protects from calcification [36]. There-
fore, fetuin A has dual inhibitory actions, one in circula-
tion and the other in vascular walls. The levels of fetuin A
are reduced in dialysis patients, and it might reflect the
excessive CPP formation in dialysis patients [37–40].
Osteoblastic differentiation
Runx2 upregulation and ALP expression in VSMCs is the
most important process in the early phase of osteoblast-like
cell differentiation of VSMCs [41]. Expression of Runx2 is
normally restricted in the bone and cartilage. However,
VSMCs express Runx2 via the stimulation of several
uremia-related factors including phosphate, oxidative stress
[42], and aldosterone [43, 44], among which phosphate is
the strongest stimulator of Runx2 upregulation.
Phosphate elevation is the most important and strong

key factor for vascular calcification (Fig. 4). An early
study by Shigematsu et al. provided that the primary
culture of radial artery VSMCs from a dialysis patient
showed increased excretion of extracellular matrix with
high affinity for calcium when incubated with a high
phosphate medium (Pi = 5.4 mg/dl) [45]. They provided
the evidence that phosphate overload accelerates vascu-
lar calcium deposition in vitro. High phosphate signal
around VSMCs was recognized by increased uptake of
phosphate by VSMCs via Pit 1 and Pit 2, sodium-
dependent phosphate transporters.
As to the implication of calcium, vessel rings from a

dialysis patient showed calcium-induced calcification
more potently than phosphate (at equivalent calcium-
phosphate product) [46]. Higher calcium concentration
accelerated calcium deposition more severely than high
phosphate concentration in vessel rings. This result
suggested calcium has stronger influence on vascular
calcification than phosphate. Sustained hyperphospha-
temia with episodic increase of calcium or calcium
overload is thought to strongly influence the cellular
defense mechanism against calcification.
Basic researches and epidemiological observational

studies provided several clinical factors that are signifi-
cantly associated with vascular calcification (Table 1)
[10, 22, 45–73]. Among these factors, mineral abnormal-
ities including hyperphosphatemia, hypercalcemia, and ele-
vated Ca × Pi product are the most important key factors
for vascular calcification. Our previous study showed
micro-inflammation, represented by elevated highly sensi-
tive C-reactive protein, was another strong and independ-
ent predictor for CAC progression (Fig. 5) [10]. Other
studies also provided the link between micro-inflammation
and progression of CAC [24, 74, 75]. It has now been
known that hyperphosphatemia itself is an important
source of inflammation [76]. Inflammatory cytokine TNF-α
upregulates Pit-1 expression and Na-Pi co-transporter and
increases phosphate uptake into VSMCs [77]. Both phos-
phate overload and accompanying inflammation is thought
to concomitantly enhance the vascular calcification.

FGF23/klotho axis and vascular calcification
Both fibroblast growth factor 23 (FGF23) and klotho, the
key players in CKD-MBD, have recently attracted great



Table 1 Associating factors for vascular calcification in
hemodialysis patients

Inducers Inhibitors Target for treatment

Aging Fetuin A Phosphate

Phosphate/calcium MGP Calcium

Inflammation Pyrophosphate Intact PTH

Aldosterone Osteopontin Vitamin D

Warfarin use Osteoprotegerin Vitamin K

AGEs/diabetes BMP7 Acidosis

BMP2/4 Adiponectin Inflammation

Leptin Collagen IV Dialysate

oxLDL

Collagen I/fibronectin

High blood pressure

Inducers and inhibitors for vascular calcifications are listed. As shown in the
table, several factors associate the pathophysiology of vascular calcification.
Several inhibitor systems exist in the human body, and it might mean the
importance to protect from ectopic vascular calcification. If the inhibitory
system would fail, serious complication might occur. Treatment target which
we can intervene are also listed
Abbreviations: AGEs advanced glycation end products, BMP bone morphogenic
protein, LDL low-density lipoprotein, MGP matrix Gla protein, PTH;
parathyroid hormone
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concerns in relation to cardiovascular events and vascular
calcification in CKD patients. FGF23 was found as a bone-
derived (synthesized and excreted by osteoblast) hormone
that regulates phosphate and 1,25-hydroxyvitamin D me-
tabolism [78]. FGF23 binds to the FGF receptor with its
co-receptor klotho and acts to increase renal phosphate
excretion. In addition, FGF23 reduces the synthesis of
1,25-hydroxyvitamin D. Furthermore, FGF23 decreases
parathyroid hormone synthesis and secretion. FGF23
Fig. 5 Stratified hsCRP and the progression of CAC [10]. CACS of 56
patients on maintenance hemodialysis were evaluated repeatedly with
15 months interval, and delta CACS (changes of CACS) were shown
according to stratified hsCRP. Progression of CACS was significantly
correlated with baseline hsCRP values. Abbreviations: hsCRP high
sensitive C-reactive protein, CACS coronary artery calcification score
induces left ventricular hypertrophy [25], and elevated
FGF23 is known to associate with vascular calcification in
HD patients [60–62].
On the other hand, klotho, discovered by Kuro-o et al.

