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Abstract

Background: Endogenous retroviruses (ERVs) are parasitic sequences whose derepression is associated with cancer
and genomic instability. Many ERV families are silenced in mouse embryonic stem cells (mESCs) via SETDB1-
deposited trimethylated lysine 9 of histone 3 (H3K9me3), but the mechanism of H3K9me3-dependent repression
remains unknown. Multiple proteins, including members of the heterochromatin protein 1 (HP1) family, bind
H3K9me2/3 and are involved in transcriptional silencing in model organisms. In this work, we address the role of
such H3K9me2/3 “readers” in the silencing of ERVs in mESCs.

Results: We demonstrate that despite the reported function of HP1 proteins in H3K9me-dependent gene
repression and the critical role of H3K9me3 in transcriptional silencing of class I and class II ERVs, the depletion of
HP1a, HP1b and HP1g, alone or in combination, is not sufficient for derepression of these elements in mESCs.
While loss of HP1a or HP1b leads to modest defects in DNA methylation of ERVs or spreading of H4K20me3 into
flanking genomic sequence, respectively, neither protein affects H3K9me3 or H4K20me3 in ERV bodies.
Furthermore, using novel ERV reporter constructs targeted to a specific genomic site, we demonstrate that, relative
to Setdb1, knockdown of the remaining known H3K9me3 readers expressed in mESCs, including Cdyl, Cdyl2, Cbx2,
Cbx7, Mpp8, Uhrf1 and Jarid1a-c, leads to only modest proviral reactivation.

Conclusion: Taken together, these results reveal that each of the known H3K9me3-binding proteins is dispensable
for SETDB1-mediated ERV silencing. We speculate that H3K9me3 might maintain ERVs in a silent state in mESCs by
directly inhibiting deposition of active covalent histone marks.

Keywords: endogenous retrovirus, ERV, heterochromatin protein 1, HP1, Cbx1, Cbx3, Cbx5, H3K9me3, retroviral
repression, transcriptional silencing, mouse embryonic stem cells

Background
Endogenous retroviral sequences (ERVs) are relics of
ancient retroviral integration into the germline. These
parasitic elements are abundant in mammals, occupying
approximately 8% of the mouse genome and 10% of the
human genome [1,2]. ERVs are subdivided into three
diverse classes based on the similarity of their reverse
transcriptase genes or their relationship to different gen-
era of exogenous retroviruses. In the mouse, class I
ERVs, similar to gammaretroviruses, include active
families such as murine leukaemia viruses (MLVs) and

murine retroviruses that use tRNAGln (GLN). Class II
ERVs are similar to alpha- and betaretroviruses and
include Mus musculus ERV using tRNALys type 10C
(MMERVK10C), the highly retrotranspositionally active
intracisternal A-type particles (IAPEz) and early trans-
poson/Mus musculus type D retrovirus (ETn/MusD)
families. Class III ERVs, the oldest and most abundant
ERVs, are most similar to spumaviruses and are repre-
sented by mouse endogenous retrovirus type L (MERV-
L) and mouse apparent LTR retrotransposons (MaLR)
[3,4]. Numerous regulatory motifs in the ERV long
terminal repeats (LTRs) can initiate high levels of tran-
scription in tissues and cell lines [5], and there is exten-
sive evidence of aberrant ERV-driven gene expression in
cancers [6-11] and tissues of aging mice [12,13]. In an
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effort to counteract the potentially detrimental effects of
ERVs, eukaryotic genomes have evolved multiple lines
of defence against active exogenous and endogenous ret-
roviruses [14], including DNA methylation and repres-
sive histone modifications.
DNA methylation was the first epigenetic mark recog-

nized to contribute to ERV silencing, with dramatic
upregulation of ERVs observed in DNA methylation-
deficient somatic cells [15,16]. However, genome-wide
chromatin immunoprecipitation (ChIP) followed by
ChIP sequencing (ChIP-seq) [17-19] or ChIP followed
by quantitative PCR (qPCR) [20] revealed that in mouse
embryonic stem cells (mESCs), class I and class II ERVs
are enriched for the repressive histone H3 lysine 9 tri-
methylation (H3K9me3) deposited by lysine methyl-
transferase (KMTase) SETDB1/ESET/KMT1E [20].
SETDB1 is in turn thought to be recruited to ERVs via
the obligatory corepressor KRAB-associated protein 1
(KAP-1) [21], presumably through sequence-specific
KAP-1-binding zinc finger proteins such as ZFP809 in
the case of MLVs [22]. Moreover, we and others have
recently shown that in mESCs, H3K9me3 and SETDB1
play a greater role than DNA methylation in the silen-
cing of class I and class II ERVs [20,23]. IAP and ETn/
MusD retrotransposons, the two most active class II
mouse ERV families and the source of numerous recent
germline mutations [24], are among the families with
the highest H3K9me3 enrichment levels. Intriguingly,
these families are dramatically upregulated in SETDB1
knockout (SETDB1 KO) mESCs [19,20], confirming that
they have a high potential for activation in the absence
of H3K9me3. In contrast, the class III MERV-L and
MaLR families, which are devoid of the H3K9me3 mark
in mESCs, are repressed by the histone lysine-specific
demethylase 1 (LSD1/KDM1A) [25], revealing that dif-
ferent ERV classes are regulated by distinct epigenetic
modifications in these pluripotent cells.
Acetylation of lysine residues on the N-terminal tails

of histones, including H3K9, directly influences the state
of chromatin compaction by reducing the affinity of his-
tones for DNA [26,27]. In contrast, methylation per se
of such lysine residues is less likely to directly affect
chromatin structure, as this modification does not alter
their charge. Rather, the prevailing view is that specific
proteins, the so-called “readers,” bind to methylated
lysines and coordinate the biological outcome associated
with such covalent histone marks. H3K9me3, for exam-
ple, which is essential for the establishment and mainte-
nance of the silent chromatin state [28-31], is bound by
three isoforms of heterochromatin protein 1 (HP1) in
the mouse genome: HP1a (encoded by Cbx5), HP1b
(encoded by Cbx1) and HP1g (encoded by Cbx3) [32].
HP1 is a highly conserved family; its members are fre-
quently present in several copies in eukaryotic genomes

and play both structural and gene regulatory roles
[33-35]. The chromodomain of HP1 is responsible for
binding H3K9me2/3 [36,37], and a chromoshadow
domain is required for HP1 homo- and heterodimeriza-
tion and the recruitment of other proteins [38,39].
Although their exact function in transcriptional regu-

lation and cross-talk with histone and DNA methylation
varies between species, the ability of HP1s to modulate
gene expression via H3K9me2/3 binding has been
reported in multiple systems [33,40-42]. In fission yeast,
for example, two HP1 homologues, Swi6 and Chp2, are
both required for assembly of repressive chromatin [43].
In mammalian cells, targeting of HP1a, HP1b and HP1g
to heterologous loci is sufficient to induce recruitment
of SETDB1 and deposition of H3K9me3 [44], and HP1
has been implicated in SUV39H1-mediated silencing of
euchromatic genes [45].
A role for HP1 proteins in silencing of repetitive

