
J
H
E
P
0
2
(
2
0
1
7
)
0
2
9

Published for SISSA by Springer

Received: December 20, 2016

Accepted: January 30, 2017

Published: February 7, 2017

Theta dependence in holographic QCD

Lorenzo Bartolini,a Francesco Bigazzi,b Stefano Bolognesi,a Aldo L. Cotroneb,c

and Andrea Manentid

aDipartimento di Fisica “E. Fermi”, Università di Pisa and INFN, Sezione di Pisa,
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1 Introduction

In the electroweak sector of the Standard Model, parity (P), time reversal (T) and charge

conjugation (C) can be separately broken, while their combination (CPT) is preserved.

Whether some of these discrete symmetries are separately broken also in QCD remains to

be experimentally verified. Instantons in the model naturally induce a P- and T-violating

topological term proportional to θTrF ∧ F , where F is the SU(3) field strength and θ

is a parameter. In principle, nothing forbids θ from taking a generic value. However,

experiments tell us that it should be extremely small. The strongest bound on its value

comes from measurements of the neutron electric dipole moment (NEDM) dn. Recent

experiments [1, 2] give |dn| ≤ 2.9 × 10−26e · cm (90% CL). The topological θ angle in

QCD could provide the main contribution to the NEDM, since CP-violating effects from

the electroweak sector give rise to a dipole moment which is orders of magnitude smaller

than the above mentioned experimental bound. A tentative order-of-magnitude theoretical

estimate [3, 4] gives |dn| ≈ |θ|em2
πM

−3
N ≈ 10−16 |θ|e · cm where mπ (resp. MN ) is the pion

(resp. nucleon) mass. Put together with the above mentioned experimental bound, this

gives an unnaturally small value |θ| ≤ 10−10 for the topological parameter. This is the so

called strong CP problem, a possible theoretical resolution of which (a θ angle relaxing to

zero dynamically) is provided by the Peccei-Quinn mechanism [5] which would imply the

existence of axions [6, 7].

From a theoretical perspective, studying how the θ parameter affects the physics of

QCD requires going beyond perturbation theory. Lattice techniques find some limitations

in this case, since the topological term is imaginary in the Euclidean Lagrangian and

a sign problem arises. While relevant results have been obtained expanding, up to few

terms, around θ = 0 in the pure Yang-Mills case (see e.g. [8] for a detailed review on the

subject), lattice estimates of CP-breaking observables in full QCD, notably estimates of the

NEDM (see e.g. [9–12]), are still plagued by quite large systematic and statistical errors.

In this perspective it is important to compare lattice results with model calculations.

Famous results arise within chiral perturbation theory, where both the θ-dependent ground

state energy density [13] and the NEDM — which turns out to be proportional to the non-

derivative CP-violating pion-nucleon coupling ḡπN N [14] — have been computed. Within

this approach only the pion cloud contributes to the NEDM, since massive (axial) vector

mesons have been integrated out.

Another model approach, complementary to the one above, consists in taking ’t Hooft’s

large Nc limit where Nc is the number of colors. This limit is known not to commute in

general with the small quark mass one in which chiral perturbation theory is organized. In

the unflavored Yang-Mills case, relevant features of the θ-dependent ground state energy

density have been first discussed in [13] and then explicitly realized, to leading order in

θ/Nc, in a holographic Yang-Mills model in [15].1

When Nc =∞ mesons (and glueballs) are non-interacting and stable. At large, finite

Nc, meson-meson couplings are found to be of order 1/
√
Nc, while baryon masses scale as

1An extension of these results to any order in θ/Nc and an analysis of the θ-dependent behavior of

various relevant Yang-Mills observables can be found in [16].

– 2 –



J
H
E
P
0
2
(
2
0
1
7
)
0
2
9

Nc. This suggests that baryons can be seen as solitons in the effective large Nc mesonic

Lagrangian [17]. This picture is actually realized within the chiral effective theory (the

Skyrme model [18]), whose solitons are identified with the baryons. Static properties of

nucleons with Nf = 2 massless (resp. massive) flavors have been studied in the seminal

paper [19] (resp. [20]). In this context the NEDM has been computed both with Nf = 2+1

massive flavors [21] and in the Nf = 2 mass degenerate case [22]. Differently from the chiral

Lagrangian approach, in the Skyrme model virtual pion contributions to the NEDM are

subleading in 1/Nc. This could be related to the large Nc scaling of the CP-breaking pion-

nucleon coupling. A first estimate gave ḡπNN ∼ N1/2
c [23], but a more careful analysis [24]

suggested a neatly different scaling, ḡπNN ∼ Nx
c , with x ≤ −1/2. A complementary check

of the latter suggestion is clearly an interesting issue.

Both the chiral Lagrangian and the Skyrme approach miss the effects induced by the

whole massive (axial) vector meson tower. To overcome this and other limitations of the

effective approach, we consider the large Nc QCD model by Witten, Sakai and Sugimoto

(WSS) [25, 26] where the θ-dependence can be studied from first principle computations

using the holographic correspondence. The WSS model is a non-supersymmetric SU(Nc)

gauge theory in 3 + 1 dimensions, coupled to Nf quarks and a tower of massive (Kaluza-

Klein) matter fields transforming in the adjoint representation of SU(Nc). In the regime

where a classical dual gravity description is available, these massive fields cannot be de-

coupled and the UV behavior of the model neatly departs from that of real QCD. Despite

this limitation, the WSS model exhibits, at low energy, all the crucial features, like confine-

ment, chiral symmetry breaking and the formation of a mass gap, which appear in QCD.

The WSS model provides analytic control on, as well as simple geometrical descriptions of,

these highly non-trivial non perturbative effects. It remarkably contains, within a unique

framework, different effective QCD models which have been built to describe specific sec-

tors of the theory. This unifying perspective allows, at least qualitatively, to go far beyond

the limits of the various effective descriptions.

In the original version of the model the quarks are massless. In this case, as it is

expected from field theory, any θ-dependence is washed out by a chiral rotation of the

quarks. We will discuss in the following how this is realized in the holographic model.

A (small) mass term for the quarks can be introduced using a prescription suggested

in [27, 28]. We adopt that prescription and compute the ground state energy density of the

model as well as the topological susceptibility and the pion and η′ masses as a function of

θ, finding agreement with the chiral Lagrangian results (for a recent holographic derivation

of these observables in a bottom-up model, see [29]). Then we focus on the baryonic sector.

Just like baryons in the large Nc limit can be seen as solitons of the chiral Lagrangian, in the

WSS model they are identified with instantons of the holographic Lagrangian describing

the mesonic sector [30, 31].

We compute the θ-corrected holographic instanton solutions, focusing on the Nf = 2

case, finding that the baryon spectrum does not get corrections to first order in θ. Currents

are instead sensitive to CP-breaking effects. In particular, the dipole term in the nucleon

electromagnetic form factor turns out to be different from zero and, as already pointed out

in [32], exhibits complete vector meson dominance. We present a review and a detailed
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analysis of the computation of the NEDM reported in [32], complementing it with a novel

study of the full momentum dependence of the dipole form factor. Finally, we compute

the CP-breaking pion-nucleon coupling ḡπNN finding that it is zero to leading order in the

large Nc limit.

The paper is organized as follows. In section 2 we review the main features of the origi-

nal WSS model with massless flavors. In section 3 we recall how the U(1) axial anomaly and

the chiral effects on the θ term are realized in the model. We also discuss a Horava-Witten-

like solution of the anomalous Bianchi identities involved in the gravitational description of

these effects. In section 4 we review the inclusion of the flavor mass term and in section 5

we discuss how it affects the θ-dependent vacuum. In section 6 we focus on the holographic

description of baryons in the WSS model. After reviewing the soliton solution describing

baryons and its quantization, we compute the shift in the baryonic Hamiltonian due to the

θ angle and the flavor mass term, discovering that while the shift is of leading order in mπ,

it is subleading (O(θ2)) in θ. In section 7 we compute the leading order corrections (in θ

and in the quark masses) to the instantonic solutions describing baryons. In section 8 we

review and discuss how, focusing on the nucleon electromagnetic form factors, these novel

solutions can be used to compute the neutron electric dipole moment. Moreover we present

a novel analysis of the full electromagnetic dipole form factor. Finally, in section 9 we focus

on the CP-violating pion-nucleon coupling. We collect some further technical comments in

the appendices.

Conventions. Throughout this paper we use the conventions in [26] for the RR forms,

scaling them with respect to the standard notation as

Cp+1 →
k2

0τ6−p
π

Cp+1 , (1.1)

where 2k2
0 = (2π)7l8s gives the ten dimensional Newton’s constant, τp = (2π)−pl

−(p+1)
s is

proportional to the Dp-brane tension and ls ≡
√
α′ is the string length.

2 Witten-Sakai-Sugimoto model

The WSS model is based on a D-brane setup in type IIA string theory. It consists of Nc � 1

D4-branes wrapped on a circle Sx4 [25] and Nf D8−D̄8-branes placed at fixed antipodal

points on the circle [26]. Along the circle, of length 2πM−1
KK , fermions obey anti-periodic

boundary conditions. In such a way, at energies E �MKK the original (4+1)-dimensional

theory on the D4-D8 brane intersection, reduces to pure non-supersymmetric SU(Nc) Yang-

Mills in 3+1 dimensions coupled to Nf massless quarks. Other matter fields, transforming

in the adjoint representation, get masses of the order of MKK .

The holographic dual description of the above large Nc QCD model simplifies if the

quarks are treated in the quenched approximation and (unfortunately) if the spurious

adjoint matter fields are not decoupled. In this case, the dual picture is provided by

a classical gravity background sourced by the wrapped D4-branes and probed (without

backreaction) by the D8-branes.
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2.1 The background

The relevant type IIA gravity action, in string frame, reads

S =
1

2k2
0

∫
d10x
√
−g
[
e−2φ

(
R+ 4(∂φ)2

)
− 1

2
(2π)4l6s |F4|2 −

1

2
l2s |F2|2

]
. (2.1)

Here F4 = dC3 is the RR four-form which is magnetically sourced by the Nc D4-branes,

φ is the dilaton and F2 = dC1 is the RR two-form which, as we will review in a moment,

accounts for the topological θ term in the dual field theory. Neglecting its backreaction

on the background amounts on working at small θ/Nc and getting only the leading order

corrections in this parameter [15]. In this paper we will work in this approximation.2

Treating the F2 form as a probe, the background has the following features [25]. The

string frame metric reads

ds2
10 =

(
U

R

)3/2 [
dxµdx

µ + f(U)dx2
4

]
+

(
R

U

)3/2 [ dU2

f(U)
+ U2dΩ2

4

]
, (2.2)

where

f(U) = 1−
U3
KK

U3
. (2.3)

The dilaton and the four-form field strength are given by

eφ = gs

(
U

R

)3/4

, F4 =
3R3

(2π)2l3s
ω4 , (2.4)

with the flux quantization condition fixing the value of R as∫
S4

F4 = 2πgsNc , R = (πgsNc)
1/3ls . (2.5)

In the formulae above, µ = 0, 1, 2, 3 are the 1+3 Minkowski directions where the Yang-Mills

theory is defined, dΩ2
4 is the metric of a four-sphere S4 of radius one, U is the transverse

radial coordinate U ∈ [UKK ,∞), x4 is the compact coordinate of length 2πM−1
KK and R is

a curvature radius. Moreover, gs is the string coupling and ω4 is the volume form of the

transverse S4, of volume VS4 = 8π2/3. The isometry group of S4 is mapped into a global

SO(5) symmetry group in the dual field theory, which acts non-trivially on the adjoint

Kaluza-Klein massive modes (signaling that these are, in fact, not decoupled in the limit

we are considering).

The Sx4 circle shrinks to zero size when U = UKK . Absence of conical singularities at

U = UKK is guaranteed if the coordinate x4 has period

δx4 =
4π

3

R3/2

U
1/2
KK

=
2π

MKK
. (2.6)

The resulting (U, x4) subspace has a cigar-like shape. Most of the relevant physics in the

model is captured by this geometry. Regularity and the property g00(UKK) 6= 0 imply

confinement and the formation of a mass gap in the dual field theory [25].

2See [16] and references therein for a study of the physics of the model in the fully backreacted case.
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The Yang-Mills theory dual to the above background has two distinct mass scales: the

Kaluza-Klein scale MKK (which is also the glueball mass scale) and the string tension Ts.

Their ratio is determined by the parameter λ ∼ Ts/M2
KK . Reliability of the background re-

quires λ� 1: this is a further indication that the spurious KK modes cannot be decoupled

when the dual description sticks in the classical gravity regime. Reliability of the back-

ground also requires eφ to be small: when this condition is violated (namely, at large U) we

should better make use of the eleven dimensional (“M-theory”) completion of the model,

which is an asymptotically AdS7 × S4 solution of eleven dimensional supergravity [25].