in 1997 [79], is expressed in human vascular tissue in
addition to its major expression in the kidney and para-
thyroid [80]. Vascular calcification is a prominent finding
in mice with a klotho gene deletion, the same as in CKD
patients, and klotho overexpression by adenoviral deliv-
ery to klotho−/− mice reverse the vascular calcification
[81]. Suppressive mechanism of klotho on vascular calci-
fication is multifactorial. Klotho prevents apoptosis of
vascular smooth muscle cells [82] and acts as an anti-
inflammatory modulator and restricts inflammatory
process, thus protecting the vasculature [83].
Elevated FGF23 and hyperphosphatemia (along with

klotho deficiency) are associated with vascular calcifica-
tion in many observational studies. However, it should
be noted that there is a controversy whether FGF23 is a
direct contributor to vascular calcification. Scialla et al.
recently reported that the baseline plasma FGF23 level
was not associated with the prevalence or severity of
coronary artery calcium content in patients with mild to
moderate CKD (eGFR 20–70 ml/min/1.73 m2), suggesting
that FGF23 is not associated with arterial calcification
[84]. Furthermore, there is no in vitro study that proved
direct action of FGF23 on vascular calcification. A major
question that remains unresolved is whether FGF23 can
directly act on vascular cells to promote or inhibit matrix.
Further studies are necessary to investigate the role of
FGF23/klotho axis on vascular calcification.

Potential tools against vascular calcification
Phosphate binders
The phosphate signal is thought to be an entry gate for
the progression of CAC and future cardiovascular compli-
cations (Fig. 3). Another important key factor leading to
the progression of CAC is calcium overload related to the
use of calcium-based phosphate binders [85–88]. Even if
levels of serum calcium are within normal ranges, total
calcium intake (ingested as phosphate binder) significantly
correlated with CAC progression [57]. Therefore, many
interventional studies using non-calcium-containing phos-
phate binders have been performed.
Sevelamer hydrochloride, an available drug as the first

non-calcium-containing phosphate binder other than
aluminum-containing phosphate binder, has been proved
to delay the progression of CAC compared with calcium
carbonate [86, 89–92]. Other than binding to phosphate,
sevelamer hydrochloride has several pleiotropic effects
to lower cholesterol, FGF23, advanced glycation end
product, inflammatory markers, and C-reactive protein
[86, 90, 93, 94]. Several clinical trials expected the bene-
ficial inhibitory effect of sevelamer hydrochloride on the
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progression of vascular calcification. However, one meta-
analysis study that analyzed 14 researches containing 3271
patients in total could not provide the effectiveness of
sevelamer hydrochloride compared with calcium-based
phosphate binders for delaying the progression of CAC
[95]. Furthermore, the phosphate-binding capacity of
sevelamer hydrochloride is rather weak compared with
calcium carbonate and/or lanthanum carbonate [96, 97].
Phosphate-binding capacity is estimated as lanthanum
carbonate > calcium carbonate > sevelamer hydrochloride,
and the proportion of phosphate-binding capacity is ap-
proximately 3:1.5:1 [96, 97]. These might weaken the use
of sevelamer hydrochloride in the clinical setting. The im-
portant matters to be required as a phosphate binder are
good phosphate-binding capacity, good drug adherence,
good phosphate control, and drug safety. In this respect,
pleiotropic effects might be the next issue to these things.
Compared with sevelamer hydrochloride, lanthanum

carbonate, which contains the rare earth element
lanthanum, has stronger phosphate-binding capacity and
enables good control of serum phosphate [96, 97]. There
are several studies that compared the effect of lanthanum
carbonate on vascular calcification with calcium-based
phosphate binders [98–101]. We performed a prospective
randomized interventional study that compared the effect
of lanthanum carbonate and calcium carbonate on the
progression of CAC (Fig. 6) [98]. Treatment with lan-
thanum carbonate was more effective compared to
calcium carbonate in preventing the progression of CAC
in patients on hemodialysis; regression by 6.4% was shown
in the lanthanum-treated group vs. 41.2% progression in
Fig. 6 Percent changes in CACS in the CC group and LC group [90].
Gray bar displays percent change in CACS in the 6-month lead-in
period in a total of 42 patients. Open and closed bars display percent
change during the 6-month intervention period in the calcium
carbonate (CC) group (N = 23) and lanthanum carbonate (LC) group
(N = 19). CACS of 42 hemodialysis patients using CC as phosphate
binder increased 36.8% during the 6-month lead-in period. In
interventional period, they were divided into the CC group and LC
group. Mean CACS increased 41.2% in the CC group, while mean
CACS decreased 6.4% in the LC group (p = 0.024). Abbreviation: CACS
coronary artery calcification score
those receiving calcium carbonate. The serum levels of
phosphate and calcium were not different between the
two groups. In this study, even if low calcium dialysate
(2.5 mEq/l) was used, CACS progressed in hemodialysis
patients who are prescribed calcium-based phosphate
binders. Meta-analysis, which compared calcium-based
and non-calcium-based phosphate binders on survival and
vascular calcification in dialysis patients, revealed benefi-
cial effect in non-calcium-based phosphate binders on the
progression of CAC [102].
Vascular calcification might be merely one surrogate.