and/or transposable elements has been well documen-
ted in several model organisms. In Drosophila, two
families of transposons are derepressed in larvae with
mutant HP1a and, to a lesser extent, mutant HP1c
[46]. HP1d/Rhino is required for transposon silencing
in the female germline of Drosophila, but this silencing
seems to stem from Rhino’s role in Piwi-interacting
RNA (piRNA) production rather than establishment of
repressive chromatin [47]. At transposable elements in
Neurospora, DNA methylation is dependent on methy-
lated H3K9 bound by HP1 [48,49]. In Arabidopsis,
however, H3K9me3-directed DNA methylation applies
only to CpNpG methylation, not to CpG methylation,
of transposons [50,51]. HP1g is a negative regulator of
HIV in human cell lines [52] and of non-LTR LINE1
retrotransposons in male mouse germ cells [53]. On
the contrary, HP1g has also been implicated in activat-
ing gene expression through its association with elon-
gating RNA polymerase II [54,55]. The latter example
notwithstanding, HP1 proteins are excellent candidates
for the role of downstream effectors of H3K9me3-
dependent silencing affecting ERVs in mESCs. Indeed,
an intact HP1-binding domain of KAP-1 is essential
for complete restriction of MLV in mouse embryonic
carcinoma cells [56]. Furthermore, direct interaction of
HP1 and KAP-1, as well as binding of HP1 to
H3K9me3, is necessary for the full extent of silencing
mediated by these factors [57-61]. Moreover, we have
recently demonstrated by ChIP-qPCR that HP1a,
HP1b and HP1g are enriched on IAPEz, MusD and
MLV ERV sequences in mESCs, albeit at modest levels,
and that this binding is partially dependent on
SETDB1-deposited H3K9me3 [20]. On the basis of
these observations, we hypothesized that HP1s might
play a role in H3K9me3-mediated ERV silencing in
mESCs and possibly in early embryos.
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In addition to their reported roles in transcriptional
silencing, HP1 proteins are required for heterochroma-
tin spreading in specific genomic contexts in Drosophila
[62,63], yeast [64] and mammals [42,57]. The presence
of both chromodomains and chromoshadow domains
suggests that HP1 proteins may bind H3K9me3 and
recruit additional proteins, such as SUV39H1/2 or
SETDB1-bound KAP-1 [61,65,66], to facilitate the
spreading of the repressive H3K9me3 mark [67,68].
Intriguingly, repetitive elements may act as foci of de
novo heterochromatin formation and spreading, as
H3K9me3 is enriched at sequences flanking ERVs
[18,19]. Conversely, in Neurospora, HP1 is a component
of a histone demethylase-containing complex that pre-
vents spreading of heterochromatin [69].
In addition to HP1s, many other mouse chromodo-

main proteins [70] are reported to bind H3K9me3 in
vitro, including CDYL, CDYL2, CBX2, CBX4, CBX7 and
M-phase phosphoprotein 8 (MPP8) [71-78]. Further-
more, nonchromodomain proteins with affinity for
H3K9me3 have also been identified [79]. Although
MPP8 and CBX7 have been shown to negatively influ-
ence transcription of specific genes [71,80], the func-
tional and biological significance of the interaction of
most of these H3K9me3 readers with H3K9me3 remains
poorly understood.
To determine what role, if any, H3K9me3 readers

play in silencing of ERVs and spreading of repressive
chromatin from these repetitive elements, we first
generated Cbx1 (HP1b) knock-out (KO) and Cbx5
(HP1a) KO mESCs [40,81]. Surprisingly, we observed
no upregulation of ERVs in Cbx5-/- mESCs and only
modest upregulation of several ERV families in
Cbx1-/- mESCs compared to that seen in Setdb1 KO
mESCs. We found that both HP1a and HP1b are dis-
pensable for DNA methylation of the ETnII/MusD
family of ERVs, although HP1a has a modest influ-
ence on DNA methylation of IAP elements. Further-
more, we demonstrate that while deposition of
H4K20me3 at major satellite repeats is dependent in
part on HP1a, as reported previously [82], HP1a and
HP1b are dispensable for deposition of H4K20me3 at
ERVs and play only a modest role in spreading of
H4K20me3 into sequences flanking these elements.
Finally, employing RNAi and newly derived mESC
lines harbouring silenced IAP, MusD and exogenous
MLV-based reporters, we show that depletion of all of
the HP1 proteins, alone or in combination, or each of
the remaining known H3K9me3-binding proteins, has
only a modest effect on ERV derepression, indicating
that at classes I and II ERVs, H3K9me3 inhibits tran-
scription independently of HP1 and other known
H3K9me3 readers.

Results
Catalytic activity of SETDB1 is largely required for ERV
silencing
We recently showed by ChIP-qPCR [20] and ChIP-seq
[19] analyses that numerous class I and class II ERV
families are marked by H3K9me3. Furthermore, we
demonstrated the critical role of SETDB1, the KMTase
that deposits this mark, in transcriptional repression of
these ERVs. Mapping all H3K9me3 ChIP-seq reads
along the span of the consensus sequences of class I
and class II ERVs, including IAPEz, MusD,
MMERVK10C, MLV and GLN, confirms a high but
nonuniform level of H3K9me3 along these elements in
wt mESCs and a significantly lower level of H3K9me3
in Setdb1 KO mESCs (Figure 1A and Figure S3 in Addi-
tional file 1). Consistent with these data and those pub-
lished in a previous report [18], analysis of the uniquely
mapped ChIP-seq reads reveals a high level of
H3K9me3 in the regions flanking IAPEz, MusD and
MLV ERVs (Figure 1B and Figure S4 in Additional file
1).
To confirm that the KMTase activity of SETDB1 is

critical for ERV silencing in mESCs [20], we analyzed
the Setdb1 conditional KO mESC line, either unmodi-
fied (SETDB1 KO) or stably expressing wild-type (wt)
(SETDB1 KO TG+) or KMTase-defective (SETDB1 KO
C1243A) SETDB1 transgenes, the latter harbouring a
single amino acid change in the catalytic domain [20].
As expected, robust derepression of ERVs is observed in
the SETDB1 KO line (Figure 1C). Despite the fact that
the SETDB1 C1243A line expresses an approximately
threefold higher level of Setdb1 than wt cells (Figure 1D
and [20]), derepression of several of these ERVs is also
observed in this transgenic line, confirming that
SETDB1 KMTase activity is essential for ERV silencing.
Interestingly, the extent of derepression was dependent
on the ERV family. The level of upregulation of MusD
and IAPEz elements was equivalent in the SETDB1 KO
and catalytic mutant lines, suggesting that silencing of
these elements depends on the KMTase activity of
SETDB1. MMERVK10C and GLN show a lower level of
derepression in the SETDB1 C1243A line than the
SETDB1 KO line, and MLV remains completely
restricted in the SETDB1 C1243A line. Similar results
were noted previously in Northern blot analyses [20].
Taken together, these results indicate that different ERV
families are subject to SETDB1-mediated silencing gen-
erally dependent on SETDB1 catalytic activity.