The UV ’t Hooft coupling and the Yang-Mills θ angle can be related to the gravity

parameters by considering the low energy limit of the D4-brane action

SD4 = −τ4Tr

∫
d4x dx4e

−φ√− det(G+ F) +

∫
C5 +

1

2
τ4ls

∫
C1 ∧ TrF ∧ F , (2.7)

where Fαβ ≡ 2πα′Fαβ is proportional to the gauge field strength, C5 is the electric five-

form sourced by the branes (its field strength F6 is the Hodge dual to F4) and Gαβ is the

induced metric on the world-volume. Expanding the action to second order in derivatives,

considering the UV asymptotics U →∞ and integrating over the compact x4 direction one

gets the Yang-Mills Lagrangian

L =
Nc

4λ

[
−TrF 2 +

λ

2π2

θ

Nc
TrF ∧ F

]
, (2.8)

where3

λ ≡ g2
YMNc = 2πgsNclsMKK , θ + 2πk =

∫
Sx4

C1 , (2.9)

and k is an integer. The second relation in (2.9) defines θ mod 2π integer shifts (since the

integral of C1 is gauge invariant only modulo 2πZ).

Solving the equation of motion for C1, treated as an external field on the type IIA

background given above, one finds, imposing (2.9), that

C1 =
Θ

lsgs
f(U)dx4 , where Θ ≡ λ

4π2

(
θ + 2πk

Nc

)
. (2.10)

Since this parameter depends on k, what we actually get on the gravity side is an infinite

family of solutions corresponding to possible field theory vacua. This behavior precisely

reflects the expected multi-branched structure [13] of the θ-dependent vacuum of the theory.

Actually, following standard holographic rules [15], the field theory ground-state energy

density f(θ) (related to the on-shell renormalized gravity action) reads, to leading order

in Θ� 1,

f(Θ) = −2N2
c λ

37π2
M4
KK

(
1− 3Θ2

)
. (2.11)

Since Θ is proportional to θ+2kπ, for a given value of θ the true vacuum energy is obtained

by minimizing the previous expression over k

f(θ) = minkf(Θ) . (2.12)

3The parameters gYM and λ are conventionally referred to as the (UV) four dimensional gauge and ’t

Hooft couplings of the model, despite the fact that they differ by a factor of 2 from the standard ones.
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As a result, the ground state energy density turns out to be a periodic function of θ, as

expected [13]. To any given interval, of length 2π, of possible values of θ, it corresponds a

precise value of k. For example, k = 0 when θ ∈ (−π, π) and so on.

Notice that the probe approximation for C1 requires that, in the k = 0 branch,

Θ =
λ

4π2

θ

Nc
� 1 . (2.13)

This is actually one of the limits we will work with.

When θ � 1 the energy density reads

f(θ)− f(0) =
1

2
χgθ

2
[
1 +O

(
θ2
)]
, (2.14)

with the topological susceptibility given by [15]

χg =
λ3M4

KK

4(3π)6
. (2.15)

See [16] for an exact-in-Θ analysis of the ground state energy density and many other

physical observables.

To simplify the formulae it is sometimes convenient to set MKK = 1 working in the

following units

R3 =
9

4
, UKK = MKK = 1 , gs ls =

g2
YM

2π
. (2.16)

2.2 Adding probe flavor branes

Treating the Nf flavor D8-branes as probes on the background requires taking (see e.g. [33])

εf ≡
1

12π3
λ2Nf

Nc
� 1 , (2.17)

and neglecting O(εf ) corrections on the background fields. This is another limit in which

we will work.4 In the probe approximation, the background metric, dilaton and four-form

RR field strength will be kept fixed as in (2.2), (2.4) so that the equations of motion to be

solved for, arise from a string frame action of the form

S = − 1

4π

∑
p odd

(2πls)
2(p−4)

∫
Fp+1 ∧ ?Fp+1 +

∫
D8

4∑
k=1

C9−2k ∧
1

k!(2π)k
TrFk +

− 1

(2π)8l9s

∫
D8
d9ξ e−φSTr

√
| det(P[g] + 2πl2sF) | .

(2.18)

The Fp+1 are the RR field strengths of the bulk Cp forms while the F are the U(Nf ) field

strengths of the gauge fields living on the D8-branes, F = dA+iA∧A. Powers of differential

forms are done by means of the wedge product. The symbol P[g] denotes the pullback of

the metric on the D8 worldvolume and the symbol “STr ” denotes the symmetrized trace

on the gauge group indexes.

4See [33] for an account of the O(εf ) corrections.
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The energy density for the D8-branes (corresponding to the antipodal embedding on

the Sx4 circle) is minimized by the u-shaped embedding x4(U) = const. Its physical

meaning is remarkable. The U(Nf ) × U(Nf ) symmetry on the antipodal D8−D̄8 branes,

which in turn corresponds to the classical chiral symmetry group in the dual field theory,

is broken to the diagonal subgroup since the two different branches actually join at the tip

of the cigar in the background. This is how the holographic model realizes the spontaneous

chiral symmetry breaking of the dual QCD-like theory.

It is often more convenient to redefine the cigar coordinates in the following way [26]

U3 = U3
KK + UKKũ

2 , ϕ =
2π

δx4
x4 , (2.19)

parameterizing the (ũ, ϕ) plane in Cartesian coordinates (y, z)

y = ũ cosϕ , z = ũ sinϕ . (2.20)

The cigar metric then reads

ds2
(y,z) =

4

9

(
R

U

)3/2 [(
1− q(ũ)z2

)
dz2 +

(
1− q(ũ)y2

)
dy2 − 2zy q(ũ)dxdy

]
, (2.21)

with U given as a function of z and y and q(ũ) defined by q(ũ) = 1
ũ2

(
1− UKK

U

)
.

Using these coordinates, the antipodal embedding just reads y = 0. Correspondingly,

putting the S4 components of the F field to zero, assuming that the other components do

not depend on the S4 angular coordinates, integrating over S4 and expanding to second

order in derivatives, the relevant action, from (2.18), reduces to

S = −κ
∫
d4xdz

(
1

2
h(z) TrFµνFµν + k(z)TrFµzFµz

)
+

Nc

24π2

∫
ω5(A) + SC7 , (2.22)

where (in units MKK = UKK = 1)

κ =
Ncλ

216π3
, h(z) =

(
1 + z2

)−1/3
, k(z) =

(
1 + z2

)
, (2.23)

and

ω5(A) = Tr

(
A ∧ F2 − i

2
A3 ∧ F − 1

10
A5

)
, dω5(A) = TrF3 . (2.24)

Among all the RR forms Fp+1 in (2.18) we are keeping only F8 (in SC7), dual to F2. For a

moment let us neglect the SC7 term (we will discuss in detail its implications in section 3)

and focus on the physical meaning of the remaining part of the action (2.22). It provides

the holographic description to the mesonic sector of the model.

2.3 Holographic mesons

Let us consider inserting into (2.22) the following expansions for the gauge field

Az(xµ, z) =
∞∑
n=0

ϕ(n)(xµ)φn(z) ,

Aµ(xµ, z) =
∞∑
n=1

B(n)
µ (xµ)ψn(z) . (2.25)

– 8 –
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If we choose the functions φn(z), ψn(z) to form complete, suitably normalized sets, the

fields ϕ(n) and B
(n)
µ get canonical mass and kinetic terms in four dimensions. In particular,

we set

− h(z)−1∂z(k(z)∂zψn(z)) = λnψn(z) , κ

∫
dz h(z)ψn(z)ψm(z) = δmn . (2.26)

From these conditions, as we review in appendix A, it follows that the B
(n)
µ modes cor-

respond to massive vectors (resp. axial vectors), for odd (resp. even) n, with masses

m2
n = λnM

2
KK . For example, B

(1)
µ is identified with the ρ meson and B

(2)
µ with the a1

meson. The scalar modes ϕ(n) for n ≥ 1 get eaten by the B
(n)
µ , while the mode ϕ(0) corre-

sponds to the pion. Other massive scalar mesons are given by fluctuations of the D8-brane

embedding.

Thus, a remarkable feature of the effective action (2.22) is the fact that it includes

automatically, into a unified picture, the low lying modes and the whole tower of massive

mesons. All the parameters in the meson action are fixed in terms of the few parameters

of the model, i.e. Nc, Nf ,MKK and λ.

As we review in appendix A, the effective action for the pion precisely reduces to the

chiral Lagrangian and the Skyrme model, with the pion decay constant fπ and the coupling

e defined as

fπ = 2

√
κ

π
, e ∼ − 1

2.5κ
, (2.27)

and the pion matrix given by

U(xµ) = P exp

(
−i
∫ ∞
−∞

dzAz(xµ, z)

)
. (2.28)

3 The U(1)A anomaly and flavor effects on θ

In this section we describe how the presence of massless quarks in the WSS model erases

any physical effect of the θ parameter.

Before the reduction on S4, the SC7 term in the action (2.22) reads

SC7 = − 1

4π
(2πls)

6

∫
dC7 ∧ ?dC7 +

1

2π

∫
C7 ∧ TrF ∧ ωy , (3.1)

where we have introduced the one-form ωy = δ(y)dy, in order to extend the D8 integral to

the whole spacetime. The equation of motion for C7 reads

d ?dC7 =
1

(2πls)6
TrF ∧ δ(y)dy . (3.2)

By using the Hodge relation5

?F8 = (2πls)
−6F̃2 , (3.3)

we see that the equation of motion above is translated into an anomalous Bianchi identity

dF̃2 = TrF ∧ δ(y)dy . (3.4)

5The notation F̃2 is due to the fact that F̃2 6= dC1.
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Notice that the “anomaly” is only driven by the Abelian component of the U(Nf ) gauge

field, i.e. the hatted field in the decomposition

A = Â
1√
2Nf

+AaT a , (3.5)

where T a are the SU(Nf ) generators.

We can formally solve (3.4) by writing

F̃2 = dC1 +

√
Nf

2
Â ∧ δ(y)dy . (3.6)

Now, as it was already observed in [26], following the results in [34], this form is gauge

invariant if we allow for the following combined gauge shifts

δΛdC1 =

√
Nf

2
dΛ ∧ δ(y)dy , δΛÂ = −dΛ . (3.7)

This actually implies that when D8-branes are present, dC1 is not a gauge invariant form.

The correct gauge invariant combination is F̃2. Moreover, with a gauge shift on the Abelian

component of the gauge field on the brane, the components of dC1 along the cigar directions

can be gauged away. Since the integral of dC1 along the cigar gives the bare θ parameter

of the theory, this implies, consistently with field theory expectations, that the bare θ

parameter can be rotated away by a chiral U(1)A phase shift of the fermionic fields. This

is explicitly realized by considering

δΛÂz = −∂zΛ . (3.8)

Integrating along the cigar, eq. (3.7) gives

δΛ θ =

√
Nf

2

(
Λ|z=+∞ − Λ|z=−∞

)
, (3.9)

which corresponds to the shift

θ → θ + 2Nfα , (3.10)

after recalling that a gauge transformation with Λ|z=±∞ = ±
√

2Nfα is holographically

mapped into the U(1)A rotation

qf → eiγ5αqf , (3.11)

on the fundamental fermionic fields [26].

Since with a chiral rotation the θ parameter can be rotated away, it is clear that when

the model contains (even just one) massless flavors its topological susceptibility as well as

any θ-dependence of its observables vanishes.

A non-zero θ-dependence can be obtained when the quarks are massive, as in the

real world.

As we recall in appendix B, the action SC7 is equivalent to

SF̃2
= − 1

4π(2πls)6

∫
d10x|F̃2|2 . (3.12)
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Considering a zero mode for Âz such that∫
dzÂz =

2η′

fπ
, (3.13)

we see that using the integrated Bianchi identity for F̃2 and its equation of motion d?F̃2 = 0,

the on-shell value of the action above reduces to

SF̃2
= −χg

2

∫
d4x

(
θ +

√
2Nf

fπ
η′

)2

, (3.14)

where χg is the topological susceptibility of the unflavored model (2.15). As it has been

observed in [26] this precisely gives the large Nc estimate of the η′ mass predicted by the

Witten-Veneziano formula

m2
η′ = m2

WV ≡
2Nf

f2
π

χg . (3.15)

Being explicit this gives, in our model,

m2
WV =

1

27π2

Nf

Nc
λ2M2

KK ∼ εfM2
KK . (3.16)

Hence, working in the probe approximation requires taking

mWV �MKK . (3.17)

This is then another limit in which we are forced to work.

What we just did can be understood in terms of a Stueckelberg mechanism, in which

a massless vector field ÂM “eats” a scalar (from the D8 point of view) field Cy. Acquiring

a new degree of freedom ÂM becomes massive, hence explaining the mass of the η′ arising

from the U(1)A anomaly.

3.1 Horava-Witten solution of the anomalous Bianchi identity

In general, the formal solution (3.6) of the anomalous Bianchi identity (3.4) does not solve

the equation of motion d ?F̃2 = 0. The main problem is the presence of the delta function.

The present setup shares many common points with the Horava-Witten one [35]. As in

that case, we can solve the Bianchi identity in a way which is compatible with the equations

of motion by writing

F̃MN = Θ(y)

√
Nf

2
F̂MN + fMN , M,N, ... = 0, 1, 2, 3, z ,

F̃zy = fzy , (3.18)

where Θ(y) is the step function, Θ(y) = |y|/2y, fMN are regular terms vanishing at y = 0

and fzy will be discussed in a moment. The extra terms fMN are necessary to satisfy the

equation of motion d ?F̃(2) = 0.

