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1 Introduction

In the past few years there has been a renewed interest in higher spin gravity in various

dimensions following the work of Vasiliev and collaborators (see [1] for a review). In the

present paper we focus on higher spin theories in three spacetime dimensions. Gaberdiel

and Gopakumar proposed a duality of the two dimensional WN minimal model CFTs

to three dimensional Vasiliev theory [2]. The original proposal has passed many checks

and some refinements in recent years, see e.g. [5–12]. An interesting feature of the three

dimensional Vasiliev theory [13] is that while it is a complicated nonlinear theory coupling

an infinite tower of higher spin fields to scalar matter, if the scalars are linearized, the
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theory can be reformulated in terms of a Chern-Simons theory with an infinite dimensional

gauge algebra hs(λ)× hs(λ) [14–16]. The deformation parameter λ is associated with the

’t Hooft coupling of the dual CFT [2]. The Chern-Simons theory simplifies if λ = ±N ,

where N is an integer and the theory reduces to Chern-Simons theory with gauge group

SL(N,R)×SL(N,R) and is purely topological, corresponding to a theory of massless fields

of spin 2, 3, · · · , N . Note that Einstein gravity with negative cosmological constant is

included by taking N = 2 [3, 4].

The simplest solutions of the Chern-Simons theory correspond to AdS3 vacua. The

asymptotic symmetry of the AdS vacuum in SL(N,R) × SL(N,R) higher spin gravity

depends on the embedding of a SL(2,R) sub-algebra in SL(N,R). For the principal em-

bedding one obtains WN symmetry [17, 18], whereas for non-principal embeddings other

higher spin algebras such as W
(2)
N can occur [19, 20].

The construction of black holes in AdS/CFT is important since (large) black holes

describe the dual CFT in thermal equilibrium at finite temperature. The BTZ solution [21]

of three dimensional gravity has been a very important part of exploring the AdS/CFT

correspondence (see [22] for a review). In higher spin theories the definition of what

constitutes a black hole is nontrivial since the metric field transforms under higher spin

gauge transformations [17] and hence the standard geometric characterization of a black

hole, i.e. the existence of a horizon is not gauge invariant. In [23] a new criterion was

proposed which uses the holonomy of the Chern-Simons gauge field around the contractable

euclidean time circle to characterize a regular black hole. The holonomy condition has been

applied to various black holes in 3 dimensional higher spin theories [24–27] and it has been

checked by comparing bulk and CFT calculations of thermal correlation functions [28–30],

see [31] for a review and a more extended list of references. Note that there are some

puzzles remaining, for example there are two different proposals for the entropy, namely

the “holomorphic” [23] and the “canonical” [32, 32] one. See [34–37] for recent work on

the two proposals and their possible relation.

In the Chern-Simons formulation of of higher spin gravity, the WN extension of the

Virasoro symmetry of the boundary theory is obtained via the Drinfeld-Sokolov reduction

by specifying asymptotic boundary fall off conditions for the gauge fields and considering

nontrivial gauge transformations which respect these boundary conditions. If the boundary

conditions are consistent then the boundary charges are integrable, finite and conserved

and generate the (extended) symmetry algebra.

It is a very interesting question whether the higher spin gravity/CFT duality in three

dimensions can be generalized to non-AdS backgrounds. In [38, 39] a general recipe and

examples including Lobachevsky (R×AdS2), Lifshitz, Schrödinger and warped AdS back-

grounds were given. More recently the same philosophy was applied to flat space holography

in [40, 41].

In the present paper we are interested in a construction and detailed analysis of higher

spin realizations of asymptotically Lifshitz spacetimes. Such spacetimes provide candidates

for a holographic description of field theories with Lifshitz scaling invariance. These theories

exhibit an anisotropic scaling symmetry with respect to space and time ~x → λ~x and

t → λzt, with z 6= 1 and are important in various condensed matter systems (see [42] for
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references). In [42] a holographic Lifshitz spacetime solution of a gravity theory coupled

to anti-symmetric tensor fields in four dimension was given. Subsequently Lifshitz space

times have been ground in many (super)gravity theories, see e.g. [43–46]. In holographic

theories black hole or black brane solutions provide the dual description of field theories

at finite temperature (and chemical potential if the black holes are charged). For Lifshitz

spacetimes the construction of black holes was initiated in [47–50], but most solutions in

the literature are only known numerically.

In the present paper we focus mainly on the simplest three dimensional higher spin

theory which is based on SL(3,R) × SL(3,R) Chern-Simons theory and corresponds to

gravity coupled to a massless spin three field. For simplicity, most explicit calculations

are performed in this theory, but we shall also comment on generalizations to N > 3 and

hs(λ).

The structure of the paper is as follows: in section 2 we give a brief review of the Chern-

Simons formulation of higher spin gravity. In section 3 we review some salient features

of field theories which enjoy Lifshitz scaling symmetry, and we discuss the holographic

realization of such theories. We then review how the Lifshitz spacetime can be obtained

as a solution to SL(3,R) × SL(3,R) Chern-Simons theory, and we demonstrate that the

algebra generating Lifshitz isometries can be realized in a higher spin context.

In section 4 we construct black hole solutions with Lifshitz scaling, focusing on the

simplest case of non-rotating black holes. We discuss the gauge freedom and the holonomy

conditions as well as the thermodynamics. When the holonomy conditions are solved to

express the temperature and chemical potential in terms of the extensive parameters there

are six different branches. Only two of the six have positive temperature and entropy

and are hence physically sensible. We consider two additional conditions on the branches,

first the local thermodynamic stability and second the existence of a radial gauge where

the metric exhibits a regular horizon and find that only one branch satisfies all of these

conditions.

In section 5 we discuss generalizations of our work including the possibility of con-

structing rotating black hole solutions as well as Lifshitz black holes in hs(λ) higher spin

theory.

We close with a brief discussion of our results in section 6. For completeness we

summarize our conventions for SL(3,R) and hs(λ) in an appendix.

2 Chern-Simons formulation of higher spin gravity

The Chern-Simons formulation of three dimensional (higher spin) gravity is based on two

copies of the Chern-Simons action at level k and −k and gauge group SL(N,R)×SL(N,R).

S = SCS [A]− SCS [Ā] (2.1)

where

SCS [A] =
k

4π

∫
tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.2)
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The equations of motion are simply flatness conditions,

F = dA+A ∧A = 0, F̄ = dĀ+ Ā ∧ Ā = 0. (2.3)

Ordinary gravity is given by the case N = 2; in the following we will mainly focus on the

case N = 3. This theory was studied in detail in [17] and it was shown that the CS theory

is equivalent to AdS gravity coupled to a massless spin three field. The vielbein and spin

connection take values in the SL(3,R) Lie algebra and are related to the CS gauge fields

as follows:

eµ =
l

2
(Aµ − Āµ), ωµ =

1

2
(Aµ + Āµ). (2.4)

In the following we set the length scale l to one for notational ease. Using the expression of

the vielbein (2.4) in terms of the connection, the metric and spin 3 field can be expressed as

gµν =
1

2
tr(eµeν), φµνρ =

1

6
tr(e(µeνeρ)). (2.5)

The gauge transformations act on the Chern-Simons connections as follows

δA = dΛ + [A,Λ], δĀ = dΛ̄ + [A, Λ̄]. (2.6)

In the construction of asymptotically AdS as well as asymptotically Lifshitz spacetimes, we

employ a special choice of coordinates and choice of gauge. We define a radial coordinate ρ,

where the holographic boundary will be located at ρ→∞. In addition we define a timelike

coordinate t and a space like coordinate x, which can be either compact or non-compact

and hence the boundary has either the topology of R × S1 or R × R. The “radial gauge”

that we will use is constructed by defining b = exp(ρL0) and setting

Aµ = b−1aµ b+ b−1∂µb, Āµ = b āµb
−1 + b ∂µ(b−1). (2.7)

where aµ = aµ(t, x) and āµ = āµ(t, x) do not depend on ρ.