The true target is to prevent a cardiovascular event and
improve patients’ survival. In this regard, recent observa-
tional studies provided beneficial effect of lanthanum
carbonate on hemodialysis patients’ survival [103, 104].
A large RCT, the LANDMARK study, is now ongoing in
Japan to evaluate the cardiovascular event and patient
survival in the lanthanum carbonate group and calcium
carbonate group [21]. As to the safety of lanthanum, side
effects and bone toxicity have been evaluated [105–107]
and at present, severe side effect or bone toxicity have not
been shown. However, because the nature of lanthanum is
metal, careful observation for a long period is necessary to
conclude the safety of lanthanum carbonate.

Calcimimetic and active vitamin D
Both high and low turnover bone condition could
associate with CAC progression [51, 56–59, 70, 85, 89].
Increased release of calcium and phosphate from the
bone in patients with high turnover bone and decreased
uptake of calcium and phosphate into the bone (disturbed
buffer function of the bone) in patients with low turnover
bone might cause advanced vascular calcification in such
patients. Dialysis patients with intact parathyroid hormone
(iPTH) levels >400 pg/ml have, in general, high turnover
bone, and those with iPTH levels <150 pg/ml often
present adynamic or low turnover bone. Therefore, a con-
trol target of iPTH of 150–400 pg/ml might be reasonable
from the point of view of preventing vascular calcification.
A randomized interventional study (ADVANCE study)

provided that the rate of progression of CAC and aortic
valve calcification was reduced when cinacalcet was
added to low-dose active vitamin D compared to larger
doses of active vitamin D therapy alone [108, 109].
However, significant benefits in overall survival or car-
diovascular events by cinacalcet were not observed in a
large RCT (EVOLVE trial) in 3883 hemodialysis patients
after 5 years’ follow-up [110]. Recent manuscripts partly
analyzed the data of patients in the EVOLVE trial whose
FGF23 decreased more than 30% by cinacalcet within
20 weeks. One showed significant improvement in time
to primary endpoint (death or first nonfatal cardiovascu-
lar event) compared with placebo [111], and another
provided the improved primary composite outcome
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(death and major cardiovascular event) by cinacalcet in
patients more than 65 years old [112]. The results of the
EVOLVE trial are somewhat inconclusive and should be
carefully interpreted.
Increased calcium and phosphate absorption by active

vitamin D might influence vascular calcification. How-
ever, active vitamin D increased klotho and osteopontin
expression in arterial walls while decreasing aortic calci-
fication in CKD mice fed a high phosphate diet [113].
Therefore, low-dose active vitamin D, in the dose that
does not increase calcium and phosphate load, might be
useful for preventing vascular calcification [80, 114].
Vitamin K
Vitamin K is required as a cofactor in the process of
gamma-carboxylation of extracellular matrix protein.
Green leaf vegetables contain vitamin K1, and cheese,
natto, and animals contain vitamin K2. Coagulation fac-
tors require vitamin K1 for their carboxylation process,
and MGP requires vitamin K2 for its carboxylation,
converting to active form [115]. MGP (in active form)
inhibits extracellular matrix calcification and prevents
arterial calcification. On the other hand, warfarin, an an-
tagonist to vitamin K, promotes arterial calcification via
blocking the activation of MGP as previously described
[30]. Furthermore, many hemodialysis patients have
vitamin K deficiency. On the basis of these findings,
clinical trials intending to prevent vascular calcification
by vitamin K1 or K2 supplementation in dialysis patients
are now ongoing [116, 117].
Dialysate modification
Calcium overload could occur not only by the use of
calcium-containing phosphate binders or high-dose active
vitamin D but also by high calcium concentration dialys-
ate. High calcium concentration dialysate (1.75 mmol/l)
yields net calcium influx of 978 mg into the body during
one hemodialysis session in a patient with serum calcium
9.1 mg/dl [118]. Positive calcium balance excessively
inhibits parathyroid function and may cause low turnover
bone, which is a known risk factor for vascular
calcification.
In a recent randomized controlled study, effect of low-