The Bianchi identity dF̃2 = TrF ∧ δ(y)dy is satisfied provided df = 0, hence one can

always put

fAB = ∂AgB − ∂BgA , A,B, ... = 0, 1, 2, 3, z, y . (3.19)
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A solution fAB of the Bianchi-Maxwell system (i.e. the Bianchi identity and the equation

of motion for F̃AB), provided it exists, is not unique. In fact it is always possible to add

to a given solution the zero mode

f (0)
zy =

C

U6
, f

(0)
AB 6=zy = 0 , (3.20)

satisfying df (0) = 0 and d ?f (0) = 0, for any value of the constant C.

Let us thus write

fAB = f
(0)
AB + f

(1)
AB , (3.21)

imposing

lim
|~x|→∞

∫
dzdy f (1)

zy = 0 , (3.22)

which is a consistent boundary condition. Now, the constant C acquires a physical meaning

(in terms of the θ parameter) after imposing the boundary condition

lim
|x|→∞

∫
dzdy F̃zy = θ + lim

|x|→∞

√
Nf

2

∫
Âzdz , (3.23)

which gives

C =
1

π

(
θ + lim

|~x|→∞

√
Nf

2

∫
dz Âz

)
. (3.24)

Let us now add that lim|~x|→∞ F̂MN = 0: from this it follows that the limit |~x| → ∞ of

the Bianchi-Maxwell system is linear in f
(1)
AB, hence we can find solutions that vanish at

spatial infinity.6

Moreover, whatever the explicit form of f
(1)
AB is, it does not mix with the equations

of motion of the gauge fields Â. This follows from the fact that the Horava-Witten solu-

tion (3.18) is antisymmetric under y → −y. Since f
(1)
AB is smooth in y it must be

f
(1)
AB

∣∣
y=0

= 0 . (3.25)

Recalling that the mixing between the equations is schematically given by7

δSDBI+CS+mass

δÂ
= (const.) δ(y)UγF̃2 , (3.26)

we see that y has to be zero, hence only the zero mode f
(0)
AB can contribute. Thus we can

effectively set fzy = f
(0)
zy in this kind of computations.

Finally, we want to show that there is indeed an explicit solution for f
(1)
AB, even though

we will not need it. According to the observations above, the solution is antisymmetric

in y and thus we can first solve the Bianchi-Maxwell system for y > 0 and then continue

the solution for negative values. At this point the existence of the solution is obtained

6We are implicitly exchanging lim|~x|→∞ and
∫
dzdy.

7The constant γ does not matter in this discussion; it is equal to 6 for the z component and to 7/2 for

the µ components. Smass is discussed in the next section.
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by a counting: there are three independent equations, while the unknowns are the g
(1)
A

defined by

f
(1)
AB = ∂Ag

(1)
B − ∂Bg

(1)
A , (3.27)

analogously to (3.19). The independent components are three because the Lorentz symme-

try relates the µ indexes. The system is solvable having the same number of components

and unknowns.

4 WSS model with massive fermions

In view of the relation (2.28), defining the pion matrix as a path ordered holonomy matrix

and in analogy with the chiral Lagrangian approach, a natural term to add to the effective

action (2.22) in order to describe massive quarks is

Smass = c

∫
d4xTrP

[
M exp

(
−i
∫ ∞
−∞
Azdz

)
+ c.c.

]
, (4.1)

where c is a constant and M is the mass matrix. This term has actually a very precise

meaning in string theory [27, 28]: it is the deformation due to open string worldsheet in-

stantons stretching between the D8-branes. A basic observation in [27] is that the U(Nf )

holonomy matrix U which is the order parameter for chiral symmetry breaking, is not

gauge invariant, when embedded in the full string theory model, under gauge transforma-

tions of the NSNS B-field. A gauge invariant object can be obtained by multiplying U
by ei

∫
B where the integral is done over the cigar directions of the background. A way

to construct an operator carrying such a phase is to insert an open fundamental string

(actually a worldsheet instanton) stretching between the branes. The string worldsheet

will be extended along the cigar directions U, x4 from U = UKK up to a cutoff U = Um
which will set the quark bare mass parameter. Introducing such a worldsheet instanton

corresponds to deforming the dual gauge theory by a non-local mass term for the fermions.

The Nambu-Goto part of the open string action is put on-shell and its exponentiation

contributes to the constant c and the mass terms. What remains is just the boundary

interaction of the open string with the gauge fields on the D8-branes. The constant, up to

an irrelevant normalization factor, reads8

c =
1

39/2π3
g3

YMN
3/2
c M3

KK . (4.2)

When the mass term (4.1) is added to the original WSS model, in such a way that all

flavor fields get masses, we should expect that the θ dependence emerges again. This is

actually what happens.

As reviewed in sections 2 and 3, the θ term can be introduced as an integral of C1 and

then removed (in absence of flavor mass terms) via a gauge shift (3.8)

1√
2Nf

∫
Âz −→

1√
2Nf

∫
Âz −

θ

Nf
. (4.3)

8The observables will depend on the combination cmq, where mq is the quark mass. This combination

will be fixed by the GMOR relation. One has thus the freedom to fix one of the two parameters at will, so

we can take the normalization factor to be 1 without loss of generality.
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After this shift, however, Smass becomes

Smass = c

∫
d4xTrP

[
Me

i θ
Nf exp

(
−i
∫ ∞
−∞
Azdz

)
+ c.c.

]
, (4.4)

which amounts to redefining

M −→ Meiθ/Nf . (4.5)

The θ-dependence is thus not erased anymore. Moreover, as expected in QCD, the physical

θ parameter is not just the coefficient of F ∧ F but the combination

θ̄ = θ + arg detM . (4.6)

In the following we will mostly focus on the mass-degenerate case Mij = mqδij , choosing

mq to be real.

5 θ dependence of the vacuum energy

Let us now see how the mass deformation introduced above modifies the vacuum solu-

tion. Let us first notice that the chiral condensate satisfies the Gell-Mann-Oakes-Renner

(GMOR) relation [27, 28]
Nf∑
f=1

〈ψfψf 〉 = −2cNf , (5.1)

where c is defined in (4.2). In the particular mass-degenerate case Mij = mqδij the GMOR

relation

f2
πm

2
π = −2

mq

Nf

Nf∑
f=1

〈ψfψf 〉 , (5.2)

implies that

cmq =
1

4
f2
πm

2
π . (5.3)

In this case the minimum of the energy is found by setting the non Abelian component

of the gauge field A to zero modulo gauge transformations. The vacuum will then be

described by a pure gauge solution F̂ = 0.

The only relevant part of the effective action determining the vacua is that for the Âz
Abelian component.9 Together with (2.22), (3.14), the action (4.4) gives

Leff z = −κ
2
k(z)F̂µzF̂

µ
z + cTrP

[
Me
− i√

2Nf

∫
Âzdz

1 + c.c.

]
− χg

2

(
θ +

√
Nf

2

∫
Âzdz

)2

.

(5.4)

9Notice that at y = 0, where the gauge fields are defined, from the Horava-Witten-like solution (3.18)

it follows that the equation of motion for Âµ does not receive any contribution from SC7 . This is true for

the two following reasons: a) the metric on the cigar directions (y, z) is diagonal at y = 0; b) we are setting

F̃µy = 0. As a consequence, only the equation of motion for Âz receives a contribution from SC7 via the

zero mode components of F̃yz. All this will apply also to the instanton solutions we will look for in the

following.
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The vacuum solution F̂µz = 0 can be given in terms of

ϕ ≡ − 1√
2Nf

∫ ∞
−∞

Âzdz . (5.5)

From the equation of motion of Âz we actually get the following condition in the mass-

degenerate case

m2
π sinϕ = m2

WV

(
θ

Nf
− ϕ

)
, (5.6)

where, also recalling (2.27), we have used κm2
π = πcmq and eq. (3.16). Equation (5.6) is

precisely the same which follows from the chiral Lagrangian approach discussed in [13] (see

also [36] for a review).

The on-shell four dimensional Lagrangian density on the vacuum solution we have

found is

Lon−shell = −χg
2

(θ −Nfϕ)2 + 2cNfmq cosϕ . (5.7)

We can extract the vacuum solution analytically by considering the following two ex-

treme cases:

i) m2
WV � m2

π: in this case we have a multi-branched solution

ϕ = 2πk +
m2
WV

m2
π

(
θ

Nf
− 2πk

)
+O

(
m4
WVm

−4
π

)
, k ∈ Z . (5.8)

This is the limiting case which arises if we take the large Nc limit before the chiral

one. In a sense, this limit is analytically connected with the limit in which the quark

mass is so large that the flavors can be integrated out. Correspondingly, the vacuum

energy density around θ = 0 goes, to leading order, like

f(θ)− f(0) ∼ χg
2
θ2 , (5.9)

which is the same behavior (2.14) as for the unflavored theory.

ii) m2
WV � m2

π: in this limit the solution is unique

ϕ =
θ

Nf
+O

(
m2
πm
−2
WV

)
. (5.10)

This limit is actually closer to the phenomenologically acceptable case because mπ '
135 MeV while mWV ∼ mη′ ' 958 MeV. In this case the vacuum energy density

f(θ) reads

f(θ)− f(0) =
Nf

2
m2
πf

2
π

[
1− cos

(
θ

Nf

)]
+O(m4

π) . (5.11)

The topological susceptibility of the theory is thus

χ =
∂2f(θ)

∂θ2

∣∣∣
θ=0

=
m2
πf

2
π

2Nf
, (5.12)

as expected from chiral perturbation theory.
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In any case, expanding the effective Lagrangian (5.4) around the vacuum solution (5.6),

we can obtain the following θ-dependent mass spectrum

m2
η′(ϕ) = m2

WV +m2
π(ϕ) , m2

π(ϕ) ≡ m2
π| cosϕ| . (5.13)

In the case m2
WV � m2

π,

m2
π(ϕ) = m2

π(θ) = m2
π| cos

θ

Nf
| , (5.14)

which implies that the masses of the low lying mesons decrease quadratically with θ for

small θ. This behavior reflects the general trend already observed in [16] for other mass

scales in the unflavored theory.

6 Holographic baryons

In this section we first review how baryons are described in the WSS model, recalling the

quantization of the moduli space Hamiltonian. Then, we show that the correction to the

baryon spectrum due to massive quarks and the θ term is quadratic in θ.

In the WSS model, following [37], a baryon vertex is identified with a D4-brane wrapped

on S4 and the baryon number is defined as the charge of that brane. Adding a D4-brane

source to the WSS setup implies including a term

1

8π2

∫
D8
C5 ∧ TrF ∧ F , (6.1)

into the action. This in turn implies that a baryon corresponds to a soliton solution F
with non trivial instanton number

nB =
1

8π2

∫
B

TrF ∧ F , (6.2)

where B is the space spanned by x1,2,3, z. The instanton number nB is then interpreted

as the baryon number [30]. To show that this is indeed the case, let us write down the

original WSS action (eq. (2.22) without the SC7 term) separating the Abelian and the non

Abelian components (see (3.5))

SD8 = − κ
∫
d4xdz

(
1

2
h(z) TrFµνF

µν + k(z)TrFµzF
µ
z

)
+

− κ

2

∫
d4xdz

(
1

2
h(z) F̂µνF̂

µν + k(z)F̂µzF̂
µ
z

)
+

+
Nc

24π2

∫ [
ω

SU(Nf )
5 (A) +

3√
2Nf

ÂTrF 2 +
1

2
√

2Nf

Â F̂ 2

]
.

(6.3)

Here ω
SU(Nf )
5 is defined as in (2.24), written in terms of just the non Abelian components.

It is worth noticing that it is identically zero for Nf = 2.

Defining a(t) = Â/
√

2Nf and treating it as a time dependent perturbation over the

soliton solution with instanton number nB, we obtain in the action a term

Nc

8π2

∫
dx0 a

∫
B

TrF 2 = nBNc

∫
dx0 a . (6.4)
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This describes a point-like particle with U(1)V charge equal to NcnB: precisely that of a

baryon (a bound state of Nc quarks) with baryon number nB.

The above holographic picture resembles the Skyrme one, where baryons at large Nc

are seen as solitons in the chiral Lagrangian [18, 19]. The similarity becomes more evident

at low energies, since, integrating out the massive vector modes, the effective WSS action

reduces to the Skyrme model with the WZW term.

The equations of motion following from (6.3) are not easy to solve analytically. A

simple static instanton solution, for Nf = 2, can be given focusing in a tiny region around

z = 0 where one can neglect the curvature of the background setting k(z) ≈ h(z) ≈ 1. In

this case the solution is given by a charged BPST instanton [30, 38]

Acl
M = −if(ξ)g∂Mg

−1 , Âcl
0 =

Nc

8π2κ

1

ξ2

[
1− ρ4

(ρ2 + ξ2)2

]
, Acl

0 = Âcl
M = 0 , (6.5)

where

f(ξ) =
ξ2

ξ2 + ρ2
, g(x) =

(z − Z)1− i
(
~x− ~X

)
· ~τ

ξ
, ξ2 ≡

(
~x− ~X

)2
+(z−Z)2 ,

(6.6)

τa are the Pauli matrices and the index M runs over the four directions x1,2,3, z.

The instanton solution written above depends on eight parameters: the instanton size

ρ, the instanton center of mass position XM = ( ~X,Z) in the four dimensional Euclidean

space, and three SU(2) “angles” related to the fact that the solution can be rotated by

means of a global gauge transformation.