3 Lifshitz spacetimes

Quantum field theories which exhibit a scaling symmetry which is anisotropic with respect

to space and time

t→ λzt, x→ λx (3.1)

appear in many condensed matter systems. The dynamical scaling coefficient z 6= 1 breaks

relativistic symmetry. If one augments the symmetry of the theory to include space and

time translations, then one obtains a theory that is said to possess Lifshitz symemtry.

Lifshitz symmetry can therefore be encoded as a Lie algebra generated by time translations

H, spatial translations P and Lifshitz scalings D satisfying the following structure relations:

[P,H] = 0 [D,H] = zH [D,P ] = P. (3.2)
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In two dimensions, conformal symmetry (with z = 1) implies a conserved, traceless and

symmetric stress tensor. For theories with Lifshitz scaling the stress tensor does not have

to be symmetric, since they do not possess boost invariance. The stress-energy complex

for field theories in 1+1 dimensions with Lifshitz scaling exponent z contains the following

objects: the energy density E , the energy flux Ex, the momentum density Px and the

stress energy tensor Π x
x . These quantities satisfy the following conservation equations (see

e.g. [52]):

∂tE + ∂xEx = 0, ∂tPx + ∂xΠ x
x = 0. (3.3)

In addition, the Lifshitz scaling with exponent z implies a modified tracelessness condition

zE + Π x
x = 0. (3.4)

The Lifshitz symmetries of a (1+1)-dimensional metric can be realized holographically with

the following metric:

ds2 = L2
(
dρ2 − e2zρdt2 + e2ρdx2

)
(3.5)

where the Lifshitz scaling transformation corresponds to a translation ρ → ρ + lnλ. This

metric is not a solution of Einstein gravity with negative cosmological constant; one has to

add matter or higher derivative terms to the action to obtain it as a solution.

One can realize the z = 2 Lifshitz metric in the SL(3,R) × SL(3,R) higher spin the-

ory [39] by choosing the radial gauge as in (2.7) and by choosing the following connections

a = aµ dx
µ and ā = āµ dx

µ:

a = W2 dt+ L1 dx, ā = W−2 dt+ L−1 dx. (3.6)

It follows from (2.5) that this connection reproduces the Lifshitz metric (3.5) with scaling

exponent z = 2. Lifshitz spacetimes with critical exponents z > 2 can be obtained using

SL(N,R)× SL(N,R) Chern-Simons theory with N > 3.

3.1 Asymptotically Lifshitz connections

Focusing on N = 3 and z = 2, we explore Chern-Simons connections that behave asymp-

totically like Lifshitz. In this section, we use primes to denote derivatives with respect to x

and overdots to denote derivatives with respect to t. With the gauge connections defined

in (2.7), we look for the most general, flat connections with the property that

A−ALif ∼ O(1), as ρ→∞ (3.7)

Ā− ĀLif ∼ O(1), as ρ→∞ (3.8)

where ALif and ĀLif are the Lifshitz connections specified in (3.6). The most general

connections that obey these asymptotics are obtained by adding terms to the Lifshitz

connections a in (3.6) proprotional to W0,W−1,W−2 and L0, L−1 (and similarly for ā). In

particular, we consider the following ansatz:

at = W2 + `t,0L0 + `t,−1L−1 + wt,0W0 + wt,−1W−1 + wt,−2W−2, (3.9)

ax = L1 + `x,0L0 + `x,−1L−1 + wx,0W0 + wx,−1W−1 + wx,−2W−2. (3.10)
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Before applying flatness conditions, we allow all coefficients `t,i, `x,i, wt,m, wx,m to be arbi-

trary functions of t and x. By suitable gauge transformations, we can set

wx,0 = 0, wx,−1 = 0, `x,0 = 0. (3.11)

Employing the same notation as used in the higher spin black holes, we denote

`x,−1 = −L, wx,−2 =W, (3.12)

and, after applying the flatness conditions,1 we obtain

at = W2 − 2LW0 +
2

3
L′W−1 − 2WL−1 +

(
L2 − 1

6
L′′
)
W−2, (3.13)

ax = L1 − LL−1 +WW−2, (3.14)

where henceforth, an over-dot denotes a t-derivative and a prime denotes an x-derivative.

Flatness also results in the following evolution equations for L and W:

L̇ = 2W ′ (3.15)

Ẇ =
4

3
(L2)′ − 1

6
L′′′. (3.16)

If we follow the same procedure for the barred sector, imposing the condition (3.8), then

we find the following asymptotically Lifshitz connections:

āt = W−2 − 2L̄W0 −
2

3
L̄′W1 + 2W̄L1 +

(
L̄2 − 1

6
L̄′′
)
W2, (3.17)

āx = L−1 − L̄L1 − W̄W2. (3.18)

where again the flatness conditions produce evolution equations for the barred quantities

˙̄L = −2W̄ ′, (3.19)

˙̄W = −4

3
(L̄2)′ +

1

6
L̄′′′, (3.20)

which can be obtained, from (3.15) and (3.16) by replacing L and W by L̄ and −W̄.

The signs were chosen so that we can now express the quantities appearing in the energy-

momentum complex (3.3) in terms of the parameters appearing in the connection as follows:

E =W + W̄,

Px = L − L̄,
Π x
x = −2W − 2W̄,

Ex = −
(

4

3
L2 − 1

6
∂2
xL
)

+

(
4

3
L̄2 − 1

6
∂2
xL̄
)
. (3.21)

It is straightforward to verify that that evolution equations (3.15) and (3.16) imply the

equations for the Lifshitz stress-tensor complex (following the terminology of [52]) with

z = 2, given by (3.3) and (3.4).

1See [51] for discussion of closely related connections and their symmetries.
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3.2 Realization of Lifshitz symmetries

We now show that among the gauge transformations that leave the connections (3.13)

and (3.14) form-invariant, there exist those that realize the Lifshitz algebra as a Poisson

algebra of boundary charges. To begin, recall that for each gauge parameter Λ, the standard

definition of the variations of asymptotic symmetry boundary charges in Chern-Simons

theory is as follows [17]:

δQ(Λ) = − k

2π

∫ ∞
−∞

dx tr(ΛδAx). (3.22)

We now show that there exist gauge parameters ΛH ,ΛP ,ΛD that leave the asymptotically

Lifshitz connections form-invariant. Moreover, we show that the variations δQ(ΛH), δQ(ΛP )

and δQ(ΛD) as defined in (3.22) are integrable and yield charges Q(ΛH), Q(ΛP ) and Q(ΛD)

that realize the Lifshitz algebra as a Poisson algebra.

As our first step, we determine the most general gauge parameter that results in a

gauge transformation that leaves the asymptotically Lifshitz connections form-invariant.