Depletion of HP1b but not HP1a leads to modest
upregulation of select ERV families
Having confirmed that the KMTase activity of SETDB1
is required for efficient silencing of MMERVK10C,
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MusD and IAPEz, we next sought to determine whether
the archetypal heterochromatic H3K9me2/3 readers
HP1a and HP1b [40], both of which are enriched on
IAPEz, MusD and MLV ERVs [20], are the effectors of
transcriptional suppression of these elements. We gener-
ated Cbx5 (HP1a) KO mESCs (Figure S1 in Additional
file 1) and Cbx1 (HP1b) KO mESCs (Figure S2 in Addi-
tional file 1) and confirmed downregulation of the cor-
responding genes at the mRNA level by qRT-PCR and
at the protein level by Western blot analysis. Equivalent
levels of expression of the pluripotency factor Nanog
were detected in these lines, indicating that deletion of
HP1 proteins does not stimulate differentiation (Figure
2A). Interestingly, while compensatory upregulation of
the Cbx1 and Cbx3 genes was observed at the mRNA

level in the Cbx5-/- line, upregulation of these genes was
not observed at the protein level (Figure 2B).
Surprisingly, unlike deletion of Setdb1, deletion of

Cbx5 does not lead to upregulation of any members of
the ERV families analyzed, as determined by qRT-PCR
(Figure 2C) or Northern blot analysis (Figure 2D). Simi-
larly, deletion of Cbx1 has no effect on MusD, MLV or
GLN elements. Although Cbx1 deletion does result in
modest derepression of MMERVK10C (approximately 3-
fold) and IAPEz (approximately 1.5-fold) relative to the
parental HM1 line, these ERVs show approximately 47-
fold and approximately 3-fold upregulation respectively,
in the Setdb1 KO line, relative to the parental TT2 line,
(see Figure 1). Taken together, these results indicate
that in contrast to SETDB1, HP1a and HP1b play no

Figure 1 Catalytically active SETDB1 is required for endogenous retrovirus silencing. (A) Profiling of trimethylated lysine 9 of histone 3
(H3K9me3) along the length of IAPEz endogenous retroviruses (ERVs) in the TT2 wild type (TT2 wt) and Setdb1 knockout (Setdb1 KO) mouse
embryonic stem cells (mESCs) (see Figure S3 in Additional file 1 for profiles of murine leukaemia virus (MLV), MusD, MMERVK10C and GLN ERVs).
The profile was generated by aligning chromatin immunoprecipitation assay sequencing (ChIP-seq) reads from TT2 wt and Setdb1 KO mESCs [19]
to the consensus sequence of IAPEz. H3K9me3 enrichment levels are presented as reads per kilobase per million mapped reads values (RPKM).
(B) Profiling of H3K9me3 and H4K20me3 in the genomic regions flanking 599 IAPEz elements in TT2 wt and Setdb1 KO mESCs (see Figure S4 in
Additional file 1 for MusD and MLV profiles). H3K9me3 ChIP-seq reads from TT2 wt (C57BL/6 ± CBA) and Setdb1 KO mESCs [19] were used, along
with H4K20me3 ChIP-seq from the wt V6.5 mESCs (129SvJae ± C57BL/6) [18]. Reads were aligned to the mouse genome (mm9), and the density
of reads mapping to the 7-kb regions flanking intact IAPEz ERV families was plotted for H3K9me3 in TT2 wt and Setdb1 KO mESCs and for
H4K20me3 in V6.5 wt mESCs. Vertical lines indicate the 5’ and 3’ boundaries of the ERV. The average mappability for 50-bp reads was confirmed
to be, on average, uniform in the assayed 7 kb region (data not shown), ruling out the possibility of mapping bias. (C) Setdb1 deletion was
induced with 4-hydroxytamoxifen (4-OHT) in mESCs containing no transgene (KO), a wt transgene (KO TG+) or a transgene with a mutation
rendering SETDB1 catalytically inactive (KO C1243A) [20]. Expression is normalized to b-actin relative to wt. Data are presented as means ±
standard deviations (SD) for three technical replicates. (D) To establish the expression levels of Setdb1 in the KO and transgenic lines, quantitative
RT-PCR (qRT-PCR) was performed with Setdb1-specific primers, and expression was normalized to b-actin relative to wt. Data are presented as
means ± SD for three technical replicates.
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role or a relatively minor role, respectively, in class II
ERV silencing in mESCs.

Depletion of HP1a results in a modest reduction of DNA
methylation at IAPEz ERVs
We recently demonstrated that while G9a is dispensable
for silencing of ERVs, this H3K9 KMTase is required for
efficient DNA methylation of these elements in mESCs
[83]. Similarly, DNA methylation of major satellite
repeats is dependent upon the H3K9 KMTase
SUV39H1/2 in mESCs [84]. Intriguingly, HP1 proteins
are required for DNA methylation of repetitive elements
in Neurospora [48,85], but the role of HP1 proteins in
DNA methylation of ERVs in mESCs has not been
explored. To address this question, ETnII/MusD and
IAPEz families, shown previously to be densely DNA
methylated in mESCs [20,83,86], were analyzed by

bisulphite sequencing using genomic DNA isolated from
wt, Cbx1-/- and Cbx5-/- mESCs. In wt cells, several
copies of ETnII and MusD were either completely
unmethylated or hypomethylated specifically at the 5’
end of the LTR (Figures 3A and 3C) as observed pre-
viously [86]. The number of methylated CpG sites per
element of this family remained similar in either of the
Cbx KO lines. In contrast, while the level of DNA
methylation was very high at IAPEz elements in wt
cells, several IAP molecules showed reduced levels of
DNA methylation in the Cbx5-/- cell line (Figures 3B
and 3C), indicating that HP1a plays a role in DNA
methylation of a subset of IAP elements, presumably
dependent upon their genomic location. Nevertheless, as
discussed above, this modest decrease in DNA methyla-
tion did not result in derepression of IAP elements in
these cells.

Neither HP1a nor HP1b are essential for H4K20me3
deposition at ERVs
Although H4K20me3 is dispensable for proviral silen-
cing in mESCs, its deposition by SUV4-20H at ERVs
requires SETDB1-deposited H3K9me3 [20]. On the
basis of the fact that in mouse embryonic fibroblasts
(MEFs), H4K20me3 at satellite repeats is dependent on
SUV39H1/2-deposited H3K9me3 and subsequent bind-
ing of HP1 to this mark [82], we investigated whether
H4K20me3 at ERVs is also dependent upon HP1 pro-
teins in mESCs. Native ChIP (N-ChIP) followed by
qPCR revealed that H4K20me3 enrichment was reduced
by more than 50% at major satellite repeats in the
Cbx5-/- line (Figure 3D), demonstrating that as in MEFs
[82], HP1 proteins are required for efficient H4K20me3
deposition at pericentric heterochromatin in mESCs.
However, this mark is not entirely lost in either of the
KO lines, presumably due to partial redundancy of HP1
proteins at major satellites. In line with these findings, it
was recently shown that HP1b is dispensable for
H4K20me3 and H3K9me3 deposition and localization in
heterochromatin of mouse neurons [81]. Similarly,
H4K20me3 levels at IAPEz, ETnII/MusD and MLV
ERVs in the Cbx1-/- and Cbx5-/- lines remained at levels
similar to the wt parent line, demonstrating either that
H4K20me3 is deposited independently of HP1 binding
or that these proteins act redundantly to promote
deposition of H4K20me3 at these elements. As expected,
H3K9me3 also remained unaltered in the absence of
HP1a or HP1b (Figure 3D).