Substituting the solution (6.5) into the action (6.3) on finds Son shell = −
∫
dtMB,

where, up to O(λ−2) corrections

MB(ρ, Z) = M0

[
1 +

(
ρ2

6
+

N2
c

320π4κ2

1

ρ2
+
Z2

3

)]
, M0 ≡ 8π2κ , (6.7)

with M0 giving the baryon mass in the λ→∞, Nc →∞ limit.

This implies that, while ~X and the gauge group orientations are genuine moduli of the

instanton solution, ρ and Z are not; in fact they are classically fixed by minimizing MB as

ρ2
cl =

Nc

8π2κ

√
6

5
=

27π

λ

√
6

5
, Zcl = 0 . (6.8)

These relations imply that the center of the instanton is classically localized at Z = 0 and

its size ρ ∼ 1/
√
λ is very small in the λ � 1 regime. This is perfectly consistent with the

approximation we have taken to get the above instanton solution. In particular, the latter

is obtained by a systematic expansion of the equations of motion in 1/λ, considering a

scaling ~x, z ∼ O(λ−1/2), x0 ∼ O(1) for the space-time variables, and the following scalings

for the gauge fields

AM ∈ O
(
λ1/2

)
, A0 ∈ O

(
λ0
)
,

FMN ∈ O(λ) , FM0 ∈ O
(
λ1/2

)
.

(6.9)
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In the following discussion we will treat ρ and Z as approximate moduli, allowing them

to fluctuate quantistically around their classical values. This is not completely correct

because they modify the potential energy, but it remains a good approximate description

if the fluctuations are small.

6.1 Quantization

The quantization of the WSS soliton proceeds following the moduli space approximation

method as described in [30] and takes inspiration from the Skyrmion quantization [19].

Since M0 = 8π2κ ∝ λNc � 1, the baryon is very heavy and the system reduces to a

quantum mechanical model for the instanton (pseudo) moduli. In the SU(2) case the one-

instanton moduli space, topologically equivalent to R4 × R4/Z2, is parameterized by XM

and yI , (I = 1, 2, 3, 4) with the Z2 action yI → −yI . The instanton size ρ is given by

ρ2 = yIyI and aI = yIρ−1 are the SU(2) directions.

Technically, the above parameters are promoted to time dependent variables and the

SU(2) field describing the slowly moving soliton is defined through a “wrong” gauge trans-

formation

Acl
0 7−→ A′0 = 0 ,

Acl
M 7−→ A′M = V Acl

MV
−1 − iV ∂MV −1 .

(6.10)

The SU(2) matrix V (t, ~x, z) is necessary for ensuring that the new time-dependent soliton

still solves the equations of motion following from the action (6.3). The only non trivial

condition comes from the Gauss’s law constraint

DMF0M +
Nc

64π2κ
εMNPQF̂MNFPQ = 0 , (6.11)

which actually reduces to DMF0M = 0 on the solution. This equation can be solved by

Φ ≡ −iV −1V̇ = −ẊNAcl
N − if(ξ)g

(
a−1ȧ

)
g , (6.12)

where the dot is a time derivative, f(ξ) and g are defined in (6.6), a(t) = a4(t) + iaa(t)τ
a

contains the gauge group orientation moduli and the boundary condition

lim
z→±∞

V (t, ~x, z) = a(t) , (6.13)

has been imposed.

Inserting the slowly moving soliton solution into the action (6.3) one gets the quantum

mechanical Lagrangian

L =
M0

2

(
~̇X2 + Ż2 + 2

(
ẏI
)2)−M0

[
1 +

ρ2

6
+

N2
c

320π4κ2

1

ρ2
+
Z2

3

]
, (6.14)

and thus the Hamiltonian

H = M0 +HX +HZ +Hy , (6.15)
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where

HX = − 1

2M0

∂2

∂X i2
,

HZ = − 1

2M0

∂2

∂Z2
+
M0

3
Z2 ,

Hy = − 1

4M0

4∑
I=1

∂2

∂yI2 +
M0

6
ρ2 +

N2
cM0

320π4κ2

1

ρ2
.

(6.16)

They respectively describe a free particle in three dimensions, a harmonic oscillator in one

dimension and a harmonic oscillator in four dimensions with an extra centrifugal energy.

The eigenfunctions and eigenvalues for the first two pieces are [30]

Ψ1( ~X) =
1

(2π)3/2
ei
~P · ~X , EX =

~P 2

2M0
, (6.17)

Ψ2(Z) = H(n)

((√
2/3M0

)1/2
Z

)
e
−M0√

6
Z2

, EZ =
2nZ + 1√

6
, (6.18)

where H(n) are Hermite polynomials. Concerning the third one, switching to spherical

coordinates in R4, the Laplacian decomposes as

4∑
I=1

∂2

∂yI2 =
1

ρ2
∂ρ
(
ρ3∂ρ·

)
+

1

ρ2
∇2
S3 , (6.19)

and the obvious ansatz for Ψ3(yI) is

Ψ3

(
yI
)

= R(ρ)Y (`)
(
aI
)
, (6.20)

where Y (`) are the scalar spherical harmonics on S3 with eigenvalue `(` + 2). Such a

wave function has spin and isospin equal to `/2 where the spin and isospin operators are

identified with the generators of the SO(4) symmetry group acting on the yI

Jk =
i

2

(
−y4

∂

∂yk
+ yk

∂

∂y4
− εklmyl

∂

∂ym

)
,

Ik =
i

2

(
y4

∂

∂yk
− yk

∂

∂y4
− εklmyl

∂

∂ym

)
. (6.21)

These relations imply that only states with I = J appear in the spectrum. A crucial

observation is that aI and −aI are identified on the instanton moduli space. If we want to

quantize the solitons as fermions we have to require the wave function to be antiperiodic

ψ(aI) = −ψ(−aI). This selects ` = 1, 3, 5, · · · to be positive odd integers. The related

states have I = J = `/2.

The solution for R(ρ) can be found by noticing that the centrifugal term in Hy modifies

the angular momentum as

`(`+ 2)→ `(`+ 2) +
N2
cM

2
0

80π4κ2
≡ ˜̀

(
˜̀+ 2

)
. (6.22)
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Thus, upon substituting ` → ˜̀ we end up with a regular harmonic oscillator in four

dimensions in spherical coordinates. The solution is

R(ρ) = e
−M0√

6
ρ2
ρ

˜̀
1F1

(
nρ, ˜̀+ 2,

√
2/3M0 ρ

2
)
, nρ ∈ N , (6.23)

where 1F1 (a, b, ρ) is the Confluent Hypergeometric Function. The corresponding eigenval-

ues are

Eρ =
1√
6

(
2nρ + ˜̀+ 2

)
=

2nρ + 1√
6

+

√
(`+ 1)2

6
+

2N2
c

15
. (6.24)

A baryon is a state |B, s〉 in the Hilbert space defined by the Hamiltonian H, where s

is the (iso)spin of the baryon. The quantum numbers nρ and nZ describe excited baryons

and/or resonances; the case ` = 1, nρ = nZ = 0 corresponds to the neutron (with isospin

component I3 = −1/2) and the proton (I3 = 1/2) and the corresponding wavefunctions are

|p ↑〉 ∝ R(ρ)ψZ(Z)(a1 + ia2) , |p ↓〉 ∝ R(ρ)ψZ(Z)(a4 − ia3) ,

|n ↑〉 ∝ R(ρ)ψZ(Z)(a4 + ia3) , |n ↓〉 ∝ R(ρ)ψZ(Z)(a1 − ia2) , (6.25)

with

R(ρ) = ρ−1+2
√

1+N2
c /5e

−M0√
6
ρ2
, ψZ(Z) = e

−M0√
6
Z2

. (6.26)

6.2 Baryon Hamiltonian with quark mass and θ

Let us now consider adding to the action (6.3) the mass term for the flavors introduced

in (4.1) at θ 6= 0. This term gives a novel contribution to the baryon Hamiltonian and

modifies the WSS soliton solution. At leading order in the small mq limit (let us focus on

the simpler case of degenerate quark masses), the contribution can be computed, along the

same lines as in [39], from the on-shell value of

Smass = c

∫
d4xTrP

[
Meiϕ

(
e−i

∫∞
−∞ dzAz − 1

)
+ c.c.

]
, (6.27)

on the WSS instanton soliton solution (6.5). Here the 1 subtraction corresponds to the

subtraction of the vacuum energy (in the case of degenerate masses the minimum is for

U = 1), while eiϕ comes from the vacuum θ-dependent contribution discussed in section 5.

Let us work in singular gauge, where the Acl
z field is given by

Acl
z =

[
1

ξ2
− 1

ξ2 + ρ2

](
~x− ~X

)
· ~τ , (6.28)

which is obtained from (6.5) after implementing a gauge transformation Acl
z → g−1Acl

z g −
ig−1∂zg, where g is given by (6.6).

The pion matrix is easily computed (we also set ~X = 0 without loss of generality) as

U = exp

[
−iπ~τ · ~x

|~x|

(
1− 1√

1 + ρ2/|~x|2

)]
≡ exp

[
−i~τ · ~x
|~x|

α̂(|~x|)
]
. (6.29)
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The shift in the baryon mass δMB is given by −
∫
d3xLmass, where Smass =

∫
d4xLmass.

We have

δMB = −2c

∫
d3xTr [M cos(ϕ)(cos α̂− 1)] . (6.30)

Let us now focus on the Nf = 2 degenerate case in the physical mass regime mπ �
mWV , so that, as we found in section 5, we can set ϕ = θ/2 up to subleading corrections

in the mass ratio. We define the integration variable y = |~x|/ρ and get

δMB = 16πρ3cmq cos(θ/2)

∫ ∞
0

dy y2

[
1 + cos

(
π√

1 + y−2

)]
. (6.31)

The integral is evaluated numerically and the final result is

δMB = 16πρ3cmq cos(θ/2) · 1.104 . (6.32)

The quantum contribution to this mass splitting, that differentiates the various species of

baryons, follows in the same way as in [39], so we will skip it.

A relevant result of this section is that the baryon Hamiltonian, hence the spectrum,

through the mass term piece δMB computed above, gets second order O(θ2) corrections

at small θ. The mass splitting δMB at θ = 0 will anyway perturb some of the baryonic

properties. In the semiclassical limit it will in fact affect the size of the baryon ρ which

will get an O(mq) correction.

When two different quark masses mu,md are considered the result is modified. First

of all we should impose that the pion matrix Û = ei
θ
2U approaches Û0 when |~x| → ∞ (the

vacuum configuration). The matrix Û0 turns out to be:

Û0 = ei
θ
2

(
eiΦ 0

0 e−iΦ

)
= ei

θ
2U0 , (6.33)

cos Φ =
cos θ2√

cos2 θ
2 +

(
md−mu
mu+md

)2
sin2 θ

2

, sin Φ =

md−mu
mu+md

sin θ
2√

cos2 θ
2 +

(
md−mu
mu+md

)2
sin2 θ

2

.

(6.34)

The classical action has to be modified as

Smass = c

∫
d4xTrP

[
Mei

θ
2

(
e−i

∫∞
−∞ dzAz − U0

)
+ c.c.

]
, (6.35)

and the solution Acl
z must be computed after a global gauge rotation that satisfies

lim|x|→∞ U = U0 (we could take for instance g(∞) = U0 and g(−∞) = 1). The result

follows easily:

δMB = 8πρ3cTr (MU0) cos(θ/2) · 1.104 . (6.36)

An interesting feature of the non-degenerate mass case is that the SU(2) modulus a gets a

potential term

δMB ∝ Tr
(
MaU0a

−1
)
, (6.37)

thus giving a mass splitting between states with different isospin. For the case of the proton

and the neutron this splitting would be too small compared to the electromagnetic splitting

(not included in this analysis), so we ignore this computation.
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7 Mass and θ perturbations to holographic baryons

Let us now show how the original WSS instanton solution holographically describing a

baryon gets modified by the mass and the θ term. This is done at leading order both in

mq and θ. For simplicity we mostly focus on the case of two degenerate masses mu = md.

The equations following from the action given by the sum of (2.22) (with SC7 given

in (3.1)) and (4.1) are

−κ
(
h(z)∂νF̂

µν + ∂z

(
k(z)F̂µz

))
+

Nc

128π2
εµαβγδ

(
F aαβF

a
γδ + F̂αβF̂γδ

)
= 0 , (7.1)

−κ
(
h(z)DνF

µν +Dz(k(z)Fµz)
)a

+
Nc

64π2
εµαβγδF aαβF̂γδ = 0 , (7.2)

−κ k(z)∂νF̂
zν +

Nc

128π2
εzµνρσ

(
F aµνF

a
ρσ + F̂µνF̂ρσ

)
=

= −4π

3

√
Nf

2
[dC7]0123 − icTr

[
M√
2Nf

(
Pe−i

∫∞
−∞Azdz − c.c.

)]
, (7.3)

−κ k(z)(DνF
zν)a +

Nc

64π2
εzµνρσF aµνF̂ρσ =

−icTrP
[
M
τa

2

(
e−i

∫∞
−∞Azdz − c.c.

)]
. (7.4)

The factors Nf are displayed explicitly but will soon be substituted by “2”.

The solution will be decomposed in three different contributions: Avac, Ainst andAmass.

The first one is the vacuum solution found in section 5

Avac
z = Avac

µ = 0 ,

∫
Âvac
z dz = −

√
2Nfϕ . (7.5)

The second one, in the ξ � 1 region, is the WSS instantonic solution (6.5) in singular gauge

Ainst
M = −i(1− f(ξ))g−1∂Mg , Âinst

0 =
Nc

8π2κ

1

ξ2

[
1− ρ4

(ρ2 + ξ2)2

]
,

Ainst
0 = Âinst

M = 0 .