The radial gauge (2.7) is preserved under gauge transformations if and only if the gauge

parameter is of the form

Λ(ρ, t, x) = b−1(ρ)λ(t, x)b(ρ). (3.23)

Given this form, gauge transformations are characterized by the function λ and act on the

connections as follows:

δλaµ = ∂µλ+ [aµ, λ]. (3.24)

Now consider a general gauge parameter λ;

λ =

1∑
i=−1

εiLi +

2∑
m=−2

χmWm, (3.25)

where εi = εi(t, x) and χm = χm(t, x). Gauge transformations are now explicitly given by

δλat = −2δLW0 +
2

3
(δL)′W−1 − 2δWL−1 +

(
2LδL − 1

6
(δL)′′

)
W−2, (3.26)

δλax = −δLL−1 + δWW−2, (3.27)

and enforcing form-invariance of the connections allows one to solve for all parameters εi
and χi in terms of the two parameters ε = ε1 and χ = χ2.

ε0 = −ε′,

ε−1 = −Lε+
1

2
ε′′ − 2Wχ,

χ1 = −χ′,

χ0 = −2Lχ+
1

2
χ′′,

χ−1 =
2

3
L′χ+

5

3
Lχ′ − 1

6
χ′′′,

χ−2 =Wε+ L2χ− 1

6
L′′χ− 7

12
L′χ′ − 2

3
Lχ′′ + 1

24
χ′′′′.

(3.28)
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Form-invariance also gives evolution equations for ε and χ

ε̇ =
8

3
Lχ′ − 1

6
χ′′′, (3.29)

χ̇ = 2ε′, (3.30)

and it constrains the forms of the variations δL and δW

δL = εL′ + 2ε′L+ 2χW ′ + 3χ′W − 1

2
ε′′′, (3.31)

δW =W ′ε+ 3Wε′ +

(
4

3
(L2)′ − 1

6
L′′′
)
χ+

(
8

3
L2 − 3

4
L′′
)
χ′ − 5

4
L′χ′′ − 5

6
Lχ′′′ + 1

24
χ′′′′′.

(3.32)

Now that we know the precise form of the most general gauge parameters leaving the

connections form-invariant, we attempt to identify which of these parameters ΛH ,ΛP and

ΛD lead to charges that satisfy a Lifshitz algebra. To find these parameters, we first notice

that given the Lifshitz metric (3.5), the Lifshitz algebra is geometrically realized by the

following killing vectors:

ξH = ∂t, (3.33)

ξP = ∂x, (3.34)

ξD = ∂ρ − x∂x − zt∂t. (3.35)

Explicitly, one easily verifies that

[ξP , ξH ] = 0, [ξD, ξH ] = 2ξH , [ξD, ξP ] = ξP . (3.36)

This is precisely the Lifshitz algebra (3.2) with z = 2. These killing vectors generate

spacetime diffeomorphisms, and there is a standard realization diffeomorphisms as gauge

transformations in Chern-Simons theory via field-dependent gauge parameters [60]

Λ = −ξµAµ. (3.37)

For the asymptotically Lifshitz connections of section 3.1, we expect that there exists a

realization of the Lifshitz algebra, but it is not immediately obvious which gauge parameters

one should pick that yield charges satisfying this algebra. However, motivated by the

method of generating diffeomorphisms via gauge transformations, we try the following:

ΛH = −(ξH)µAµ = b−1(−at)b, (3.38)

ΛP = −(ξP )µAµ = b−1(−ax)b, (3.39)

ΛD = −(ξD)µAµ = b−1(−L0 + xax + 2tat)b. (3.40)

These gauge parameters leave the asymptotically Lifshitz connections form-invariant be-

cause one can show that there exists choices of the parameters ε and χ that lead to these

gauge parameters. To see this explicitly, notice that given ε(t, x) and χ(t, x), if we let

– 8 –
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λ̂(ε(t, x), χ(t, x)) denote the gauge parameter λ(t, x) of (3.25) obtained after all εi and χm
have been substituted for their expressions in terms of ε and χ in (3.28), then we have

ΛH = b−1λ̂(0,−1)b, (3.41)

ΛP = b−1λ̂(−1, 0)b, (3.42)

ΛD = b−1λ̂(x, 2t)b. (3.43)

We now have candidates for gauge parameters from which to construct charges that satisfy

the Lifshitz algebra. Using the definition (3.22), we find that the expressions for the

variations of the charges corresponding to these gauge parameters are integrable and give

Q(ΛH) =
2k

π

∫ ∞
−∞

dxW, (3.44)

Q(ΛP ) =
2k

π

∫ ∞
−∞

dxL, (3.45)

Q(ΛD) = −2k

π

∫ ∞
−∞

dx(2tW + xL). (3.46)

To determine the Poisson algebra of these charges, we recall that for any two gauge pa-

rameters Λ and Γ, one has [17, 60]

{Q(Λ), Q(Γ)} = δΛQ(Γ). (3.47)

We assume that the fields L and W vanish sufficiently rapidly as x→ ±∞ to ensure that

any boundary terms encountered in computing the gauge-variations of the charges vanish.

After some tedious but straightforward calculation, we find that

{Q(ΛH), Q(ΛP )} = 0, (3.48)

{Q(ΛD), Q(ΛH)} = 2Q(ΛH), (3.49)

{Q(ΛD), Q(ΛP )} = Q(ΛP ). (3.50)

This is precisely the Lifshitz algebra (3.2). In two dimensions we expect that the Lifshitz

algebra will be extended to an infinite-dimensional algebra, in analogy with the extension of

global conformal symmetry to a Virasoro algebra. A proposal for an infinite-dimensional

extension of the Lifshitz symmetry was made in [53] and can be investigated using the

Chern-Simons formulation.

4 Non-rotating Lifshitz black hole

The most general solutions of the Chern-Simons theory have connections A and Ā which

are independent. We relate the barred and unbarred charges by setting

āx = −aTx , āt = aTt , (4.1)

leaving the solutions to be characterized by only by the unbarred connection aµ. Conse-

quently, the expression for the metric (2.5) is diagonal, i.e. the gtx component of the metric

vanishes.
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4.1 Most general non-rotating black hole solutions

Restricting ourselves to SL(3,R)×SL(3,R) Chern-Simons, we start with a generalization of

the ansatz (3.9), (3.10) in which we allow for source terms as coefficients of the generators

W2 and L1 in the temporal components of the connections. This changes the asymptotics,

but as we will see presently, this extra freedom will allow us to interpret the resulting

solutions as finite energy excitations above the asymptotic Lifshitz vacuum. We also restrict

our attention to coordinate-independent connection coefficients. Our general ansatz for the

unbarred sector is

at = `t,1L1 + wt,2W2 + `t,0L0 + `t,−1L−1 + wt,1W1 + wt,0W0 + wt,−1W−1 + wt,−2W−2,

(4.2)

ax = L1 + `x,0L0 + `x,−1L−1 + wx,0W0 + wx,−1W−1 + wx,−2W−2. (4.3)

Notice that the ansatz (3.9), (3.10) of the last section is a special case of this ansatz obtained

by setting `t,1 = 0 and wt,2 = 1. In order for this ansatz to be a solution of our theory we

need to impose the flatness conditions which constrain the connections;

wt,1 = 0,

`x,0 = 0,

wt,−1 = `t,1wx,−1,

`t,0 = −wt,2wx,−1,

`t,−1 = `t,1`x,−1 − 2wt,2wx,−2,

wt,0 = `t,1wx,0 + 2`x,−1wt,2,

wt,−2 = `2x,−1wt,2 + `t,1wx,−2 + wx,0wt,2wx,−2 −
1

4
w2,tw

2
x,−1.