HP1b plays a role in the spreading of H4K20me3 but not
H3K9me3 from ERVs into flanking genomic regions
Intriguingly, while HP1 homologs play a positive role in
heterochromatin spreading in Drosophila [62,63] and
mammals [42,57], HP1 plays a critical role in inhibiting
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aberrant spreading of heterochromatin in Neurospora
[69]. Genome-wide analysis of H3K9me3 in wt mESCs
reveals high levels of H3K9me3 in the immediate flanks
of ERVs, including IAPEz, MusD and MLV elements,
with progressively lower levels of this mark at distances
farther from the ERV integration site [18,19]. As

expected, deposition of H3K9me3 in these regions is
SETDB1-dependent [19] (see Figure 1B and Figure S4 in
Additional file 1). Notably, the profile of H4K20me3 in
the genomic regions flanking IAP, MusD and MLV ele-
ments is similar to that of H3K9me3 and the relative
levels of both marks are consistent with their abundance
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in each ERV family (that is, IAP > MusD > MLV [20]).
To determine whether spreading of H3K9me3 and/or
H4K20me3 is affected in Cbx1-/- and/or Cbx5-/- mESCs,
we examined these marks at the flanks of two randomly
chosen full-length IAPEz elements and three genomic
locations distal to the integration sites of these ERVs by
ChIP-qPCR (Figure 4). IAPEz elements were chosen
because, among the ERVs analyzed, on average, this
family showed the highest mean H3K9me3 density in
flanking genomic regions (Figure 1B and Figure S4 in
Additional file 1). As expected, in wt cells, the levels of
both H3K9me3 and H4K20me3 generally declined as
the distance from the IAP increased, dropping substan-
tially at approximately 3.5 kb. Depletion of either HP1
protein did not show a consistent effect on the spread-
ing of H3K9me3 into the flanks of the selected IAP ele-
ments, since at the majority of regions surveyed
enrichment was not statistically significantly different in
each of the KO lines from the wt control. HP1b may be
involved in propagation of H3K9me3 beyond 2 kb from
the IAP assayed on chromosome 2, however, suggesting
that at least at some loci, HP1b may facilitate the
spreading of H3K9me3.
Analysis of H4K20me3 in the same regions revealed

no decrease in this mark in the Cbx5-/- line. In contrast,
relative to the HM1 parent line, the Cbx1-/- line showed
a consistent, approximately 1.5- to 2-fold decrease (P <
0.05, two-tailed Student’s t-test) in H4K20me3 at both
loci in distal regions 2 and 3 (Figure 4). Thus, while
neither HP1 protein is required for deposition of
H4K20me3 at the ERVs themselves (see Figure 3D),
HP1b may generally be involved in the spreading of this
covalent mark into the genomic regions flanking these
repetitive elements.

Application of novel ERV reporter lines in a siRNA-based
screen of H3K9me3-binding proteins
In addition to HP1 proteins, a number of other chromo-
domain proteins, including CDYL2, CBX2, CBX4, CBX7
and MPP8, as well as the Tudor domain-containing pro-
tein TDRD7, were recently shown to bind H3K9me3 in
vitro [71-73,75,76]. To address whether any of the
H3K9me3 readers expressed in mESCs (all of those
mentioned above with the exception of Cbx4 and
Tdrd7) play a role in SETDB1-dependent silencing, we
used recombinase-mediated cassette exchange (RMCE)
[87,88] (Figure 5A) to derive novel mESC lines with sin-
gle-copy proviral reporters integrated at a specific geno-
mic site. Specifically, constructs harbouring the green
fluorescent protein (GFP) gene downstream of the
MusD or IAP LTR promoters were generated and intro-
duced into the same genomic site in the mESC line
HA36 (a gift from F Lienert and D Schübeler) via
RMCE. In parallel, the MFG-GFP construct [89] derived

from the Moloney murine leukaemia virus (MMLV) and
efficiently silenced in mESCs and embryonic carcinoma
cells [20,90-93], and a cytomegalovirus (CMV)-GFP cas-
sette were introduced into the same site. Following Cre-
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Figure 5 Silencing kinetics and reactivation of ERV reporters
integrated in a specific genomic site. (A) Scheme for targeting of
ERV reporters into a specific genomic site in mESCs via
recombinase-mediated cassette exchange (RMCE). The mESC line
HA36 contains a hygromycin B and herpes simplex virus thymidine
kinase (HyTK) cassette between inverted Lox sites (L1 and 1L). MFG-
green fluorescent protein (GFP), MusD-GFP and IAP-GFP proviral
reporter cassettes, which contain the Moloney murine leukaemia
virus, MusD (approximately +130 bp of downstream sequence) and
IAP (approximately +450 bp of downstream sequence) LTRs,
respectively, flanked by L1 and 1L sites, were cotransfected into the
HA36 line with a Cre recombinase expression vector. Negative
selection with ganciclovir eliminated cells with the original HyTK
cassette, yielding pools of cells harbouring the proviral reporter
cassettes predominantly integrated at the same site. (B) The kinetics
of silencing of the MFG, MusD and IAP cassettes after reactivation of
the RMCE pool with siRNA against Setdb1 are shown. (C) GFP-
negative cells were sorted at day 12 postinduction with Setdb1
siRNA. Robust reactivation of GFP } expression from each of these
pools of cells was observed upon secondary Setdb1 knockdown
(KD). Flow cytometry data are presented as contour plots and
histograms of 10,000 viable (propidium iodide (PI)-negative) cells.
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mediated recombination and a five-day negative selec-
tion with ganciclovir to exclude cells harbouring the ori-
ginal hygromycin B-herpes simplex virus thymidine
kinase fusion (HyTK) cassette, each of the LTR repor-
ters became silenced, while the CMV promoter main-
tained expression (data not shown). To select cells that
contain the ERV-driven GFP gene silenced via the
SETDB1 pathway, we transiently transfected the GFP-
negative ganciclovir-resistant pools with siRNA specific
for Setdb1. Depending on the cassette, GFP expression
was induced in 20% to 65% of viable cells and these
GFP-positive cells were isolated by fluorescence-acti-
vated cell sorting (FACS). The LTR reporter cassettes
were progressively resilenced over approximately three
weeks in culture (Figure 5B), and the negative popula-
tions were sorted at day 12 to be used as reporters.
Importantly, GFP was efficiently reactivated in each
population upon subsequent treatment of these pools
with Setdb1 siRNA (Figure 5C), confirming that silen-
cing of these LTR reporters is SETDB1-dependent at
this integration site.
To determine whether any of the remaining chromo-