(7.6)

The solution in the remaining range of ξ values will be presented in a moment.

The last piece, Amass, is the perturbation due to the presence of the mass term that

we wish to compute. Since we are looking for solutions with non trivial field strength F̂ ,

the components of the RR two-form [F̃2]AB with A,B 6= y are given by the Horava-Witten

solution (3.18). The component zy, instead, will be kept to be the same as in the vacuum[
F̃2

]
zy

=
1

πU6

2m2
π

m2
η′

sinϕ . (7.7)

This zero mode leaves all equations untouched apart from the one for Âmass
z (7.3). In terms

of C7 it reads

[dC7]0123,S4 = −3cmq

2π
sinϕ . (7.8)

To determine the perturbation Amass, we expand the equations of motion to first order in

mq (with Amass being of O(mq)). The resulting equations for the mass perturbation will
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be mixed by the presence of the Chern-Simons terms, making it very difficult to find a

solution. The following arguments will enable us to simplify the problem.

There are three different regions in which we can divide the space: ξ � 1, ρ� ξ � 1

and ρ � ξ.10 We will call them respectively the flat, the overlapping and the asymptotic

region. The flat region is where the curvature of the metric can be neglected. This is

where the WSS BPST-like instanton solution (6.5) has been obtained. This solution has

the scaling with λ reported in (6.9).

In the asymptotic region the original WSS instanton solution gets modified. Far from

the origin the warp factors k(z) and h(z) cannot be neglected anymore and the asymptotic

solution,11 in singular gauge, that replaces Ainst in (7.6) reads

Â0 = − Nc

2κλ
G
(
~x, z, ~X,Z

)
,

Âi = Âz = 0 ,

A0 = 0 ,

Ai = −2π2ρ2τa
(
εiaj

∂

∂Xj
− δia ∂

∂Z

)
G
(
~x, z, ~X,Z

)
,

Az = −2π2ρ2τa
∂

∂Xa
H
(
~x, z, ~X,Z

)
,

(7.9)

where

G
(
~x, z, ~X,Z

)
= −κ

∞∑
n=1

ψn(z)ψn(Z)
e−
√
λnr

4π r
, r =

∣∣∣~x− ~X
∣∣∣ ,

H
(
~x, z, ~X,Z

)
= −κ

∞∑
n=0

φn(z)φn(Z)
e−
√
λnr

4π r
,

(7.10)

and the functions ψn, φn are the same that have been introduced in the meson sector in sec-

tion 2.3 (see also appendix A) and λ0 ≡ 0. Actually, since the asymptotic expansions above

contribute to the currents in the WSS model [41], they account for the meson contributions

to e.g. the form factors.

From (7.9) we see that there is a suppression of an overall λ factor for each field;

moreover the functions G(~x, z, ~X,Z) and H(~x, z, ~X,Z) are of order ∼ e−r in r, ∼ 1/z in z

and ∼ 1/r in r, ∼ 1/z2 in z respectively. In the overlapping region the solution is again (7.9)

but with the functions G and H replaced by the flat Green’s function Gflat = −1/4π2ξ2; the

maximum value of the fields is reached when ξ approaches ρ, so the scaling is precisely (6.9),

but here this behavior is reached as an upper limit (see table 1).

10There is also another “large scale” region ξ > log λ/MKK , beyond the asymptotic one, where non-

linear effects become important, for example for the computation of the baryon charge form factor at large

distance [40]. The existence of this large scale is ignored in the present computation and it does not affect

the neutron electric dipole moment computation in the following section, at least for large λ.
11This is a little bit different from the one in [41] because we have not considered the gauge group

orientation moduli yet (this will be done in the following section); moreover here all the moduli of the

solution are time independent.
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Flat Overlapping Asymptotic

Region ξ � 1 ρ� ξ � 1 ρ� ξ

Solution BPST instanton function Gflat functions G and H

Scaling λ scaling λ scaling (limit) z and r scaling

Table 1. Scalings of the solution in the different regions.

With this in mind let us look at the Chern-Simons terms in equations (7.1)–(7.4); in

the asymptotic region all of them will be negligible as they are quadratic in the fields, in

the other two regions however some of them have to be considered. If we look at (6.9)

we conclude that, whenever an A0 is present in a Chern-Simons term, its λ scaling is

lowered, so the leading terms will be those with µ = 0. In fact in the equations for the

µ = 0 components all terms are of the same order in λ, while in those for the µ = i or z

components, the Chern-Simons terms happen to be suppressed as 1/λ with respect to the

Yang-Mills terms, hence we will drop them in the following.

Now we are ready to write down the equations for the mass perturbation (gauge fields

without superscript are Ainst or the ones in (7.9), our convention is ε0123z = −ε0123z = 1).

Up to subleading terms they read

−κ
(
h(z)∂νF̂

0ν
mass + ∂z(k(z)F̂ 0z

mass)
)
− Nc

128π2
εijk

(
4F aijF

a,mass
kz + 4F aizF

a,mass
jk

)
= 0 , (7.11)

−κ
(
h(z)∂νF̂

iν
mass + ∂z(k(z)F̂ izmass)

)
= 0 , (7.12)

−κ
(
h(z)DνF

0ν +Dz(k(z)F 0z)
)a∣∣

mass
− Nc

64π2
εijk

(
2F aijF̂

mass
kz + 2F aizF̂

mass
jk

)
= 0 , (7.13)

−κ
(
h(z)DνF

iν +Dz(k(z)F iz)
)a∣∣

mass
= 0 ,

(7.14)

−κ k(z)∂νF̂
zν
mass =

−χg

(
θ +

√
Nf

2

∫
Âzdz

)2

− icTrP

[
Me
− i√

2Nf

∫
Âzdz

U0 − c.c.

]
, (7.15)

−κ k(z)(DνF
zν)a

∣∣
mass

=

−icTrP

[
Mτae

− i√
2Nf

∫
Âzdz

U0 − c.c.

]
, (7.16)

where

U0 = − cosα1 + · · · , α ≡ π/
√

1 + ρ2/r2 , (7.17)

and · · · denote terms which do not contribute to the trace.

The notation
∣∣
mass

means “pick up the linear contribution in mq”. For now we work

in the static gauge and we admit no time dependence for Amass (so the indexes “ν” in the

equations above become “j”).

The above system of equations can be divided into four parts:

i) Abelian space component equations (7.12), (7.15).
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ii) Non Abelian time component equation (7.13).

iii) Non Abelian space component equations (7.14), (7.16).

iv) Abelian time component equation (7.11).

7.1 Abelian field: space components

A consistent solution to the set i) can be found with the ansatz Âmass
i = 0. We will verify

in the end this assumption.

Let us first notice that (7.15) can be rederived starting from the effective action for

the Abelian component Âz, which, to first order in the mass deformation, reads

Leff z = −κ
2
k(z)F̂µzF̂

µ
z + cTrP

[
Me
− i√

2Nf

∫
Âzdz

U0 + c.c.

]
− χg

2

(
θ +

√
Nf

2

∫
Âzdz

)2

.

(7.18)

Focusing on the Nf = 2 mass degenerate case and using the condition (5.6), we see that

the equation of motion (7.15) reads

κ k(z)∂i∂
iÂmass

z = 2cmq sinϕ(cosα+ 1) . (7.19)

Writing the equation as above, we have neglected the mass term for Âmass
z , which would

arise from the effective Lagrangian (7.18). Recalling that
∫
Âzdz is holographically related

to the η′ field, we see that this term actually corresponds to the η′ mass. To leading order

in the small quark mass limit, the latter is given by the Witten-Veneziano relation (3.16),

which shows, in turn, that the squared η′ mass is a parameter of O(εf ). Since we are

working in the probe approximation, the η′ mass term is thus subleading. We will return

to this point in section 8.5 where we will see that the η′ mass term can be used to regularize

the integral which defines the full electromagnetic dipole form factor.

The z dependence of equation (7.19) can be factorized by setting

Âmass
z =

u(r)

1 + z2
, (7.20)

yielding
1

r2
∂r
(
r2∂ru(r)

)
=

2cmq

κ
sinϕ(cosα+ 1) . (7.21)

When r → ∞ the function α approaches a constant α → π, so the source term vanishes.

The standard way to solve this equation is to use the Green’s function

uG(r, r′) =


− r′ r < r′ ,

− r′
(
r′

r

)
r > r′ .

(7.22)

The solution is given by the following integral

u(r) =
2cmq

κ
sinϕ

∫ ∞
0

dr′ uG(r, r′)

1 + cos
π√

1 + ρ2/r′2

 . (7.23)
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The above solution is sufficient to identically solve equation (7.12), hence we can put Âmass
i

to zero: the ansatz claimed at the beginning was correct.

It may be interesting to see the asymptotic solution for large λ. Changing variables

r′ = ρy, since ρ tends to zero, from (7.23) we get that far away from r = 0 the solution

can be approximated by

u(r) ' −2cmq sinϕ

κ

ρ3

r
γ , γ ≡

∫ ∞
0

dy y2

(
1 + cos

π√
1 + 1/y2

)
∼ 1.104 . (7.24)

In the following we will focus on the phenomenologically acceptable regime mπ � mη′

where (for Nf = 2) ϕ ≈ θ/2.

7.2 Non Abelian field: time component

Let us now look at equation (7.13). To first order in mq the equation for the perturbation

is the following

h(z)Dν

(
−∂νA0

mass + i
[
A0

mass, A
ν
])

+Dz

(
−k(z)∂zA0

mass + ik(z)
[
A0

mass, A
z
])

=

= − Nc

8π2κ

ρ2

(ξ2 + ρ2)2

u′(r)

1 + z2

(~x− ~X) · ~τ
r

.
(7.25)

In static gauge the only field excited by this perturbation is Amass
0 . Let us consider the

following ansatz

Amass
0 = W (r, z)

(
~x− ~X

)
· ~τ . (7.26)

When plugging this ansatz into the equations, the (~x − ~X) · ~τ piece factorizes and we are

left with a partial differential equation for W

h(z)

(
∂2
rW (r, z) +

4

r
∂rW (r, z) +

8ρ2

(ξ2 + ρ2)2W (r, z)

)
+ ∂z(k(z)∂zW (r, z)) =

=
27π

λ

ρ2

(ξ2 + ρ2)2

1

r

u′(r)

1 + z2
≡ G(r, z) .

(7.27)

It is worth noting that this equation has been derived using as background the BPST-

like instanton solution (6.5), valid in the “flat” part of the geometry. Nevertheless, one

can check that in the “asymptotic” region one would obtain precisely the expansion of

equation (7.27) for large z. Thus, this equation is correct in the whole range of the radial

variable.

There are two possible approaches that can be used to solve equation (7.27): a) nu-

merical PDE analysis; b) expansion in the eigenfunctions ψn. The latter, which we are

going to describe here, provides interesting insights about the physical content of our re-

sults [32]. The direct numerical analysis will be used later in the review of the calculation

of the NEDM.

The last term in the l.h.s of eq. (7.27), being essentially the l.h.s of the eigenvalue

equation for the ψn (2.26), suggests an expansion of the form

W (r, z) =
∞∑
n=1

Rn(r)ψn(z) . (7.28)
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Inserting the expansion into the equation, using the eigenvalue equation (2.26) and the

orthonormality conditions on the ψn we find [32]

∂2
rRm(r) +

4

r
∂rRm(r)− λmRm(r)+ (7.29)

∞∑
n=1

〈
m

∣∣∣∣ 8ρ2

(ξ2 + ρ2)2

∣∣∣∣n〉Rn(r) = 〈m|h−1 G〉 ,

where 〈
m

∣∣∣∣ 8ρ2

(ξ2 + ρ2)2

∣∣∣∣n〉 ≡ κ

∫
dz h(z)ψn(z)ψm(z)

8ρ2

(ξ2 + ρ2)2
,

〈m|h−1 G〉 ≡ κ

∫
dz ψm(z)G(r, z) . (7.30)

With the solution of (2.26) and (7.21) in hand, one can obtain an approximate solution of

the above system by truncating it at some level m.

7.2.1 The solution in the “flat region”

In order to gain intuition on the physical meaning of the solution, let us consider the flat

region around z = 0, where we can neglect the curvature effects driven by the functions

h(z), k(z). In this limit the equation (7.27) reads

∂2
rW (r, z) +

4

r
∂rW (r, z) +

8ρ2

(ξ2 + ρ2)2
W (r, z) + ∂2

zW (r, z) ≈ 27π

λ

ρ2

(ξ2 + ρ2)2

u′(r)

r
.

(7.31)

Let us also consider the r � 0 limit, where the function u(r) is given by eq. (7.24). In this

limit a solution of the above equation is simply

W ≈ 27π

8λ

u′(r)

r
≈ 27π

8λ

cmq

κ
γ θ

ρ3

r3
. (7.32)

As a result we can write (setting ~X = 0, which we can do without loss of generality)

Amass
0 = W~x · ~τ ≈

~D · ~x
|~x|3

, (7.33)

where
~D =

27π

8λ

cmq

κ
γ θ ρ3~τ . (7.34)

The above expression recalls that of an electric dipole term in the five dimensional space

(at z = 0) induced by the θ parameter. As we will see in section 8, this is precisely what

contributes to the electric dipole term in the dual four dimensional gauge theory.