(4.4)

These conditions seems to indicate that a flat solution is specified by parameters `t,1, `x,−1

and wt,2, wx,0, wx,−1, wx,−2. However we have not fixed all the gauge freedom, and some

of these parameters are gauge artifacts. In order to see which of these parameters are the

charges and sources of the theory and which of them can be gauged away, it suffices to look

at the only gauge invariant quantities of the theory: the holonomies. A quick inspection of

the holonomies around the thermal and angular cycles shows that the following quantities

distinguish different solutions

µ2 = wt,2,

µ1 = `t,1 +
1

3
wx,0wt,2,

L = −`x,−1 +
1

12
w2
x,0,

W = wx,−2 +
1

54

(
18`x,−1wx,0 − w3

x,0

)
.

(4.5)

Under these identifications we will interpret µ1, µ2 and 4L,−4W as sources and their

conjugate charges. We will expand on this interpretation in section 4.3. Finally, to obtain

a generic solution for the barred sector, we take Ā = −AT replacing µi by µ̄i and L, W by
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L̄ and W̄. Limiting out attention to non non-rotating solutions implies setting µ̄i = −µi,
L̄ = L and W̄.

Note that for a non-vanishing source µ1, the connection (4.2) has a nonzero L1 com-

ponent and does not satisfy the criterion for an asymptotically Lifshitz connection (3.7).

This indicates that the source µ1 deforms the Lifshitz vacuum just as in the case of the

higher spin CFTs. We note that it was shown in [61] that in the case of the asymptotically

AdS theory with a deformation by a source still enjoys the full W3 symmetry. It is quite

likely that this is the case for our solution too, but we have not shown it.

4.2 Holonomy conditions

In the context of Chern-Simons higher spin theories, black hole solutions need to satisfy

certain holonomy conditions and should have a thermodynamical interpretation [23, 24].

In particular, the requirement of a smooth Euclidean geometry implies that the thermal

holonomy of the Chern-Simons connection is trivial;

P exp

(∮
t
dtAt

)
= 1, (4.6)

where 1 is the SL(3,R) identity, and the thermal cycle is from t = 0 to t = 2πi. This

condition can be recast in more than one equivalent way. Diagonalizing at, and noting that

at is constant, we find that the condition of a trivial thermal holonomy is equivalent to the

following condition on the eigenvalues λ1, λ2, and λ3 of at;

e2πiλ1 = e2πiλ2 = e2πiλ3 = 1. (4.7)

This means that each eigenvalue of at must be an integer. Since At is an element of sl(3,R),

it must be traceless, and this gives a second requirement on the eigenvalues; they must sum

to zero.

λ1 + λ2 + λ3 = 0. (4.8)

The simplest nontrivial solution is then (λ1, λ2, λ3) = (0, 1,−1). This solution contains the

famous BTZ black hole and its higher spin generalizations studied in [23].

In order to find black hole solutions one demands that the connections (4.2) and (4.3)

obey (4.7) and (4.8). These conditions can be cast in a computationally convenient light.

Employing the Cayley-Hamilton theorem, we note that every 3-by-3 complex matrix X

satisfies its own characteristic polynomial. This means that there exist complex numbers

Θ0,Θ1,Θ2 for which

X3 = Θ0I + Θ1X + Θ2X
2. (4.9)

In particular, this allows one to compute any integer power of X knowing only the coef-

ficients of the characteristic polynomial, and therefore allows for evaluation of the matrix

exponential of X in terms of these coefficients. In the special case that X is traceless, which

is the case for the argument of the exponential in the thermal holonomy, there are simple
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expressions for the coefficients of the characteristic polynomial, which therefore serve to

determine the thermal holonomy completely;

Θ0 = det(X), Θ1 =
1

2
tr(X2), Θ2 = 0. (4.10)

Applying this to the triviality condition (4.6), we find that the eigenvalues of at are related

to the characteristic polynomial coefficients;

Θ0 = (2πi)3λ1λ2λ3, Θ1 = −2π2(λ2
1 + λ2

2 + λ2
3). (4.11)

In the case of, for example, the BTZ black hole, with (λ1, λ2, λ3) = (0, 1,−1) one obtains

Θ0 = 0, Θ1 = −4π2, Θ2 = 0. (4.12)

In the context of finding a higher spin Lifshitz black hole solutions, we see no compelling

reason to choose the BTZ holonomy conditions over others, but we do so anyway because

they are simple and non-trivial. In principle, however, any conditions on the eigenval-

ues λj satisfying (4.7) and (4.8) should give rise to independent solutions. Applying the

conditions (4.12) to our solution, we obtain the following holonomy conditions:

0 = 3Lµ2
1 + 9Wµ1µ2 + 4L2µ2

2 −
3

4
, (4.13)

0 = 108W2µ3
2 + 8L2µ2

(
9µ2

1 − 4Lµ2
2

)
+ 27W

(
µ3

1 + 4Lµ1µ
2
2

)
. (4.14)

These two equations can be used to solve for any two of L,W, µ1, µ2 in terms of the

remaining two. In the next section we shall argue that thermodynamically L and W are

charges and µ1, µ2 are the conjugate potentials.

4.3 Action and entropy

Since the black holes we are studying are gravitational solutions, we need to check that the

Chern-Simons theory provides a correct variational principle. Let I0 denote the euclidean

Chern-Simons action. The on-shell, euclidean action Ios
0 , namely the action in which the

equations of motion have been used, is given by a boundary term

Ios
0 = − k

4π

∫
dφ dt tr(atax) +

k

4π

∫
dφ dt tr(ātāx), (4.15)

and evaluating the action on our non-rotating connections gives [54];

Ios
0 = −4k

(
2Lµ1 + 3Wµ2

)
. (4.16)

However Ios
0 does not obey a thermodynamically sensible variational principle because the

on-shell variation of I0 is

(δI0)os = 8k
(
Lδµ1 +Wδµ2

)
+ δ(4kµ2W). (4.17)

The third term spoils the identification of µ1, µ2 with sources having conjugate charges L
and W. As discussed in [33, 54], in the context of the higher spin black holes, it is possible
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to obtain a canonical action I1 that is thermodynamically sensible by adding a boundary

term to I0. When we evaluate I1 on our non-rotating solutions, we obtain

Ios
1 = −8k(µ1L+ 2µ2W), (4.18)

and it has the corresponding on-shell variaton

(δI1)os = 8k(Lδµ1 +Wδµ2). (4.19)

This relation follows directly from the holonomy conditions (4.13) and (4.14). Taking

derivatives of the conditions with respect to the sources, one can show that

∂L
∂µ1

= −6µ1L − 18µ2W
3µ2

1 − 16µ2
2L

,
∂W
∂µ2

= −8L(µ1L − 3µ2W)

3µ2
1 − 16µ2

2L
, (4.20)

∂L
∂µ2

=
16µ2L2 − 9µ1W

3µ2
1 − 16µ2

2L
,

∂W
∂µ1

=
16µ2L2 − 9µ1W

3µ2
1 − 16µ2

2L
. (4.21)

Using these expression one can easily show that that µ1, µ2 are conjugate to L and W
respectively;

∂Ios
1

∂µ1
= 8kL, ∂Ios

1

∂µ2
= 8kW. (4.22)

The following integrability relation follows immediately from the equality of mixed partial

derivatives:

∂W
∂µ1

=
∂L
∂µ2

. (4.23)

The entropy S is naturally a function of the charges L,W. It can can be obtained by

performing a Legendre transform of Ios
1 (µ1, µ2) with respect to the conjugate variables L

and W.