ering the dialysate calcium level on the progression of
CAC and the histologic bone abnormalities in 425
hemodialysis patients was examined [119]. As a result,
progression rate of CAC was significantly lower in the
low calcium dialysate (1.25 mmol/l) group than in the
high calcium dialysate (1.75 mmol/l) group. Further-
more, the prevalence of histologically diagnosed low
turnover bone significantly decreased in the low calcium
group (from 85 to 41.8%, p = 0.001). Lowering dialysate
calcium levels delayed the progression of CAC and
improved bone turnover in patients on hemodialysis
with baseline iPTH levels ≤300 pg/ml.
As to other changeable components of dialysate, one

recent cross-sectional observational study in our dialysis
center provided that pre-dialysis serum bicarbonate
levels were significantly associated with coronary CAC
score [64]. Acid-base status in dialysis patients associates
with vascular calcification, and dialysate bicarbonate could
be modifiable. Ultrapure dialysate might be efficacious to
delay vascular calcification because micro-inflammation is
a strong promoter for vascular calcification [10, 24, 74, 75].
Furthermore, because uremic milieu promotes atheroscler-
osis in dialysis patients, change of dialysis modality might
also affect the progression of vascular calcification. Further
interventional study to change dialysate fluid or dialysis
modality might bring the benefit for delaying the progres-
sion of vascular calcification.

Bisphosphonate
Bisphosphonates are synthetic analogs of inorganic pyro-
phosphate and suppress bone resorption. Elution of
calcium and phosphate (substrate of calcification) from
the bone could be decreased or stopped by bisphospho-
nate. Therefore, bisphosphonates might be beneficial to
prevent the progression of vascular calcification. Earlier
studies provided the evidence that oral and parenteral
etidronate delayed the progression of CAC and aortic
calcification [120, 121]. However, this effect was not
proven in alendronate [122].
Bisphosphonate use in osteoporotic post-menopausal

women increased the risk of calcification in coronary
artery and cardiac valves [123]. Furthermore, long-term
safety (and efficacy) of bisphosphonate in CKD patients
has not been confirmed. Thus, the recent Kidney
Disease Improving Global Outcomes (KDIGO) recom-
mendation suggested not to prescribe bisphosphonates
in patients with an eGFR <30 ml/min/1.73 m2 [124], and
the Japanese Clinical Practice Guideline for the Manage-
ment of Chronic Kidney Disease-Mineral and Bone
Disorder suggested bisphosphonate use should not be
recommended for osteoporosis in dialysis patients [125].

Sodium thiosulfate
Sodium thiosulfate (STS) is a chelating agent and has been
applied for calcific uremic arteriolopathy [126, 127].
Calcium-thiosulfate complex is more soluble than calcium
oxalate and calcium phosphate, and STS has antioxidant
activity [128, 129]. Intravenous infusion of 25% STS
solution immediately after hemodialysis for 60 times dur-
ing 5 months was well tolerated in most patients [126],
and calcific uremic arteriolopathy improved in a large
observational study [127]. In one study which evaluated
the effect of STS on CAC, twice weekly STS infusion
post-hemodialysis for 4 months delayed the progression of
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CAC compared with non-treated control (p = 0.03) [130].
CACS was unchanged in the STS-treated group but
increased significantly in the non-treated control group.
Considering the chelating and removing nature of STS for
precipitated calcium from the vascular walls, long-term
use of STS might not only delay the progression of
calcification but also decrease the calcification score.
Gastrointestinal side effects and subsequent malnutrition
and the potential risk of STS to decrease bone mineral
density of normal bones should be considered when used
for a long period.

Conclusions
Vascular calcification is an independent and important risk
factor for cardiovascular events and all-cause mortality in
patients on hemodialysis. The mechanism of vascular
calcification is multifactorial, and the active process of
calcification advances along with dialysis duration. The
decrease of three major inhibitory factors of calcification
including fetuin A, MGP, and pyrophosphate in the vascu-
lar walls and the active osteoblast-like cell differentiation of
VSMCs due to Runx2 cascade by phosphate and calcium
metabolism abnormality, inflammation, and oxidative
stress are involved in vascular calcification.
Several prospective interventional trials against vascular

calcification have been performed and are now ongoing.
However, no prospective trial has yet proved to improve
cardiovascular events and survival in hemodialysis pa-
tients. Some observational retrospective studies provided
the efficacy of non-calcium-containing phosphate binder.
Because vascular calcification strongly influences the out-
come of dialysis patients, we wish future interventional
RCTs against vascular calcification would clearly provide
the beneficial effect on the prognosis of hemodialysis
patients.
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