7.3 Non Abelian field: space components

The solutions we have discussed above exhaust the list of leading O(θ) corrections to the

original WSS instanton solution. At first order in mq, however, we have also to consider the

corrections coming from solutions to the non Abelian equations (item ii) in the list given
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above). Since in the present work we are mainly interested just in the O(θ) corrections,

we present here the formal solutions to those equations discussing only their algebraic

structure.

Before expanding in mq, the equations we have to consider read

DMF
a
Mi = 0 ,

DMF
a
Mz =

2cmq

κ
cos

θ

2

(x−X)a

r
sin

(
π√

1 + ρ2/r2

)
.

(7.35)

Let us first rewrite the background instanton fields as

Aa, inst
M = −ηaMN∂N log f0(ξ) , f0(ξ) = 1 +

ξ2

ρ2
, (7.36)

where the ηaMN are the ’t Hooft symbols, which constitute a basis for the self dual tensors.

The above solution represents an instanton with instanton number +1. The anti-instanton

is given by the same expression with η replaced by η, where

ηaMN = εaMNz + δaMδNz − δaNδMz ,

ηaMN = εaMNz − δaMδNz + δaNδMz .
(7.37)

Our ansatz will be composed by two functions, one modifies the f0 and the other will be

an extra contribution to Az

AaM = −ηaMN∂N (log f0(ξ) + φ(r, z)) + δMz∂aψ(r) . (7.38)

Notice the different arguments in φ(r, z) and ψ(r): we will see later that this is the correct

assumption. These two functions have to be regarded as O(mq), so the resulting equations

will be linear in them (of course the zeroth order is already satisfied by f0).

The most lengthy part now consists in putting the ansatz above into equations (7.35)

and write down the equations for φ and ψ. Let us first focus on the tensor structure

With the ansatz φ(r, z) With the ansatz ψ(r)

DMF
a
Mi = −εaijxj

(
φ eq.

)
, DMF

a
Mi = εaijx

j
(
ψ radial eq.

)
,

DMF
a
Mz = xa

(
φ eq.

)
, DMF

a
Mz = xa

(
ψ zeta eq.

)
.

(7.39)

As we can see the structure is very simple; moreover we have three different parenthesis,

the ones with φ (they are identical) and the two different ones with ψ. The latter will be

written down here in a simpler case where the function φ depends only on ξ (the general

solution will be given in the following)

(
ψ radial eq.

)
= − 8ρ2

r(ξ2 + ρ2)2
ψ′(r) ,

(
ψ zeta eq.

)
= −2(ρ4 + ξ4 − 2ρ2r2 + 2ρ2z2)

r3(ξ2 + ρ2)2
ψ′(r) +

2

r2
ψ′′(r) +

1

r
ψ′′′(r) .

(7.40)
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The third derivative comes from the fact that in our definition of AM only the derivatives

of φ and ψ enter. The actual variables thus are Φ ≡ φ′(ξ) and Ψ ≡ ψ′(r). The equations

we were looking for finally read

−
(
φ eq.

)
+
(
ψ radial eq.

)
= 0 ,(

φ eq.
)

+
(
ψ zeta eq.

)
=

2cmq

κ
cos

θ

2

1

r
sin

(
π√

1 + ρ2/r2

)
.

(7.41)

Combining these equations one gets

− 2

r2
Ψ(r) +

2

r
Ψ′(r) + Ψ′′(r) =

2cmq

κ
cos

θ

2
sin

(
π√

1 + ρ2/r2

)
,

−
3
(
ρ4 + ξ4 − 6ρ2ξ2

)
ξ3 (ξ2 + ρ2)2 Φ(ξ) +

3

ξ2
Φ′(ξ) +

1

ξ
Φ′′(ξ) = − 8ρ2

r (ξ2 + ρ2)2 Ψ(r) .

(7.42)

Notice that in the first one the ξ dependence completely disappears. It is an ODE that

can be easily integrated numerically.

In the general case φ has to be regarded as a two-variable function φ(r, z). Remarkably,

as stated above in (7.39), also in this case we have a very simple tensor structure and a

dependence on only one parenthesis
(
φ eq.

)
, so all the manipulation made above are still

valid. In this case however the equation is far more complicated

(
φ eq.

)
=
φ(1,2) + φ(3,0)

r
+

2

r2
φ(2,0) +

φ(1,0)
(

4r2
(
z2 − r2 + 5ρ2

)
− 2

(
ξ2 + ρ2

)2)
r3 (ξ2 + ρ2)2 +

+
4
(
rφ(0,2) − zφ(1,1)

)
r (ξ2 + ρ2)

− 8zφ(0,1)

(ξ2 + ρ2)2 ,

(7.43)

where for φ(i,j) we mean ∂ir∂
j
zφ(r, z).

The final equation to be solved is(
φ eq.

)
= − 8ρ2

(ξ2 + ρ2)2

Ψ(r)

r
, (7.44)

where Ψ(r) is substituted by the solution found above. This equation can be integrated via

numerical methods, even though now we are dealing with a PDE which is certainly more

challenging. We will not show the numerical results here because the only purpose of this

section is to show what is the correct tensor structure of the solution and how to get it.

7.4 Abelian field: time component

Let us finally consider equation (7.11). In the static case, on the Âimass = 0 solution, it

reduces to an equation for Â0
mass

h(z)∂i∂iÂ
0
mass + ∂z

(
k(z)∂zÂ

0
mass

)
=

27π

4λ
εijk

(
F aijF

a,mass
kz + F aizF

a,mass
jk

)
. (7.45)

The solution, of the form

Â0
mass = f(r, z) , (7.46)
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can be obtained after the equations for the spatial components of the non-Abelian field

are solved, in the way we have described in the previous subsection. Precisely as those

components, the field Â0
mass will be of O(θ2) in the small θ regime.

8 The neutron electric dipole moment

In a theory with spin 1/2 particles where parity, time reversal and/or charge conjugation

symmetries are not preserved, the form factors acquire novel contributions w.r.t. the cases

with unbroken discrete symmetries. For example, the matrix element of the electromagnetic

current between nucleon states of mass MN in the generic case reads (see e.g. [8] and

references therein)

〈p′, s′|Jµem|p, s〉 = ūs′(p
′)Γµ

(
k2
)
us(p) , (8.1)

where k = p′ − p, us is a Dirac spinor with spin component s and

Γµ
(
k2
)

= F1

(
k2
)
γµ +

1

2MN
F2

(
k2
)
iσµνkν +

+
1

2MN
F3

(
k2
)
σµνγ5kν + FA

(
k2
) (
γµγ5k2 − 2MNγ

5kµ
)
. (8.2)

Here, F1 and F2 are the standard (C,P,T even) Dirac and Pauli form factors: when k2 → 0

F1(0) gives the electric charge of the fermion and F2(0) gives the anomalous part of the

magnetic moment.

The novel contributions are the dipole (F3) and the anapole (FA) form factors. When

k2 → 0, FA(0) gives the (T- and C-breaking) anapole moment and F3(0) gives the (T and

P-breaking) electric dipole moment (EDM). In particular, the nucleon EDM reads

dN =
F3(0)

2MN
. (8.3)

The QCD Lagrangian with non zero θ parameter is invariant under charge conjugation

and thus the corresponding anapole term vanishes (anapole moments can be induced by

electroweak effects). The dipole form factor, instead, is expected to be proportional to θ,

in the θ → 0 limit.

As an example of application of (some of) the instantonic solutions found in section 7,

in this section we review and discuss in details the holographic computation of the neutron

electric dipole moment (NEDM) performed in [32]. Moreover, in section 8.5 we report the

computation of the whole form factor F3(k).

8.1 NEDM state of the art

Permanent electric dipole moments of composite or fundamental particles with spin are

sensitive observables of CP-violating effects in nature. The electric dipole couples to the

electric field in the standard way ~E · ~d. For a neutral particle, like the neutron, the dipole

has to be proportional to the spin, which is a pseudovector, so that ~E · ~d is odd under

parity and time reversal.
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Experimentally the electric dipole moment of a particle can be obtained by exposing it

to an electro-magnetic field and measuring the Larmor frequency shift as the directions of

the electric and magnetic fields are flipped. For neutral particles the measurement is much

easier, since charged ones are accelerated by the electric field and would better require

storage ring experiments.

The history of the measurement of the neutron electric dipole moment finds its roots

in the work by Purcell and Ramsey in 1950 [42]; since then many experiments followed,

but no evidence for the NEDM has been found so far and the latest experimental upper

bound is tiny, |dn| ≤ 2.9× 10−26e · cm (90% CL) [1, 2].

This bound on the NEDM is a relevant constraint to take into account when formu-

lating theories beyond the Standard Model (bSM). This is because in most bSM scenarios

many new CP-violating effects can arise providing possibly larger NEDM than the tiny

Standard Model predictions. Hence any limit on the NEDM leads to bounds on the scales

of new physics.

In principle, the NEDM can be computed by

~Dn,s =

∫
d3x~x 〈n, s|J0

em|n, s〉 , (8.4)

where |n, s〉 is neutron state with spin s and Jem the electromagnetic current. In practice,

computing the above matrix element requires using non perturbative tools.

As we have recalled in the Introduction, the first order-of-magnitude theoretical esti-

mate for the θ angle contribution to the NEDM, |dn| ≈ 10−16 |θ|e ·cm can be found in [3, 4].

In order to refine this result, various strategies have been adopted.

In lattice QCD there are essentially three possible ways for computing the NEDM

(see e.g. [9–12] for a recent account). A first approach consists in computing the energy

difference of neutrons with spin up and spin down in a constant external electric field (see

e.g. [43]). Another one consists in taking the non-relativistic limit of the CP violating part

of the matrix element of the electromagnetic current in the ground state of the neutron.

Within this method, the NEDM is obtained from the electromagnetic form factor at zero

momentum transfer. Finally, the NEDM can be computed by using an imaginary θ angle

— to overcome the sign problem arising from the fact that the topological term is imaginary

in the Euclidean Lagrangian — and then continuing back to real values.

Lattice studies require a careful analysis of the quark mass dependence of the NEDM.

Despite the fact that statistical errors are being reduced in recent lattice QCD computations

(with Nf = 2 or Nf = 2 + 1 flavors) with unphysical (e.g. mπ ≥ 0.5 GeV) pion masses,

quite large systematic and statistical errors arise when pushing the pion mass to the smaller

physical value. Most of the recent lattice results (see e.g. [9–12]) for both Nf = 2 + 1 and

Nf = 2 point towards a negative value of dn, modulo the proviso above.

In chiral perturbation theory [14] the strength of the NEDM, to which just the pion

cloud contributes, turns out to be proportional to the non-derivative CP-violating pion-

nucleon coupling ḡπN N . To leading order in the chiral mπ → 0 limit,

dn =
gπNN ḡπNN

4π2MN
log(MN/mπ) ≈ 3.6× 10−16 θ e · cm , (8.5)
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where gπNN is the CP-preserving pseudoscalar pion-nucleon coupling. Recent computations

with Nf = 3 at next to leading chiral order, actually give dn = −(2.9 ± 0.9) × 10−16 θ e ·
cm [44] at the physical pion mass, after second order low energy parameters have been

fitted with lattice data.

In the large Nc limit, the NEDM has been computed using the Skyrme model, both

with Nf = 2 + 1 massive flavors [21], yielding dn = 2 × 10−16 θ e · cm and in the Nf = 2

mass degenerate case [22], where a slightly smaller value dn = 1.4× 10−16 θ e · cm has been

obtained. Notice that in both cases the sign of the NEDM is found to be positive.

As it was pointed out in [21], the large Nc Skyrme approach gives a scaling dn ∼
Ncm

2
πθ when the mπ → 0 limit is taken (after the large Nc one). Comparing this with

the expression found in chiral perturbation theory (8.5) we see explicitly how the non-

commutativity of the large Nc and the chiral limit show up. In particular no logarithmic

terms are found in the Skyrme approach. The reason, as it was pointed out in [21], has to

be found in the different mechanisms which give rise to the NEDM in the two cases. In

the chiral limit the dominant term comes from a diagram where a neutron first dissociates

in a proton and a π−. In the Skyrme approach, instead, virtual pion contributions are

subleading in 1/Nc.

Actually, at large Nc, gπNN ∼ N
3/2
c while ḡπNN ∼ m2

πN
x
c θ where the precise scaling

factor x is not known. Although a first estimate gave x = 1/2 [23], a more careful analysis

pointed out that x ≤ −1/2 [24]. The latter result would imply that at large Nc the

virtual pion contribution to the dipole moment (from (8.5)) would scale at most like dn ∼
m2
π log(mπ)θ and would thus be subdominant w.r.t. the “direct” Skyrme contribution dn ∼

Ncm
2
πθ. The Skyrme computation is actually similar to the one we are going to perform for

the WSS model: we can almost make a “dictionary” to translate our quantities with the

ones in the Skyrme model. For instance the Skyrmion solution corresponding to a baryon

here is the instanton Ainst. The holographic model naturally extends the Skyrme one by

including the contribution of the whole tower of vector mesons.