S(L,W) =
∂Ios

1

∂µ1
µ1 +

∂Ios
1

∂µ2
µ2 − Ios

1

= 8k
(
2µ1L+ 3µ2W

)
. (4.24)

Moreover, using the holonomy conditions one can easily verify that the following inverse

thermodynamic relations are:

∂S

∂(8kL)
= µ1,

∂S

∂(8kW)
= µ2. (4.25)

4.4 Temperature and grand potential

Recall that for any thermodynamic system, the grand potential is defined as follows in

terms of the thermal partition function:

Φ = − 1

β
lnZ. (4.26)
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Using the saddle point approximation, we identify the on-shell, Euclidean Chern-Simons

action with the log of the partition function, so we obtain

Φ =
1

β
Ios

1 . (4.27)

The thermodynamic potential Φ is associated with the grand canonical ensemble and has

as natural variables the temperature T and the chemical potential α. These can be related

to µ1, µ2 as follows.

In euclidean signature we have chosen the periodicity of the euclidean time circle to

be 1. A different euclidean periodicity β is equivalent to keeping the periodicity equal to 1

and rescaling At by a factor of β. This leads us to re-express the potentials µ1, µ2 in terms

of β (or the temperature T ) and a higher spin potential α.

µ1 = βα =
1

T
α, µ2 = β =

1

T
. (4.28)

This prescription also ensures that after the rescaling, the connections have Lifshitz asymp-

totics.

In thermodynamics it is a well known fact that the grand canonical potential has the

following differential

dΦ = −SdT −Qdα. (4.29)

It follows that the entropy S and charge Q can be computed as appropriate partial deriva-

tives of the grand potential;

∂Φ

∂T

∣∣∣∣
α

= −S, ∂Φ

∂α

∣∣∣∣
T

= −Q. (4.30)

For the Lifhsitz black hole, the grand potential Φ is related to the on shell action Ios
1

via (4.27) which is turn is given by (4.18), giving

Φ = −8k
(
αL+ 2W

)
. (4.31)

Using the holonomy conditions (4.13) and (4.14) to eliminate derivatives with respect to

α, T one can calculate the entropy

S = − ∂Φ

∂T

∣∣∣∣
α

=
1

T
8k
(

2αL+ 3W
)
. (4.32)

Note that the entropy agrees with (4.24). The charge conjugate to the potential α is

given by

Q = − ∂Φ

∂α

∣∣∣∣
T

= −8kL. (4.33)

We can use the thermodynamic relation between grand potential and the internal en-

ergy (which we can identify with the mass of the black hole) to obtain a formula for the

energy2 E;

E = Φ + TS + αQ = 8kW. (4.34)

2Notice that it follows from (4.34) that the Gibbs-Duhem relation E = TS + αQ doesn’t hold for our

black hole solution, since it would imply Φ = 0. This is a common feature of black hole thermodynamics

which has been noticed at various points in the literature (see e.g. [56, 57]).

– 14 –



J
H
E
P
0
4
(
2
0
1
4
)
0
2
0

Note that this result agrees with the identification ofW with the energy in the holographic

Lifshitz em-complex given in (3.21). We can perform one last consistency check by solving

the holonomy conditions with S and Q as independent variables, it is straightforward to

verify that the First Law of thermodynamics is indeed satisfied;

dE = TdS + αdQ. (4.35)

4.5 Branches

After clarifying the thermodynamical interpretation of the parameters in the connection,

we are ready to look for black hole solutions to the holonomy conditions (4.13) and (4.14).

In this section we will express the intensive parameters T and α in terms of the extensive

parameters L and W. Note that due to the nonlinear nature of the holonomy conditions,

there will be multiple branches which can be interpreted as different phases of the theory.

In order to simplify the calculation it proves useful to replace W by a parameter θ

which is given by

W =

√
16L3

27
sin θ. (4.36)

Using (4.25), we eliminate µ1, µ2 in the first holonomy condition (4.13) in favor of deriva-

tives of the entropy with respect to L and θ.

64k2L = 9

(
∂S

∂θ

)2

+ 4L2

(
∂S

∂L

)2

. (4.37)

This partial differential equation for S is solved by the following family of solutions

parametrized by a constant C.

S(L, θ) = 8k
√
L cos

(
θ

3
+ C

)
. (4.38)

which indicates that C = nπ/3 for n = 0, . . . , 5. Hence there are six different solutions

labelled by n. All of these solutions can be regarded as thermodynamical branches of

a Lifshitz black hole. The branches n = 1, 2, 3, 4 all show pathologies that make them

unphysical. The n = 1 case has negative temperature for all values of θ,L, while n = 2

has both negative temperature and entropy. Finally, the n = 3, 4 branches have strictly

negative entropy.

Consequently, only the branches with n = 0 and n = 5 seem to be physically sensible.

The entropy and temperature of the first brach (n = 0) read

Sn=0 = 8k
√
L cos

(
θ

3

)
, Tn=0 = − 4L√

3

cos θ

sin θ
3

, αn=0 = −2

√
L
3

cos 2θ
3

cos θ3
. (4.39)

This implies that for the temperature to be positive, one needs −π/2 < θ < 0, which

imposes the constraint −
√

16L3/27 <W < 0. In this range, the entropy has its minimum

at zero temperature, in accordance with the third law of thermodynamics. Note that under

this constraint, the energy (4.34) is negative, but bounded from below. In section 4.8 we
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Figure 1. Temperature, entropy and chemical potential of the n = 0 branch.
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Figure 2. Temperature, entropy and chemical potential of the n = 5 branch.

will discuss a simple radial gauge for which this solution looks explicitly like a black hole.

Interestingly, this gauge only exists for this branch and n = 4, which has exactly the same

entropy but with the opposite sign. This does not mean that other branches do not have

black hole gauges, as we have not explored non-radial gauges. For now, the plots of the

temperature and entropy as a function of θ for a fixed value of L, are shown in figure 1.

Inserting this in the second holonomy condition (4.14) gives us a restriction for C

given by

sin (3C) = 0, (4.40)

The sixth branch (n = 5) shows the following behavior with respect to L and θ

Sn=5 = 8k
√
L cos

(
θ + 5π

3

)
, Tn=5 =

4L√
3

cos θ

cos 2θ+π
6

, αn=5 = 2

√
L
3

cos 2θ+π
3

cos 2θ+π
6

.

(4.41)

This branch has positive values of temperature and entropy for all values of θ ∈ [−π/2, π/2],

as shown in figure 2.

4.6 Entropy as a function of intensive parameters

Study of the stability and thermodynamical dominance of the different branches requires

an expression for the entropy as a function of intensive parameters. This, in turn, requires

us to solve the holonomy conditions for L,W in terms of α, T , and then write the entropy

– 16 –



J
H
E
P
0
4
(
2
0
1
4
)
0
2
0

IV

IIII

II

0 2 4 6 8 10
T

0.5

1.0

1.5

2.0

2.5

3.0

S�8k

(a) Entropies.

IV

III

I

II

2 4 6 8 10
T

-10

-5

5

10

F�8k

(b) Grand potentials.

IV

III

II

I

0 2 4 6 8 10
T

2

4

6

8

10

12

14

L

(c) L charge.

IV

III
II

I

2 4 6 8 10
T

-20

-10

10

20

30

W

(d) W charge.

Figure 3. Entropies, Grand potentials and extensive variables for the four branches as a function

of the temperature, at fixed α. I,II and III branches have been plotted for α = 3, while branch IV

has α = −3.

using (4.32) as a function of α and T only. The first holonomy condition (4.13) is linear in

W and can be easily solved;

W = −12α2L+ 12L2 − 3T 2

36α
. (4.42)

Plugging this into the second holonomy condition (4.14), twe obtain the following quartic

equation for L.