domain-containing H3K9me3 readers expressed in
mESCs are required for SETDB1-mediated silencing, we
knocked down Cbx3 (HP1g) as well as Cdyl2, Cbx1,
Cbx2, Cbx5, Cbx7 and Mpp8 in the above-described
reporter lines and a previously described pool of mESCs
harbouring the silent murine stem cell virus (MSCV)
provirus [20]. As expected, treatment of the MFG,
MSCV, IAP and MusD reporter lines with Setdb1 and
Kap1 specific siRNAs induced GFP expression in
approximately 45% and approximately 25% of cells,
respectively (Figure 6A, upper panel). In contrast,
knockdown (KD) of each of the H3K9me3-binding pro-
teins failed to induce GFP expression to the levels seen
upon KD of Setdb1 or Kap1, despite efficient depletion
of the target mRNAs (Figure 6A, lower panel). KD of
genes encoding other chromodomain-encoding proteins
with H3K9me-binding properties, such as Cdyl [72] and
Chd4 [94,95], also did not result in reporter reactivation
(Figure S5 in Additional file 1).
KD of Cbx3 and Mpp8 did induce GFP expression in

about 10% of treated cells, raising the possibility that
these H3K9me3 readers act in a redundant manner to
maintain these ERV reporters in a silent state. However,
simultaneous KD of Cbx3 in combination with Mpp8
(Figure S6 in Additional file 1) or of Cbx3 in combina-
tion with Cbx1 and Cbx5 (Cbx1/3/5) (Figure 6A) did
not significantly increase the percentage of GFP-positive
cells over that observed with individual KD, despite effi-
cient depletion of each mRNA. KD of Cbx1 and Cbx3 in
the Cbx5-/- mESCs and KD of Cbx3 and Cbx5 in the
Cbx1-/- mESCs showed similar results (data not shown).
Thus, none of the assayed chromodomain-encoding

proteins with H3K9-binding activity are essential for
proviral silencing.
The H3K4me2/3 demethylase JARID1C (SMCX,

which does not harbour a chromodomain, is capable of
binding H3K9me3 via its plant homeodomain (PHD)
[96], and its yeast homologue, Lid2, interacts directly
with the H3K9 HMTase Clr4 [97]. These interactions
suggest that JARID1C may direct H3K4 demethylation
to loci marked by H3K9me3, promoting silencing. How-
ever, KD of the Jarid1 genes expressed in mESCs,
including Jarid1a, Jarid1b and Jarid1c, either alone or in
combination, leads to only modest reactivation of the
proviral reporters, indicating that H3K9me3-recognizing
H3K4 demethylases are not critical for maintenance of
ERV silencing (Figure S7 in Additional file 1). Similarly,
KD of Uhrf1 (NP95 in mouse and ICBP90 in human),
which was recently shown to bind H3K9me3 via its
PHD or SRA (SET- and RING-associated) domain
[79,98-100], and/or KD of a related gene, Uhrf2 yields
minimal upregulation of the four ERV reporters (Figure
S8 in Additional file 1). Based on its pericentric localiza-
tion [98], the main function of ICBP90 may lie in repli-
cation of heterochromatin and transcriptional regulation
of major satellites [101], which show SUV39H1/2-
dependent H3K9me3. Taken together, these data reveal
that none of the known H3K9me3 readers are essential
for silencing of ERVs that are repressed by the SETDB1
pathway.
To determine whether Cbx3 and Mpp8, the H3K9me3

readers which showed the highest reactivation of the
LTR reporters, are required for silencing of ERVs, we
performed qRT-PCR on cDNA isolated from wt TT2
and siRNA-treated mESCs. In Setdb1 KD cells, the
MMERVK10C and MusD families showed the highest
level of derepression, as expected. The same families,
however, are only modestly upregulated upon KD of
Cbx3 or Mpp8 (Figure 6B, upper panel), despite reduc-
tion of the target mRNA to 9% to 30% of wt levels (Fig-
ure 6B, lower panel) and dramatic downregulation of
Cbx3 at the protein level, as determined by Western
blot analysis (Figure 6C).
Finally, to determine whether HP1 proteins act redun-

dantly to silence ERVs, we performed simultaneous KD
of Cbx1, Cbx3 and Cbx5. Strikingly we observed only
modest reactivation of each of the ERVs analyzed (Fig-
ure 6B, upper panel). Similar levels of upregulation of
MMERVK10C and IAPEz ERVs in the Cbx1-/- mESCs
(3.0- and 1.5-fold, respectively) (see Figure 2C), the
Cbx3 KD (2.3- and 1.8-fold, respectively) and the triple
Cbx1/3/5 KD (2.6- and 2.1-fold, respectively) suggest
that Cbx1 and Cbx3 account for most of the HP1-
mediated silencing of these ERV families. However,
MusD elements, which are upregulated approximately
fourfold in the triple KD, were not upregulated in any
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of the KOs, suggesting that all three HP1 proteins must
be depleted to generate the relatively modest level of
derepression observed for this family. Although we can-
not rule out the possibility that an insufficient level or

duration of HP1 depletion upon KD is responsible for
these negative results, Western blot analysis revealed
almost complete loss of all HP1 proteins in cells simul-
taneously depleted of Cbx1, Cbx3 and Cbx5 (Figure 6C).
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Figure 6 Reactivation of ERV reporters and ERVs upon siRNA-mediated KD of H3K9me3-binding proteins. (A) The percentage of
enhanced green fluorescent protein-positive mESCs with reactivated ERV reporters was determined by flow cytometry (upper panel) on day 5
after the second transfection with siRNA against specified H3K9me3 readers. At least 10,000 cells were collected for each sample. Data are
presented as means ± SD of three biological replicates. KD efficiency was determined by qRT-PCR at 30 hours after the second siRNA
transfection (lower panel). Data are presented as means ± SD of three technical replicates. (B) Relative expression of ERVs at day 5 after the
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On the basis of the lack of ERV upregulation upon
simultaneous KD of all three HP1 isoforms, we postulate
that redundancy in HP1 function might not be the
major factor preventing broad ERV reactivation. Simi-
larly, as the maximum level of ERV reactivation upon
KD of the remaining H3K9me3 readers is considerably
lower than that observed in Setdb1 KO or Setdb1 KD
cells, we conclude that none of these H3K9me3 readers
play a major role in SETDB1-mediated ERV silencing in
mESCs.

Discussion
Role of H3K9me3 and HP1 in silencing of ERVs
We and others have recently shown that the H3K9me3
KMTase SETDB1 is critical for silencing of class I and
class II ERVs in mESCs [20,21]. However, the mechan-
ism by which H3K9me3 modification leads to their tran-
scriptional repression is currently unclear. In the present
study, we have shown that HP1a plays a modest role in
maintaining DNA methylation of IAPEz ERVs, while
HP1b plays a modest role in promoting the spreading of
H4K20me3 into the regions flanking these elements.
HP1b also contributes to silencing of select IAPEz and
MMERVK10C elements, but has no effect on DNA
methylation of the ERVs analyzed. However, individual
depletion of HP1a, HP1b and all other candidate
H3K9me3 readers does not result in upregulation of
ERVs or ERV reporters to a level observed in Setdb1
KO or Setdb1 KD mESCs, indicating that these factors
either play only a modest role in silencing or act redun-
dantly in this process. Strikingly, robust proviral dere-
pression was not observed, even after simultaneous
depletion of all three HP1 proteins, ruling out the latter,
at least for these readers. Nevertheless, we cannot
exclude the possibility that an as yet unidentified
H3K9me3-binding protein and/or functional redundancy
between H3K9me readers other than HP1 proteins may
be required for H3K9me3-mediated ERV repression.