In table 2 we summarize the estimates of the NEDM coming from different approaches,

including the one in the WSS model which has already been presented in [32]. In the

following we are going to review that result in detail, adding further comments. Notice

that in the list a previous holographic estimate [45] appears too. That result has been

obtained in a simpler and less controllable bottom-up model (hard-wall) with no string

theory embedding.

8.2 The currents

In order to compute the NEDM using (8.4), we need to recall, from [41], how currents are

holographically defined in the WSS model.

Let us first introduce an external field in the theory by switching on non-normalizable

modes for the gauge field Aµ, so that

lim
z→±∞

Aµ(xµ, z) = AµL(R)(x
µ) . (8.6)

These modes can be seen as perturbations over the background (that approach zero at

infinity), whose boundary values are kept fixed. The theory is now modified and we expect
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Year Approach/model cn = dn/(θ · 10−16e · cm)

1979 [3] bag model 2.7

1980 [14] ChPT 3.6

1981 ChPT 1

1981 ChPT 5.5

1982 ChPT 20

1984 chiral bag model 3.0

1984 soft pion Skyrme model 1.2

1984 single nucleon contribution 11

1990 [21] Skyrme model Nf = 3 2

1991 [22] Skyrme model Nf = 2 1.4

1991 ChPT 3.3(1.8)

1991 ChPT 4.8

1992 ChPT −7.2,−3.9

1999 sum rules 2.4(1.0)

2000 heavy baryon ChPT 7.5(3.2)

2004 instanton liquid 10(4)

2007 [45] holographic “hard-wall” 1.08

2015 [9–12] Lattice QCD −3.9(2)(9)

2016 [32] WSS model 1.8

Table 2. An account of theoretical values for dn = cn θ 10−16 e · cm; the table is partially taken

from [8], where all the original references are indicated. ChPT means Chiral Perturbation Theory.

an additional term in the action

S
∣∣
AL(R)

= −2

∫
d4xTr

(
AµLJ µL +AµRJ µR

)
, (8.7)

which is a source-current coupling. This term defines the chiral currents J µL(R) which turn

out to be given by

JµL = −κ[k(z)Fµz]z→∞ ,
JµR = +κ[k(z)Fµz]z→−∞ .

(8.8)

The axial and vector currents, associated to the vector (+) and axial (−) fields

V(+)
µ =

1

2
(AµL +AµR) , V(−)

µ =
1

2
(AµL −AµR) , (8.9)

are thus given by

JµV = −κ [k(z)Fµz]z→∞z→−∞ ,

JµA = −κ [ψ0(z)k(z)Fµz]z→∞z→−∞ ,
(8.10)

where ψ0 = 2
π arctan(z).

Working in the θ = 0 case, in [41] it has been noticed that the above expressions

are consistent with the source-current term in the four-dimensional action for the mesonic

– 33 –



J
H
E
P
0
2
(
2
0
1
7
)
0
2
9

modes

S
∣∣
AL(R)

= 2

∫
d4xTr

[
V(+)
µ

∑
n=1

gvnv
n
µ + V(−)

µ

( ∞∑
n=1

gana
n
µ + fπ∂µΠ

)]
, (8.11)

where anµ and vnµ are, respectively, the axial-vector and vector mesons while Π contains the

pion (non Abelian part) and the η′ singlet (Abelian part). The decay constants gvn and

gan are given in terms of boundary values of the eigenfunctions ψn

gvn = −κ[k(z)∂zψ2n−1(z)]z→∞z→−∞ , gan = −κ[k(z)∂zψ2n(z)ψ0(z)]z→∞z→−∞ . (8.12)

The fact that the vector current JV µ, as it can be read from (8.11), is expressed as a

sum over the vector meson modes vnµ , reflects the complete vector meson dominance of

the model.

Splitting the Abelian and non Abelian parts of the currents as in (3.5) we get the

isoscalar and isovector contributions. In particular, in the case with Nf = 2 flavors, the

electromagnetic current is given by

Jµ em = −κ
[
k(z)Tr (Fµzτ

3) +
k(z)

Nc
F̂µz

]z→∞
z→−∞

. (8.13)

Inserting in the above definitions the instantonic solutions found in section 7, the result,

after quantization, gives the currents in the presence of baryons. This allows to compute

the expectation values 〈B′, s′|J A,Vµ |B, s〉, where |B, s〉 are the baryonic states with spin s

which are eigenstates of the baryon Hamiltonian. All the interesting static properties of

baryons can be derived with this formalism.

Notice that the O(θ) term Âmass
z (7.20), modifies only the axial current JA and leaves

untouched the vector current JV . We will return to the axial form factor in section 9,

focusing for the moment on just the electric dipole term.

8.3 Quantization reloaded

The classical soliton solution we have found in section 7 has to be quantized. Both the mass

term and the θ parameter could in principle give corrections to the moduli space Hamilto-

nian. If this is so, the eigenstates found in section 6.1 have to be modified accordingly.

Crucially, however, we have found that the corrections to the Hamiltonian (i.e. those

to the baryon mass formula (6.36)) are of order θ2 for small θ: thus, at first order in θ we

can forget about this issue and keep using the baryon eigenstates already found at θ = 0.

Moreover, the mass term just gives rise to a O(mq) correction to the instanton size ρ. We

will neglect this correction since it will give rise to a subleading (in mq) contribution to

the NEDM.

In order to compute the electromagnetic current we need to switch on the moduli

of the gauge group orientations. We would also have to consider the time dependence of

XI = { ~X,Z, ρ}, but this gives a subleading (1/Nc) effect and we neglect it for the moment.

Using translational invariance, we also put ~X = 0.12

12 ~̇X ∼ ~P , the momentum of the baryon, is classically zero since we work in the baryon rest frame. Clearly

for ~P 6= 0 we have a non zero electric dipole moment, but it would be just a magnetic moment observed

from a boosted frame.
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Since we now want to maintain A0 6= 0, we work out a moduli space quantization

in a different gauge w.r.t. the one used in (6.10). In particular, we use the following

transformations13

A0 7−→ A′0 = V A0V
−1 ,

AM 7−→ A′M = V AMV
−1 − iV ∂MV −1 , M = 1, 2, 3, z ,

(8.14)

with V → a as z → ±∞. After these transformations the M components of the equations

of motion for the gauge field remain untouched, while equation (7.13) gives the “modified

Gauss law constraint”

−κ
(
h(z)DνF

0ν +Dz

(
k(z)F 0z

))a∣∣
mass

+ (CS terms) +

+κ
(
h(z)DνD

νΦ +Dz(k(z)DzΦ)
)

= 0 ,
(8.15)

where Φ = −iV −1V̇ and the time dependence of the moduli ρ, Z and ~X has been neglected.

The first row is automatically zero on the solution for Amass
0 given in (7.20). Since, to

compute the currents, we just need the asymptotic behavior for z → ∞, we can just

linearize the remaining term as

∂ν∂
νΦ + h(z)−1∂z(k(z)∂zΦ) = 0 . (8.16)

Neglecting ∂2
0 terms (as we are interested in slowly moving instantons), the asymptotic

solution, at any time, can be given as a series expansion in the ψn

Φ(r, z) ∼
z�1

∞∑
n=1

−ia−1ȧ cn(r)ψn(z) , (8.17)

where we have implemented the boundary condition Φ → −ia−1ȧ as z → ∞. Actually,

the whole sum must be independent on r when z → ∞, but it is not necessary for the

present discussion to impose this requirement explicitly. The functions cn(r) contain all

the information about the near core behavior of the instanton and of course they depend

on the mass. At mq = 0 the solution can be found explicitly and reads (reintroducing the

Z modulus dependence only for now)

cn(r) = πκρ2 e
−
√
λnr

r
ψn(Z) . (8.18)

This just implies that Φ ∝ G(~x, z) as defined in (7.10).

13Another possible choice, which is gauge equivalent to ours, is [46] A0 7−→ A′0 = W (t)A0W (t)−1+∆(x, t),

AM 7−→ A′M = W (t)AMW (t)−1 where the function ∆(x, t) is necessary to solve the equations of motion

also in the non stationary case. Defining Y so that −iY −1Ẏ = ∆(x, t) and making the gauge transformation

with parameter Y allows us to find exactly (8.14) with V (x, t) = W (t)Y (x, t). Of course many other choices

are possible, not necessarily related by gauge transformations; the only important requirement is that the

equations of motion remain satisfied.
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8.4 The holographic computation of the NEDM

The electric dipole moment is evaluated using the definition (8.4)

~DB,s =

∫
d3x~x 〈B, s|

(
J0, a=3
V +

1

Nc
Ĵ0
V

)
|B, s〉 , (8.19)

where the operator in parenthesis is the quantum version of the time component of the

electromagnetic charge (8.13).

Let us first notice that the Abelian Ĵ0
V piece actually does not contribute to the NEDM

since: 1) ∂0Â
mass
z = 0; 2) [k(z)∂zÂ

0
mass]

z→∞
z→−∞ is a function of r, from (7.46), and thus∫

d3x~x[k(z)∂zÂ
0
mass]

z→∞
z→−∞ = 0 by parity. Let us thus concentrate on the contribution from

the non-Abelian field.

After the transformation (8.14) the non Abelian field strength F0z becomes

F ′0z = −V (DzΦ)V −1 − V (DzA0)V −1 , (8.20)

where, again, we have neglected ẊI term. At first sight both Amass
0 and Φ may contribute

to the NEDM. The current is easily computed from the definition (8.10)

J0
V = κ

[
k(z)V

(
∂zA

0
mass + ∂zΦ

)
V −1

]z→∞
z→−∞ , (8.21)

where the covariant derivatives have been replaced by ordinary derivatives because when

z → ∞ the fields Ainst and Amass are suppressed by powers of z−1, so the commutators

disappear when the limit is taken. The gauge structure is very simple: we have

for A0
mass : V

(
~x− ~X

)
· ~τV −1 −→

z→±∞

(
xj −Xj

)
a τ j a−1 ,

for DzΦ : V a−1ȧV −1 −→
z→±∞

−aȧ−1 .
(8.22)

At this point it is rather obvious that Φ cannot contribute to the NEDM: the form (8.17)

depends only on r, so the integral is odd in ~x and hence it is vanishing.

The matrix element is evaluated using the identity (see e.g. [47])

〈B′, s′|Tr
(
aτ ia−1τa

)
|B, s〉 = −2

3

(
σi
)
s′s

(
τ3
)
I′3I3

, (8.23)

where σ and τ are Pauli matrices for spin and isospin respectively and the subscripts

indicate the matrix elements in the standard representation. Using the above expression,

we get the following formula for the “semi-classical” part of the NEDM (i.e. the result

before including the ρ, Z-dependent parts of the neutron wave function)

~D s.c.
n,s =

8π

9

∫ ∞
0

dr r4 κ[k(z) ∂zW (r, z)]z→∞z→−∞ 〈s|~σ|s〉 = − ~D s.c.
p,s , (8.24)

where the relation with the proton dipole moment comes from the fact that the neutron

has isospin −1/2 which is the opposite for the proton. As we can see, the dipole moment

is proportional to the spin of the particle, as one would expect, and the dipole moment of

the neutron has an opposite sign w.r.t. the dipole moment of the proton.
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)

Figure 1. Logarithmic plot of the NEDM as a function of λ. The points are our numerical results,

while the straight line is the log
(
d s.c.
n M2

KK/mqθ
)

= −2 log λ+ 4.4 one. The red and blue big dots

correspond respectively to λ = 16.63, 12.44.

Factorizing the tensorial structure, we define the “semi-classical” NEDM d s.c.
n , i.e. the

leading order contribution in the 1/Nc expansion to the NEDM, as

d s.c.
n =

8π

9

∫ ∞
0

dr r4 κ[k(z) ∂zW (r, z)]z→∞z→−∞ . (8.25)

In the following we present the numerical analysis for this quantity as a function of λ

for Nc = 3.

The equation for W (r, z) (7.27) can be solved via standard methods of numerical inte-

gration, using for example Mathematica. The dipole is then computed using formula (8.25).

The result for the NEDM as a function of λ is plotted in figure 1. This is a log-log plot of

the dimensionless quantity d s.c.
n M3

KK/Ncm
2
π θ. For large values of λ we observe a scaling

d s.c.
n ∝ λ−2, specifically

d s.c.
n ' 82

Ncm
2
πθ

λ2M3
KK

. (8.26)

Notice the scaling with Ncm
2
π, a feature in common with the result obtained in the Skyrme

model [21]. The above result can be expressed in terms of the quark mass mq using the

GMOR relation (5.3) and (4.2)

d s.c.
n ' 395

mq θ

λ3/2M2
KK

. (8.27)

The NEDM can also be written as a dipole moment of a certain charge distribution

~d s.c.
n =

∫
d3r ρ s.c.

d (~r)~r , (8.28)

where ρ s.c.
d (~r) is

ρ s.c.
d (~r) = (r̂ · ŝ) 16

9π
r κ [k(z) ∂zW (r, z)]z→∞z→−∞ , (8.29)

where ŝ is the spin direction. One advantage of the holographic computation is the pos-

sibility to compute also the full charge distribution and not only its dipole moment. The
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Figure 2. Radial distribution of the dipole charge rescaled by λ2. The arrow indicates the limit

as λ becomes large. The red and blue thick plots correspond respectively to λ = 16.63, 12.44.

radial charge distribution, factoring out the angular and the θ dependence and rescaling

by a factor λ2, is plotted in figure 2 for various values of λ. We see that in the large λ limit

it converges to a certain distribution. The factor λ−2 of the dipole (8.26) is thus due to

an overall scaling of the charge distribution by the same factor; the charge remains always

distributed over a length scale of order ∼ 1/MKK . This interesting feature is shared by

other static properties of the WSS baryons, like the size of the baryon number distribu-

tion [41], which is governed by the vector meson inverse mass rather than by the instanton

radius ρcl ∼ O(λ−1/2).