256L4 − 576α2L3 + (432α4 − 96T 2L2 + (36α2T 2 − 108α6)L+ 27α4T 2 + 9T 4 = 0.

(4.43)

This implies the existence of four branches. Even though the number of branches is different

from the ones found in last section, one can see that appropriately gluing together these

branches, one obtains the solutions we studied in section 4.5. For positive temperature,

the only branches with positive entropy can be found in figure 3. Note that branch IV has

been plotted for a negative value of α because its entropy is negative otherwise.

One can check that I and II branches map back to the n = 0 branch from the previous

section, while III and IV are related to the n = 5 branch. Figure 3b shows the grand

potential (4.31) as a function of the temperature for fixed chemical potential. In the

case of negative α, the only sensible branch is IV, and it dominates the thermodynamics.

However, for a positive value of α, branch I (n = 0) takes over.

– 17 –



J
H
E
P
0
4
(
2
0
1
4
)
0
2
0

We should note that the phase diagrams displayed in section 4.5 and 4.6 look very

similar to the ones obtained for the asymptotically AdS higher spin black holes discussed

in [24–27]. This is no surprise since the holonomy equations are identical. The Lifshitz black

hole differs from the AdS higher spin black hole however in the identification of temperature

and chemical potential as well as the charges. Hence the physical interpretation of the

quantities and physical constraints (such as positive temperature) are different.

It is interesting to study the high temperature limit of these solutions. Branch I cannot

reach high temperatures at fixed α. However, in the high α limit, the temperature can be

arbitrarily high at the point of maximum entropy. This point is defined by a concrete value

of θ, so the high α limit can only be reached by taking L to infinity, as can be seen by

looking at equations (4.39). In that case the temperature grows like L while the entropy

grows like
√
L. This implies

Sn=0 ∼
√
T . (4.44)

The same can be checked for branch IV. In the limit of high temperature, one finds that

L =

√
3T

4
+ 33/4

√
T

32
|α|+O(1), (4.45)

S = −31/4sgn(α)√
8

√
T +O(1). (4.46)

Hence for negative α we obtain again

Sn=5 ∼
√
T . (4.47)

This temperature scaling (4.44) and (4.47) is expected for a theory dual to a quantum field

theory with z = 2 anisotropic Lifshitz scaling symmetry in two dimensions [62].

4.7 Local stability in the grand canonical ensemble

Local thermodynamical stability is associated with the subadditivity of the entropy, as

discussed in [58, 59] this condition is equivalent to demanding that the Hessian matrices

of −S and −βΦ are positive definite.

Hmn =
∂2(−S)

∂xm∂xn
, Wmn =

∂2(−βΦ)

∂ym∂yn
(4.48)

Which Matrix one has to consider depends on whether one describes the thermodynamic

state of the system in terms of extensive parameters xi or intensive parameters yi respec-

tively.

In the case of our Lifshitz black hole solution, the extensive parameters can be regarded

as the charges L and W, while the intensive parameters can be regarded as β and βα.

Evaluation of the eigenvalues of the Hessian Hnm for the n = 5 branch shows that this

condition can’t be satisfied for any value of L and W, so the n = 5 branch is locally

unstable. Demanding positive definiteness of the Hessian for the n = 0 branch requires that

θ ∈ (−3 cos−1
(

31/4√
2

)
, 0). This is exactly the regime of θ covered by the curve representing

branch I in figure 3.
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One can further check that this result is consistent with the description in terms

of potentials. Computation of the eigenvalues of Wnm for the four branches studied in

section 4.6, indeed shows that branch I is locally stable, while II is not.

4.8 Metric and black hole gauge

We now investigate the question whether a gauge exists in which the metric of the Lifshitz

black hole solutions displays a regular horizon. In fact, we demonstrate that for some

branches one can maintain radial gauge and choose some of the residual gauge such that

gtt contains a double zero and gxx is regular.

We begin again with the ansatz (3.9), (3.10) and the flatness conditions (4.4), where

again the barred sector is determined by the non-rotating condition āx = −aTx and āt =

aTt . We also regard equations (4.5) as a reparametrization of wt,2, lt,1, lx,−1, and wx,−2 as

functions of the charges and potentials L,W, µ1, µ2, and the residual gauge parameter wx,0.

Next, we solve for the value of wx,0 for which the corresponding metric derived from (2.5)

has a double zero in gtt at some value of ρ = ρh, the location of the corresponding horizon.

To do this, first we note that the metric component gtt can be written as

gtt = −(e2ρp1 − e−2ρp2)2 − (eρp3 − e−ρp4)2 (4.49)

where pi are ρ-independent coefficients given by

p1 = µ2 (4.50)

p3 = µ1 − µ2
wx,0

3
(4.51)

p2 = −
(wx,0

3

)3 µ1

4
+Wµ1 + L2µ2 +

(wx,0
3

)4 µ2

16
+
wx,0

3
2Wµ2 +

1

2
Lwx,0

3

(
2µ1 +

wx,0
3
µ2

)
(4.52)

p4 = Lµ1 −
(wx,0

3

)2 3

4
µ1 +

wx,0
3
Lµ2 +

(wx,0
3

)3 µ2

4
+ 2Wµ2 (4.53)

It is clear that gtt is zero if and only if each term in parentheses on the right hand side

of (4.49) is zero for the same value of ρh which implies that p2/p1 = (p4/p3)2. Using the

expressions above for p1, . . . , p4, this constraint is equivalent to the following cubic equation

for wx,0:

w3
x,0 − 36Lwx,0 − 108W = 0. (4.54)

The three solutions are given by

wx,0 = 4
√

3L cos

(
cos−1(sin θ)

3
+m

2π

3

)
, (4.55)

with m = 0, 1, 2. However the only solution with a positive and real horizon ρh = 4
√
p2/p1 =√

p4/p3 is the one with m = 2, which can be simplified to

wx,0 = −4
√

3L sin

(
θ

3

)
. (4.56)
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The horizon is then located at

ρh =

√
L
(

2 cos
2θ

3
− 1

)
. (4.57)

It seems that we did not need to impose the holonomy conditions in order to find this black

hole gauge. However, we still need to check that the metric and the spin three field in this

gauge are smooth around the cycle t ∼ t+ 2πi. this implies the following conditions

1 =

√
gtt
−2gρρ

∣∣∣∣
ρh

, 1 =

√
ψxtt
−2ψxρρ

∣∣∣∣
ρh

. (4.58)

Direct substitution of the charges and sources for the six branches found in previous sections

shows that only the n = 0, 4 cases satisfy these identities. This can mean that this gauge is

appropriate for those two solutions, while the other branches require giving up the radial

gauge chosen in equation (2.7). As we have argued in section 4.5, the n = 3 branch does not

seem to be physically sensible. For this reason we will focus our attention in branch n = 0.

The values of the spin fields at the horizon in this branch obey the following relations

gtt|ρh = 0, g′tt|ρh = 0, gxx|ρh = 4L, ψxxx|ρh = 2W. (4.59)

So we can recast our expresion for the entropy as

S =
4k

π
A cos

[
1

3
sin−1

(
3

3
2ψ3

A3

)]
(4.60)

where

A = 2π
√
gxx|ρh , ψ3 = ψxxx|ρh , (4.61)

which is very similar to the entropy formula found for asymptotically AdS higher spin

black holes [34]. It would be interesting to investigate whether the local thermodynamic

instability of the n = 5 branch discussed in section 4.7 and the absence of a regular horizon

are related. However, it is an open and interesting question, if for the n = 5 branch there

is a more general radial gauge choice (along the lines of [20]) which has a regular horizon.