H3K9me3-dependent, H3K9me3 reader-independent
proviral silencing?
Consistent with our observation that HP1s do not play a
major role in transcriptional silencing of ERVs in
mESCs, tethering of HP1 proteins in Drosophila inacti-
vates only a limited number of reporter lines [102,103].
Indeed, H3K9me3-dependent silencing may occur
through mechanisms independent of H3K9me3 readers,
such as by preventing the binding of transcription fac-
tors essential for transcription and/or the recruitment of
the RNA polymerase II complex itself.
Specifically, H3K9me3 may directly or indirectly inhi-

bit the deposition of active covalent histone marks.
Acetylation of H3 at lysine 9 (H3K9Ac), for example,
which is incompatible with methylation at this residue,

promotes recruitment of chromatin remodelers and
binding of RNA polymerase II in promoter regions
[104-108], and the histone acetyltransferases GCN5 and
PCAF, which acetylate H3K9 [109,110], are required for
expression of specific genes [110] and retroviral ele-
ments [111]. Furthermore, hyperacetylation of H3 and
H4 occurs concomitantly with IAP upregulation in
MEFs and early embryos deficient in lymphoid-specific
helicase (LSH) [112], implicating histone acetylation in
ERV transcriptional activity. Intriguingly, in Xenopus
oocytes expressing human H3K9 KMTases and HP1,
H3K9me3 mediates transcriptional repression indepen-
dently of HP1 recruitment through a mechanism that
involves histone deacetylation [59].
Alternatively (or in addition), H3K9me3 may block

transcription by indirectly inhibiting phosphorylation at
serine 10 (H3S10ph) in the proviral promoter region.
Intriguingly, transcriptional activation of the mouse
mammary tumour retrovirus is dependent on H3S10ph
and hyperacetylation of H3, mediated by binding of the
nuclear factor 1 (NF-1) transcription factor to the pro-
viral LTR [113-115]. Predicted NF-1-binding sites are
also found in the LTRs of other ERVs, including ETn
elements [116], implicating a broad role for H3S10ph in
transcription of these elements. While experiments
directly addressing whether H3K9me3 blocks phosphor-
ylation of H3S10ph have not been conducted in mam-
malian cells, H3K9me3 severely inhibits H3S10ph
mediated by the Ipl1/aurora kinase in yeast [117].
Finally, H3K4 di- and trimethylation, marks also asso-

ciated with the promoter regions of transcriptionally
active genes, may also be inhibited by the presence of
H3K9me3. Indeed, the H3K4 methyltransferases ASH1L
[118] and SET7 [119] are less efficient in depositing
H3K4me on histones marked with H3K9me in human
cell lines, and H3K9me3 and H3K4me3 are mutually
exclusive marks in mESCs [18]. While H3K4me2 is
detected in the promoter region of IAP elements in Lsh-/-

MEFs concomitant with their upregulation [120], the
appearance of such active marks may be a consequence
of, rather than a prerequisite for, transcriptional activa-
tion. To directly address the role of H3K4 methylation in
retroviral expression, we sought to determine whether
KD of Wdr5, a subunit of MLL/SET1 H3K4 methyltrans-
ferase complexes, inhibits Setdb1 KD-induced activation
of the ERV reporters. We found that simultaneous KD of
Setdb1 and Wdr5, reduced the level of reactivation of all
ERV reporters, especially MusD and IAP (Figure S9 in
Additional file 1), indicating that H3K4me3, the catalytic
product of WDR5-containing complexes [121], is indeed
required for optimal transcription of ERVs. Thus, the
presence of H3K9me3 may effectively block transcription
by inhibiting deposition of H3K4me3 and/or the other
active marks mentioned above.
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Heterochromatin spreading into sequences flanking ERV
Heterochromatin spreading is thought to involve a
reiterative process of HP1 proteins binding to
H3K9me2/3 [36,37] followed by the recruitment of pro-
tein complexes with H3K9me2/3 catalytic activity, such
as SUV39H1/2 [65] and SETDB1 [61]. Consistent with
this model, HP1 proteins have been implicated in het-
erochromatin spreading in Drosophila [62,63], yeast [64]
and mammals [42,57]. Moreover, H3K9me3, a hallmark
of silent chromatin, is abundant in the vicinity of ERVs
[18,19]. However, our results indicate that HP1a and
HP1b play only a modest role, if any, in the spreading
of H3K9me3 into the sequences flanking ERVs. In con-
trast, HP1b is required for efficient spreading of
H4K20me3 at the IAP ERVs analyzed. Although the bio-
logical role of H4K20me3 spreading is still unclear,
recent studies have indicated that this covalent mark is
involved in the maintenance of genomic stability
[122-124]. Intriguingly, a role for HP1 in the DNA
damage response independent of H3K9me3 has also
been reported [125,126]. The availability of HP1b KO
embryos will allow for studies aimed at addressing
whether the distribution of H4K20me3 is dependent
upon this protein and whether DNA damage repair
pathways are perturbed in vivo.

Conclusions
In this work, we demonstrate the surprising finding that
despite the accepted function of HP1 proteins in
H3K9me-dependent gene silencing and the critical role
of H3K9me3 in transcriptional repression of class I and
class II ERVs, HP1a and HP1b are not required for
silencing of these repetitive elements. Furthermore,
while neither HP1a nor HP1b is essential for DNA
methylation or the deposition of H3K9me3 or
H4K20me3 within ERVs, HP1b plays a role in the
spreading of the latter into sequences flanking these ele-
ments. Using a RNAi-based screen with newly derived
mESCs harbouring novel ERV reporters, we have shown
that the remaining proteins reported to bind H3K9me3
in vitro, including HP1g, CDYL, CDYL2, CBX2, CBX7,
MPP8, UHRF1 and JARID1A-C, are also dispensable for
ERV silencing. The lack of proviral derepression in
these experiments may be explained by functional
redundancy of these or as yet unidentified H3K9me3
readers. Alternatively, H3K9me3 may repress ERV tran-
scription via inhibiting deposition of covalent histone
modifications required for transcription. The ERV
reporter cell lines generated here should be useful in
future screens of factors predicted to play a role in pro-
viral expression. Regardless, additional studies aimed at
delineating the functional significance of H3K9 readers,
including nuclear processes not directly related to tran-
scription, are clearly warranted.