5 Generalizations

In this section we will present some observations on possible generalizations of our SL(3,R)

results obtained in the previous sections.

5.1 Rotating solutions

In the present paper we have limited ourselves to non-rotating solutions, for which the con-

nections A and Ā are related by equation (4.1). Since the two Chern-Simons connections

A, Ā are independent, it is clear that constructing a solution with angular momentum en-

tails lifting the condition (4.1). This also means that there will be two holonomy conditions
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for the A and the Ā connection. Recall that in the SL(3,R)× SL(3,R) black hole first dis-

cussed in [23] a rotating higher spin black hole is obtained by choosing modular parameter

to be complex τ = Ω+iβ, where Ω is the potential dual to the angular momentum. For the

Lifshitz black holes this cannot work quite the same way and we present some observations

here. Note that in the holographic dictionary or the stress energy complex of a Lifshitz

theory (5.1) the angular momentum (i.e. the momentum along the x direction if we take

x to be compact) is identified with L − L̄, whose conjugate potential is µ1 − µ̄1 and the

energy is identified with W + W̄, whose conjugate potential is µ2 + µ̄2. Hence it is likely

that a rotating solution can be constructed by choosing a connections with µ1 6= µ̄1 and

keeping the indentification of the temperature β the same as in the non-rotating case. The

expressions for the metric and higher spin fields are much more complicated. This implies

also that the analysis of the black hole gauge done section 4.8 becomes more involved, and

we leave these questions for future work. We also note that, to our knowledge, no rotating

Lifshitz black hole solutions have been constructed using the standard supergravity actions.

Hence constructing such solutions in higher spin gravity might be interesting.

5.2 Lifshitz vacuum for hs(λ)

In this section we discuss some steps in generalizing the construction of Lifshitz black holes

from SL(3,R) to hs(λ), note that this generalization will also include the case of SL(N,R)

by choosing λ = N , where the infinite-dimensional Lie algebra reduces to SL(N,R). Our

conventions for hs(λ) are summarized in appendix A.2.

A Lifshitz vacuum in the hs(λ) theory can be easily constructed as follows

at =
1√

tr(V s
s−1V

s
−(s−1))

V s
s−1, ax =

1√
tr(V 2

1 V
2
−1)

V 2
1

āt =
1√

tr(V s
s−1V

s
−(s−1))

V s
−(s−1), āx = − 1√

tr(V 2
1 V

2
−1)

V 2
−1. (5.1)

Note that since

[V 2
1 , V

s
s−1]? = 0, [V 2

−1, V
s
−(s−1)]? = 0, (5.2)

this satisfies the flatness condition for a connection in the radial gauge. The gauge connec-

tions Aµ and the metric are obtained from (5.1) by adapting the formulae (2.5) and using

b = exp(ρV 2
0 ) It follows that the metric is of the form.

ds2 = −e2(s−1)ρdt2 + e2ρdx2 + dρ2. (5.3)

Hence we can realize an asymptotically Lifshitz metric in the hs(λ) theory for any z =

2, 3, 4, · · · , by setting s = z + 1. Note that some higher spin fields will be non-vanishing

for this hs(λ) Lifshitz vacuum. By setting λ = N , the infinite-dimensional hs(λ) gauge

algebra truncates to a finite-dimensional SL(N,R), and the connections give Lifshitz vacua

with z = N − 1, N − 2, · · · , 2. Note that the generators V 2
0 , V

2
1 and V 3

2 form a Lifshitz

sub algebra. The generalization of the evolution equations (3.15) and (3.16) to the case of

hs(λ) is an interesting open problem.
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5.3 An hs(λ) Lifshitz black hole

Here we limit ourself to the BH for z = 2, which is related to the hs(λ) black hole with

a chemical potential for the spin three charge, which is most extensively studied in the

literature. The connection is given by

ax = V 2
1 + L̃V 2

−1 + W̃V 3
−2 + ŨV 4

−3 + · · · (5.4)

at = µ̃1ax + µ̃2(ax ? ax) |traceless . (5.5)

Here, L̃, W̃, Ũ , etc are associated with charges of spin 2, 3, 4, · · · . We have tilded all quanti-

ties to distinguish them from the quantities appearing in the higher spin black hole reviewed

in the appendix A.2.

By construction the connection (5.4) satisfied the flatness condition. To define a regular

black hole in a higher spin Chern-Simons theory one has to impose a holonomy condition

on the gauge connection around the euclidean time circle. The holonomy condition which

we choose is again that the holonomy is equal to the BTZ holonomy for the hs(λ) black

hole defined in appendix A.2. One might object that in the case of the Lifshitz BH this

condition seems less well motivated since there is no analog of a BTZ black hole for an

asymptotically Lifshitz spacetime, however a better way to think about this is that the BTZ

holonomy simply states that the holonomy of the BH is in the center of hs(λ) (see [30] for

a discussion on how the center of hs(λ) is defined).

If we compare the holonomy associated with at defined in (5.4) and the higher spin

black hole holonomy (A.9) one recognizes that they are the same upon the following iden-

tifications

µ̃1 = 2πτ, µ̃2 = −2πα. (5.6)

Furthermore the charges can also be identified

L̃ = −2π

k
L, W̃ = − π

2k
W, · · · (5.7)

Since there is a one-to-one map of parameters one might ask how this can be different than

the hs(λ) [55]. The answer lies in the fact that while (this was true for the SL(3,R) case

too) the holonomy conditions have the same functional form, the interpretations of µ̃1 and

µ̃2 are different. The inverse temperature β and the chemical potential α̃ can be related

to µ̃1 and µ̃2 following the the SL(3,R) Lifshitz black hole example

µ̃1 = βα̃, µ̃2 = β. (5.8)

This means that the most natural regime for the Lifshitz black hole , i.e. β̃ finite and α̃

small, is not the same regime as the one which allows the perturbative solution of the

holonomy conditions first obtained in [55]. Indeed if we take the limit α̃ → 0, this is

equivalent for the higher spin black hole to taking the limit τ → 0 and keeping α finite,

i.e. taking an infinite temperature limit and finite chemical potential.
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6 Discussion

In this paper we have discussed the construction of holographic spacetimes dual to field

theory with Lifshitz z = 2 scaling symmetry . In addition we have constructed black hole

solutions in these theories. One interesting feature of these theories is that the connections,

holonomy conditions and thermodynamic relations are all very similar to the higher spin

black holes first constructed in [23]. This can be traced back to the fact that the Lifshitz

black hole connections and the higher spin black hole connections are related by replacing

t, x by z̄, z respectively. Note however that the interpretation of the parameters is quite

different. First, the holographic identification of the stress energy complex of the QFT

with Lifshitz symmetry and the role of the fields L and W are quite different for the

Lifshitz theory compared to the W3 CFT. Second, for the Lifshitz black hole solutions

the identification of the temperature and higher spin chemical potential is in some sense

reversed compared to the higher spin black hole, this leads to a different interpretation

of the thermodynamics. The solution of the holonomy conditions has different branches,

which we can interpret as different thermodynamic phases. We have shown that only one

branch (branch I of section 4.6) has 1. positive entropy and 2. positive temperature, 3. is

locally thermodynamically stable and 4. enjoys a radial gauge with a regular horizon. All

other branches do not satisfy one or more of these conditions and are therefore physically

not satisfying.

We have briefly discussed generalizations of the black hole solutions found in this paper.

It would be interesting to study Lifshitz black hole solutions in hs(λ) further, since there

exists a concrete proposal for a dual CFT and the Lifshitz theories could be interpreted

as deformations of the CFT. Furthermore since it is possible to couple scalar matter

consistently there are independent probes of the geometry of the black hole. To make

progress one has to solve the holonomy conditions either exactly or maybe less ambitiously

determine wether it is possible to solve the holonomy conditions perturbatively for small

α̃ and finite temperature. We plan to return to these interesting questions in the future.
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A Conventions

In this appendix we present some details on the conventions and explicit representations

of the Lie algebras used in the main body of the paper.
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A.1 Explicit SL(3,R) representation

The SL(2,R) generators of the principal embedding are given by the following matrices

L−1 =

0
√

2 0

0 0
√

2

0 0 0

 , L1 =

 0 0 0

−
√

2 0 0

0 −
√

2 0

 , L0 =

1 0 0

0 0 0

0 0 −1

 . (A.1)

and the spin 3 generators, on which we omit the superscript (3) for notational simplicity,

are as follows:

W−2 =

0 0 2

0 0 0

0 0 0

 , W−1 =

0 1√
2

0

0 0 − 1√
2

0 0 0

 , W0 =

1
3 0 0

0 −2
3 0

0 0 1
3

 (A.2)

W1 =

 0 0 0

− 1√
2

0 0

0 1√
2

0

 , W2 =

0 0 0

0 0 0

2 0 0

 . (A.3)

If we define (T1, T2, . . . , T8) = (L1, L0, L−1,W2, . . .W−2), then traces of all pairs of genera-

tors are given by

tr(TiTj) =



−4 0 · · · 0

2
...

. . .
...

−4 0 · · · 0

0 · · · 0 4

−1
...

. . .
... 2

3

−1

0 · · · 0 4


(A.4)

A.2 hs(λ) conventions and black hole

Here we follow the conventions of [28] and [30]. The main formulas we use are, the lone

star products

V s
m ? V t

n =
1

2

s+t−|s−t|−1∑
u=1,2,···

gstu (m,n;λ)V s+t−u
m+n . (A.5)

The star product is used to define the commutator between Lie algebra generator and is

denotes by [·, ·]?. For the elements of the Lie-algebra V s
m one has |m| < s (the generators

are zero otherwise). The elements V 2
−1,0,1 form a SL(2,R) sub algebra and V s

m form spin s

representation

[V 2
m, V

t
n]∗ =

(
m(t− 1)− n

)
V t
m+n. (A.6)

The algebra has a unit element denoted by X1
0 , the trace is defines by

Tr(X) = X|V 1
0
. (A.7)
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A hs(λ) black hole with a chemical potential for the spin 3 charge (this can be generalized

to arbitrary spin s) has the following connections

az = V 2
1 −

2π

k
LV 2
−1 −

π

2k
WV 3

−2 + UV 4
−3 + · · · ,

az̄ = −α
τ̄

(az ? az) |traceless . (A.8)

The holonomy around the time circle is given by H = eω with

ω = 2π
(
τaz + τ̄ az̄

)
. (A.9)

The holonomy condition for the black hole is that the holonomy is the same as the holonomy

of the BTZ black hole

H = HBTZ . (A.10)

where ωBTZ is given by

ωBTZ = 2πτV 2
1 +

π

τ
V 2
−1. (A.11)

This condition is equivalent to the following conditions on the powers of ω (see eq. 2.17

of [30]).

Tr(ωn) =
1

λ
lim
t→0

(
∂nt

sinπλt

sinπt

)
. (A.12)

These conditions have been solved perturbatively in the chemical potential α and one gets

the charges L,W,U , · · · as a power series in α (and depending on τ), such that as α → 0

one gets back the BTZ black hole.
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[60] M. Bañados, Global charges in Chern-Simons field theory and the (2+1) black hole, Phys.

Rev. D 52 (1996) 5816 [hep-th/9405171] [INSPIRE].

[61] G. Compère and W. Song, W symmetry and integrability of higher spin black holes, JHEP

09 (2013) 144 [arXiv:1306.0014] [INSPIRE].

[62] H.A. Gonzalez, D. Tempo and R. Troncoso, Field theories with anisotropic scaling in 2D,

solitons and the microscopic entropy of asymptotically Lifshitz black holes, JHEP 11 (2011)

066 [arXiv:1107.3647] [INSPIRE].

– 28 –

http://dx.doi.org/10.1088/1126-6708/2009/03/070
http://dx.doi.org/10.1088/1126-6708/2009/03/070
http://arxiv.org/abs/0812.5088
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.5088
http://dx.doi.org/10.1103/PhysRevD.80.126003
http://arxiv.org/abs/0905.3183
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.3183
http://dx.doi.org/10.1088/1126-6708/2009/06/075
http://arxiv.org/abs/0905.1136
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1136
http://dx.doi.org/10.1103/PhysRevD.80.104039
http://dx.doi.org/10.1103/PhysRevD.80.104039
http://arxiv.org/abs/0909.0263
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0263
http://dx.doi.org/10.1007/JHEP12(2013)048
http://arxiv.org/abs/1309.4362
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4362
http://dx.doi.org/10.1088/0264-9381/28/21/215019
http://dx.doi.org/10.1088/0264-9381/28/21/215019
http://arxiv.org/abs/1107.4451
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.4451
http://dx.doi.org/10.1088/1126-6708/2009/10/032
http://arxiv.org/abs/0908.1402
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.1402
http://dx.doi.org/10.1007/JHEP07(2012)147
http://arxiv.org/abs/1204.5105
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.5105
http://dx.doi.org/10.1007/JHEP11(2011)061
http://arxiv.org/abs/1108.2567
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2567
http://dx.doi.org/10.1103/PhysRevD.21.884
http://inspirehep.net/search?p=find+J+Phys.Rev.,D21,884
http://dx.doi.org/10.1088/0264-9381/22/9/002
http://arxiv.org/abs/hep-th/0408217
http://inspirehep.net/search?p=find+EPRINT+hep-th/0408217
http://dx.doi.org/10.1088/1126-6708/2001/08/018
http://dx.doi.org/10.1088/1126-6708/2001/08/018
http://arxiv.org/abs/hep-th/0011127
http://inspirehep.net/search?p=find+EPRINT+hep-th/0011127
http://arxiv.org/abs/1006.5358
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5358
http://dx.doi.org/10.1103/PhysRevD.52.5816
http://dx.doi.org/10.1103/PhysRevD.52.5816
http://arxiv.org/abs/hep-th/9405171
http://inspirehep.net/search?p=find+EPRINT+hep-th/9405171
http://dx.doi.org/10.1007/JHEP09(2013)144
http://dx.doi.org/10.1007/JHEP09(2013)144
http://arxiv.org/abs/1306.0014
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0014
http://dx.doi.org/10.1007/JHEP11(2011)066
http://dx.doi.org/10.1007/JHEP11(2011)066
http://arxiv.org/abs/1107.3647
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3647

	Introduction
	Chern-Simons formulation of higher spin gravity
	Lifshitz spacetimes
	Asymptotically Lifshitz connections
	Realization of Lifshitz symmetries

	Non-rotating Lifshitz black hole
	Most general non-rotating black hole solutions
	Holonomy conditions
	Action and entropy
	Temperature and grand potential
	Branches
	Entropy as a function of intensive parameters
	Local stability in the grand canonical ensemble
	Metric and black hole gauge

	Generalizations
	Rotating solutions
	Lifshitz vacuum for hs(lambda)
	An hs(lambda) Lifshitz black hole

	Discussion
	Conventions
	Explicit SL(3,R) representation
	hs(lambda) conventions and black hole