Materials and methods
Cell culture, constructs and recombinase-mediated
cassette exchange
To produce the Cbx5-/- and Cbx1 mESC lines, each Cbx
allele was targeted sequentially using two different tar-
geting vectors. See Figures S1 and S2 in Additional file
1 for a detailed description of the ESC-KO derivation.
mESCs were cultured in DMEM supplemented with
15% fetal bovine serum (HyClone Laboratories, Logan,
UT, USA), 20 mM 4-(2-hydroxyethyl)-1-piperazineetha-
nesulfonic acid, 0.1 mM nonessential amino acids, 0.1
mM 2-mercaptoethanol, 100 U/mL penicillin, 0.05 mM
streptomycin, leukaemia-inhibitory factor and 2 mM L-
glutamine on gelatinized plates. For RMCE into HA36
cells, CMV was cut out of the L1-CMV-GFP-1L vector
[127] by restriction with ClaI and NheI restriction
enzymes. IAP and MusD LTR, together with the down-
stream sequence, were cloned into the resulting ClaI-
NheI site upstream of the enhanced green fluorescent
protein (EGFP) gene. MusD from the C57BL/6 genomic
DNA on chr8:131270355-131277831 (mm9) was cloned,
an element similar in sequence to those commonly
expressed in wt cells [20]. The NheI site at nt 444 pre-
vented us from including a longer fragment. However,
this sequence still included the 319 bp 5’-LTR and 125
bp immediately downstream of it. A fragment contain-
ing a LTR and a downstream sequence, approximately
800 bp in total, was cloned for an IAP reporter. The ele-
ment chosen was the one at the site of a novel insertion
into the A/WySn mouse strain [128,129] and was cloned
from the DNA of the respective strain. All inserts were
confirmed by sequencing. The primer sequences are
given in Table S1 in Additional file 1.

Recombinase-mediated cassette exchange, transfection
and transgene selection
For targeting of the ERV reporter constructs into the gen-
ome, Cre RMCE was used [87,130]. The HA36 mESC line
contains a cassette with the HyTK fusion gene at the ran-
dom integration site which allows CMV-GFP expression
for multiple passages (cell line a gift from F Lienert and D
Schübeler). This selectable marker allows for positive
selection through resistance to hygromycin B and for
negative selection through sensitivity to ganciclovir. HA36
mESCs were cultured in 25 μg/mL hygromycin B for 14
days before transfection to select for cells expressing the
fusion gene. Cells were transfected with Lipofectamine
2000 (Invitrogen, Carlsbad, CA, USA) in a 24-well plate
according to the manufacturer’s recommendations. Briefly,
1.5 μg of a cassette with a MusD, IAP or MFG insert was
cotransfected with 0.5 μg of CMV-Cre plasmid using 2 μL
of Lipofectamine 2000 per well. After three days, cells
were transferred to medium containing 3 μM ganciclovir
to select against cells still expressing the HyTK fusion
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gene. Cells were grown in ganciclovir-containing medium
for five or more days, with subculturing performed when
necessary.

siRNA-mediated knockdown
For reporter assays, 10,000 mESCs per well of a 96-well
plate were seeded into antibiotic-free mESC medium the
day before transfection. Transfection was performed
according to the manufacturer’s protocol using 100 nM
concentrations of each siRNA (siGENOME SMARTpool
reagent Dharmacon, Lafayette, CO, USA) and 0.4 μL of
DharmaFECT 1 siRNA transfection reagent (Dharma-
con) per well. On the first day after transfection,
approximately 1/5th of the cells were transferred into
another 96-well plate containing antibiotic-free mESC
medium, and the KD was repeated on the third day.
The next day, approximately 1/2 of the cells were trans-
ferred into a 24-well or 12-well plate, and flow cytome-
try was performed on day 4 or 5 after the second KD.
For RNA or protein collection, the first KD was per-
formed in a 12-well plate and the cells were transferred
to two 6-cm dishes the next day. The day after the sec-
ond KD in 6-cm dishes, three-fourths of the cells were
collected for RNA for confirmation of KD efficiency,
and the rest were plated onto two 10-cm dishes for
expansion and collection for RNA or protein on day 4
after the second KD.

Preparation of genomic DNA, bisulphite treatment, T/A
cloning and sequencing
Genomic DNA was extracted using DNAzol reagent
(Invitrogen), and bisulphite conversion of DNA was per-
formed using the EZ DNA Methylation Kit (Zymo
Research, Orange, CA, USA) according to the manufac-
turer’s protocol. The approximately 370 bp of IAP and
approximately 590 bp of ETnII/MusD element sequence
containing the LTR and the downstream region were
amplified from converted DNA by PCR using Platinum
Taq (Invitrogen). The primer sequences are given in
Additional file 1, Table S1. PCR products from three
separate PCRs for each sample were cloned using the
pGEM-T Easy Vector System kit (Promega, Madison,
WI, USA). All sequences had a conversion rate of >
98%. QUMA http://quma.cdb.riken.jp/top/index.html,
with some follow-up processing, was used for analysis of
bisulphite data [131].

Native chromatin immunoprecipitation assay and
quantitative PCR
Briefly, 1 × 107 mESCs } for each cell line were resus-
pended in douncing buffer and homogenized through a
25-gauge 5/8-inchneedle syringe for 20 repetitions. A
quantity of 1.875 μL of 20 U/μL micrococcal nuclease
(MNase; Worthington Biochemical Corp., Lakewood,

NJ, USA) was added and incubated at 37°C for 7 min-
utes. The reaction was quenched with 0.5 M ethylene-
diaminetetraacetic acid and incubated on ice for 5
minutes; then 1 mL of hypotonic buffer was added and
incubated on ice for 1 hour. Cellular debris was pelleted,
and the supernatant was recovered. Protein A/G Sephar-
ose beads were blocked with single-stranded salmon
sperm DNA and BSA, washed and resuspended in
immunoprecipitation buffer. Blocked protein A/G
Sepharose beads were added to the digested chromatin
fractions and rotated at 4°C for 2 hours to preclear
chromatin. A quantity of 100 μL of the precleared chro-
matin was purified by phenol-chloroform extraction,
and DNA fragment sizes were analyzed and confirmed
to correspond to one to three nucleosome fragments.
Chromatin was subdivided into aliquots for each immu-
noprecipitated sample. Antibodies specific for unmodi-
fied H3 (H9289; Sigma-Aldrich, St Louis, MO, USA),
H3K9me3 (Active Motif 39161, Carlsbad, CA, USA),
H4K20me3 (Active Motif 39180) and control immuno-
globulin G (I8140; Sigma-Aldrich, St Louis, MO, USA)
were added to each tube and rotated at 4°C for 1 hour.
The antibody-protein-DNA complex was precipitated by
adding 20 μL of the blocked protein A/G Sepharose
beads and rotated at 4°C overnight. The complex was
washed and eluted, and immunoprecipitated material
was purified using the QIAquick PCR Purification Kit
(Qiagen, Germantown, MD, USA). The purified DNA
was analyzed by qPCR with respect to input using Eva-
Green dye (Biotium, Hayward, CA, USA) and Maxima
Hot Start Taq DNA Polymerase (Fermentas, Vilnius,
Lithuania). Primers are listed in Table S1 in Additional
file 1.

RNA isolation, reverse transcription and quantitative RT-
PCR
RNA was isolated using GenElute™ Mammalian Total
RNA Miniprep Kit (Sigma-Aldrich) and reverse-tran-
scribed using SuperScript III Reverse Transcriptase
(Invitrogen) as per the manufacturers’ instructions.
Quantitative RT-PCR was carried out using SsoFAST™
EvaGreen Supermix (Bio-Rad Laboratories, Hercules,
CA, USA) on StepOne™ version 2.1 software (Applied
Biosystems, Foster City, CA, USA) in a total volume of
20 μL. Data are presented as means ± standard devia-
tions of three technical replicates. Primer efficiencies
were around 100%. Dissociation curve analysis was per-
formed after the end of the PCR to confirm the pre-
sence of a single and specific product.

Whole-cell protein extracts and Western blot analysis
Briefly, cells were resuspended in 2 ± Laemmli buffer
and incubated at 100°C for 10 minutes. Cells were then
homogenized through a 25-gauge needle syringe 10 to
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15 times. Extracts were run on SDS-PAGE gels and
transferred onto a membrane. Primary antibodies used
were a-HP1a (05-684, 1:200 dilution; Upstate Biotech-
nology, Lake Placid, NY, USA), a-HP1b (MCA 1946,
1:100 dilution; AbD Serotec, Burlington, ON, Canada)
and a-H3 (Active Motif 39163, 1:200 dilution, Carlsbad,
CA, USA). Secondary antibodies used at 1:10,000 dilu-
tions were IRdye 800CW (926-32210) and IRdye 680
(926-32221), both from LI-COR Biosciences (Lincoln,
NE, USA). Membranes were analyzed using the Odyssey
Infrared Imaging System (LI-COR Biosciences).

Northern blot analysis
For each lane, 6 mg of RNA were denatured, electro-
phoresed in 1% agarose/3.7% formaldehyde gel in 1 ± 3-
(N-morpholino)propanesulfonic acid buffer, transferred
overnight onto a Zeta-Probe nylon membrane (Bio-Rad
Laboratories, Hercules, CA, USA) and baked at 80°C.
ETnII/MusD-, IAP- and Gapdh-specific probes were
synthesized by PCR. Primer sequences are given in
Additional file 1, Table S1. An amplified DNA fragment
was a-32P-labeled using the Random Primers DNA
Labeling System (Invitrogen). Membranes were prehy-
bridized in ExpressHyb hybridization solution (Clontech,
Mountain View, CA, USA) for two to four hours at 68°
C, hybridized overnight at the same temperature in
fresh ExpressHyb solution, washed according to the
manufacturer’s instructions and exposed to film.

Fluorescence-activated cell sorting and analysis of
cassette integration
FACS analysis was performed using BD FACSAria III cell
sorter with BD FACSDiva software (BD Biosciences), and
flow analysis was performed using a BD LSR II flow cyt-
ometer. Viable cells were gated on the basis of propidium
iodide exclusion. At least 10,000 propidium iodide-nega-
tive events were analyzed. Untransfected cells were used
as a control for baseline EGFP fluorescence.

H3K9me3 profiling of endogenous retroviruses
To determine the H3K9me3 status of ERVs in TT2 wt
versus Setdb1 KO mESC lines, we generated average
H3K9me3 profiles for representative ERVs upregulated
in the latter [19], including MusD, MMERVK10C,
IAPEz, MLV and GLN elements. For each ERV family,
all sequenced 50-bp reads from our previously published
TT2 and Setdb1 KO H3K9me3 native ChIP-seq data
sets [19] were aligned to the corresponding consensus
sequences (including internal regions and corresponding
LTRs) from Repbase http://www.girinst.org/repbase/
[132] for all ERVs except MusD. For MusD, a represen-
tative active element was used (139824 to 132348 nt of
AC084696, reverse strand). The Burrows-Wheeler
Aligner http://bio-bwa.sourceforge.net/[133] was

employed with default parameters (allowing up to two
mismatches in the 32-bp seed and one gap). Reads were
directionally extended by 150 bp, and extended reads
were profiled along the element. All mapped reads were
taken into account, and the profiles for each library
were normalized by the total number of reads uniquely
mapped to the mm9 genome. For reads that were
aligned into multiple locations (LTRs), we considered
only one randomly selected alignment location. The
irregular nature of the profile is most likely attributable
to SNPs and insertions and/or deletions in the consen-
sus vs. genomic reads.

H3K9me3 profiling in the sequences flanking endogenous
retroviruses
To compare the average density of H3K9me3 in the
genomic regions flanking ERVs, H3K9me3 N-ChIP-seq
data sets for TT2 wt and Setdb1 KO mESCs [19] were
used. Intact elements were selected for three ERV
families: MusD, IAPEz, and MLV. For MusD, IAPEz
and MLV, 195, 599 and 51 elements, respectively, satis-
fied the length and sequence similarity criteria that we
applied [19]. All H3K9me3 reads that passed the quality
score threshold above 7 were aligned to the mouse gen-
ome (mm9) using the Burrows-Wheeler Aligner [133]
and directionally extended by 150 bp [19]. Only reads
uniquely aligned to the regions within 7 kb on either
side of intact elements were considered. If multiple
reads were mapped to the same location, only one copy
of the read was counted. To generate the profiles shown
for the TT2 wt and Setdb1 KO cell lines, extended reads
were first agglomerated for 5’- and 3’-flanks. Subse-
quently, the data were normalized to the total number
of included elements and weighted by the total number
of aligned reads to the genome for each sample.

Note added in proof
While this manuscript was under review, an article pub-
lished by Shang and colleagues (PNAS 2011, 108
(18):7541-7546) revealed that the H3K9me3 demethylase
JMJD2B greatly facilitates H3K4 methylation by purified
MLL2 in vitro (demonstrating that H3K9 demethylation
is required for efficient H3K4 methylation) and is
required for transcription of MLL2 targets in vivo.

Additional material

Additional file 1: Figure S1. Derivation of Cbx5-/- mESCs via sequential
targeted disruption of the Cbx5 gene. Figure S2. Derivation of Cbx1-/-

mESCs via sequential targeted disruption of the Cbx1 gene. Figure S3.
Profiling of trimethylated lysine 9 of histone 3 (H3K9me3) along the
length of endogenous retroviruses (ERVs). Figure S4. Profiling of
H3K9me3 and H4K20me3 in the sequence flanking ERVs in wild-type and
Setdb1-knockout mESCs. Figure S5. Knockdown (KD) of Cdyl, Cdyl2, Chd4
or Mpp8 does not result in reactivation of proviral reporters. Figure S6.
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Simultaneous KD of Mpp8 and Cbx3 does not result in reactivation of the
ERV reporters. Figure S7. Proviral reporters are modestly reactivated
upon KD of H3K9me3-binding H3K4 demethylases Jarid1a-c. Figure S8.
Proviral reporters are modestly reactivated upon KD of H3K9me3-binding
SRA (SET- and RING-associated) domain proteins Uhrf1 and Uhrf2. Figure
S9. The level of derepression of the ERV reporters is substantially reduced
in the Setdb1-KD cells following KD of the H3K4 methyltransferase Wdr5.
Table S1. Primers used in the study.

Abbreviations
BSA: bovine serum albumin; DMEM: Dulbecco’s modified Eagle’s medium;
qPCR: quantitative polymerase chain reaction; RT: reverse transcriptase;
siRNA: small interfering RNA; SNP: single-nucleotide polymorphism.
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