We then perform the numerical analysis with the parameters that are most commonly

used in the literature to compare the WSS model with real QCD:

MKK = 949 MeV , λ = 16.63 , mq = 2.92 MeV. (8.30)

These parameters are fitted with the experimental observables fπ = 92 MeV and mρ =

776 MeV. The parameter mq has been chosen to reproduce correctly the pion mass mπ =

135 MeV via the GMOR relation (5.3) (using (4.2) for c). It is a physically acceptable

value being in between the up and the down masses. These values of the parameters yield

d s.c.
n = 0.78 · 10−16 θ e · cm . (8.31)

Note that the model allows to automatically include a class of 1/λ corrections to the leading

form of the result (8.26), by solving numerically equation (7.27).

Using the solution found in section 7.2 the dipole moment can be also expressed as an

infinite sum over vector meson modes. Taking into account the mode expansion (7.28) and

the relations (8.12), the CP violating part of the non Abelian vector current reads

J0
V��CP = κ

[
k(z)V ∂zA

0
massV

−1
]z→∞
z→−∞ = −

∞∑
n=1

gvnR2n−1(r)
(
xj −Xj

)
a τ j a−1 . (8.32)
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Figure 3. The profile functions R1,3,5,7(r) (from top to bottom), for λ = 16.63 (on the left) and

λ = 500 (on the right).

Notice that only vector mesons contribute to the NEDM (axial-vector mesons give no

contribution): this accounts for the complete vector meson dominance of the model also in

the CP-breaking sector.

From the definition (8.4) it thus follows that

d s.c.
n = −8π

9

∞∑
n=1

gvn

∫ ∞
0

dr r4R2n−1(r) . (8.33)

The functions R1,3,5,7(r) for the numerical solution obtained above are given in figure 3. The

mode expansion method neatly indicates how all the meson tower is actually contributing

to the NEDM. Calculating the latter including the first one, two and three modes gives

d s.c.
n =


1.09 · 10−16 θ e · cm with one mode ,

0.68 · 10−16 θ e · cm with two modes ,

0.76 · 10−16 θ e · cm with three modes ,

to be compared to the full result (8.31).14 The first mode approximates the full result with

an error of about 40%. This highlights the advantage of the holographic model, which

allows to include the contribution of the whole tower of vector mesons. The inclusion of the

second and third modes give significant corrections. The fourth mode is already essentially

irrelevant (less than 1% correction) for λ ∼ O(10). Finally, as λ increases the higher massive

vector mesons become more and more important in their contribution to the NEDM.

The value of the NEDM above is extracted from the model at leading order in Nc. The

model actually allows to calculate the 1/Nc corrections coming from the quantization of the

baryonic spectrum, providing their wave functions [30], as reviewed in section 6.1. Clearly,

these do not constitute all the possible 1/Nc corrections. Nevertheless, they represent

important corrections to the result when extrapolating the model formulae, valid at large

Nc, large λ, to the values Nc = 3, λ ∼ O(10). We use the neutron wave function defined

in (6.25). The electric current has an explicit dependence on the moduli ρ, Z, as can be

14The numerical approximations involved in both computations do not allow us to reach a better precision

with our desktop computational power.
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seen from equations (7.21), (7.27).15 So, considering the full wave function rather than the

classical approximation has a non-trivial effect. Noticing that the “semi-classical” dipole

moment, as given in eq. (8.25), is a function of ρ, Z, the NEDM is calculated as16

dn ≡ 〈d s.c.
n 〉ρ,Z ≡

∫
ρ3R(ρ)2 ψ2

Z(Z) d s.c.
n dρ dZ∫

ρ3R(ρ)2 ψ2
Z(Z) dρ dZ

. (8.34)

Using the standard value of parameters (8.30), we obtain our best estimate for the NEDM

value [32]

dn = 1.8 · 10−16 θ e · cm . (8.35)

The quantum 1/Nc correction to the semiclassical value (8.31) is thus substantial for these

phenomenological values of the parameters.

It is also known that the standard values for the parameters λ,MKK used above do

not perform extremely well for baryonic observables, see e.g. [30]. So, it is interesting

to consider a different choice obtained by fitting against data such as the form factors

calculated in [41]. In appendix C we give the details on how this fit is performed. The

best fit gives λ = 12.44,MKK = 790 MeV. The value of mq = 4.06 MeV is taken from the

GMOR relation (5.3) by fixing mπ = 135 MeV, and the resulting semi-classical value of the

NEDM is

d s.c.
n = 2.1 · 10−16 θ e · cm . (8.36)

The difference of this value w.r.t. the one obtained with the standard values of the pa-

rameters (8.31) highlights the importance of a proper choice of fitted observables. For the

quantum corrections we use (6.25) to calculate also the observables used for the fit (see [41]).

The parameter values obtained are MKK = 785 MeV, λ = 19.38, mq = 3.27 MeV. Using

these values, (8.34) gives for the NEDM

dn = 2.5 · 10−16 θ e · cm . (8.37)

8.5 The electric dipole form factor

As we have recalled at the beginning of the present section, the nucleon electric dipole

moment is related to the dipole form factor at zero momentum F3(0). Remarkably, the

WSS holographic model allows to extract the full momentum dependence of the dipole

form factor.

Working in Breit frame, where kµ = (0, ~k), we can see, from the defining expression in

eq. (8.2) and following similar steps as in [41], that the electric dipole form factor of the

neutron is given by

F3

(
k2
)

2MN
= − 2

3k
∂k

∫
d3y e−i

~k·~yκ〈[k(z)∂zW ]z→∞z→−∞〉ρ,Z , (8.38)

15Remember that ξ2 = (~x− ~X)2 + (z − Z)2.
16Technically, we solve the differential equations numerically for a suitable grid of values of ρ, Z, interpo-

lating the obtained results.

– 40 –



J
H
E
P
0
2
(
2
0
1
7
)
0
2
9

with ~y ≡ ~x− ~X, k ≡ |~k|.17 This formula can be also deduced from the Fourier tranform of

the dipole charge distribution (8.29). Since 〈[k(z)∂zW ]z→∞z→−∞〉ρ,Z is a function of r ≡ |~y|,
the expression above reads

F3(k2)

2MN
= −8π

3

∫ ∞
0

dr r2

[
cos(kr)

k2
− sin(kr)

k3r

]
κ〈[k(z)∂zW ]z→∞z→−∞〉ρ,Z . (8.39)

Thus F3(k2), as expected, can be expanded in even powers of k, around k = 0. At k = 0,

F3(0)/2MN precisely reproduces the NEDM as given in eq. (8.34) (see (8.25)). Notice that

in our setup with Nf = 2 degenerate quarks, only the isovector part of the electric dipole

form factor is turned on.

The complete vector meson dominance of the dipole form factor is manifest once we

implement the mode expansion for 〈[k(z)∂zW ]z→∞z→−∞〉ρ,Z

F3

(
k2
)

2MN
=

8π

3

∞∑
n=1

gvn

∫ ∞
0

dr r2

[
cos(kr)

k2
− sin(kr)

k3r

]
〈R2n−1(r)〉ρ,Z . (8.40)

In order to extract the explicit functional dependence of F3(k2) on the momentum, we

need to compute the integral in eq. (8.39). Focusing on the k → 0 behavior, it is easy to

realize that if the function

q(r) ≡ κ〈[k(z)∂zW (r, z)]z→∞z→−∞〉ρ,Z , (8.41)

is power-like suppressed at large r, the integral in (8.39) gives generically divergent coef-

ficients for the series expansion of F3(k2). Actually, using the instanton solution found in

section 7, we have that q(r) ∼ r−7 at large r. That solution has been found neglecting

subleading corrections in the small parameters θ,mq/MKK and εf (see eq. (2.17)). In

particular, working to leading order in the latter parameter, which weighs the flavor back-

reaction, is what justifies the fact that we have neglected the η′ mass contribution (recall

that the squared Witten-Veneziano mass (3.16) scales like εf ) to the equation for Âmass
z

in section 7.1. At subleading order that contribution is generically present as it can be

easily deduced starting from the effective action (7.18). In order to consistently account

for that, one should also include, to this order, at least also the flavor backreaction on

the background (see [33]). This would produce εf -corrected functions k(z) and h(z). The

equation of motion for Âmass
z could still possibly be solved by the ansatz Âmass

z = u(r)/k(z)

with u(r) now being solution of the equation18

1

r2
∂r
(
r2∂ru(r)

)
−m2u(r) =

cmq

κ
θ(cosα+ 1) , (8.42)

with m = mWV given in (3.16). The related Green’s function is now modified by the mass

term and it reads

uG(r, r′) =


− r′

mr
e−mr′ sinh(mr) , r < r′ ,

− r′

mr
e−mr sinh(mr′) , r > r′ ,

(8.43)

17Not to be confused with the function k(z).
18We are considering the Nf = 2, ϕ ∼ θ/2� 1 case.
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Figure 4. The electric dipole form factor (solid line) and the dipole fit in (8.46) (dashed line).

to be compared with eq. (7.22) which is obtained in the m→ 0 limit. The solution to (8.42)

is thus given by

u(r) =
cmq

κ
θ

∫ ∞
0

dr′ uG(r, r′)

1 + cos
π√

1 + ρ2/r′2

 . (8.44)

This function closely resembles, in form, the expression for the η′ VEV obtained within

the Skyrme model [21]. Crucially, u(r), whose derivative enters the source term for the

function W (r, z) (see equation (7.27)), is now exponentially suppressed for large r. This in

turn provides an exponential suppression to the function q(r) at large r and gives a way

to regularize the computation of the form factor.

We perform this computation numerically, setting Z = Zcl = 0 for simplicity (wave

function corrections related to the Z modulus only give small corrections to the whole

result) and adopting the standard “mesonic” choice of paramenters Nc = 3, λ = 16.63.

The final outcome is the plot shown in figure 4. Numerically, for small k we find (reinserting

the dependence on the scale MKK)

F3(k2) ≈ F3(0)

[
1− 4

k2

M2
KK

+ 13
k4

M4
KK

−O
(
k6/M6

KK

)]
. (8.45)

Actually, the dipole form factor at small momenta (i.e. for k < MKK) is fitted quite well

by a dipole behavior

F3(k2) ≈ F3(0)

[
1− 2

k2

M2
KK

]−2

, (8.46)

just as it happens, both in QCD and in the WSS model [41], for the standard electric and

magnetic Sachs form factors of the nucleons. The dipole behavior is quite naturally induced

in models with complete vector meson dominance, thus its occurrence in the present case

is not totally surprising.

For k � MKK , the form factor F3(k2) neatly deviates from the dipole behavior.

Numerically, we find that it is actually exponentially suppressed with k. This feature,

which turns out to show up also from a numerical analysis of the nucleon Sachs form
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factors studied in [41], could be related to the very peculiar UV completion of the WSS

model which, by construction, is expected to depart from perturbative QCD.

The plot in figure 4 indicates that the scale of momentum variation of the dipole form

factor is set by MKK . This observation can be complemented by defining, in analogy with

the electric charge radius, the (isovector) electric dipole radius for the neutron

〈r2
ED〉 = −6

(
dF3(k2)

dk2

)
k2=0

=
16

15
πMN

∫ ∞
0

dr r6κ〈[k(z)∂zW ]z→∞z→−∞〉ρ,Z . (8.47)

With the parameters chosen as above we numerically get

〈r2
ED〉 ≈ 48

dnMN

M2
KK

. (8.48)

Finally, we notice that the NEDM, modified by the contribution of the Witten-Veneziano

mass is now given by dn ≡ F3(0)/2MN ≈ 2.6 · 10−17θ e cm, which is smaller than the value

reported in eq. (8.35).

It is interesting to compare our findings with those obtained in chiral perturbation

theory [48, 49]. There, the pion cloud dominates the physics and the scale of momentum

variation of the electric dipole form factor is set by mπ. Correspondingly the dipole square

radius scales like m−2
π . These results are in line with the already noticed differences between

the large Nc approach and the chiral one.

9 The CP-breaking pion-nucleon coupling

As we have previously discussed, there are essentially two different approaches to compute

the NEDM in phenomenological models: one is based on the Skyrme model [21], the other

one on chiral perturbation theory [14]. This last method involves the computation of

the CP breaking cubic coupling gπNN between baryons and pions. As we will show in

the following, within the limiting regimes where the holographic computations have been

performed, this coupling turns out to be zero, at leading order in the 1/Nc expansion, in the

Witten-Sakai-Sugimoto model. This statement actually allows for a CP breaking coupling

which is subleading in the 1/Nc expansion.

We will give two different proofs of this claim; the first one, based on the form factor

formalism, is given below.

9.1 The axial form factors

In the θ = 0 case, the matrix element for the axial current between nucleon states

〈p′, s′|J µ,CA (0)|p, s〉 = (2π)−3

(
τC
)
I′3I3

2
u(p′, s′)Γ(C)

µ

(
k2
)
u(p, s) , (9.1)

where C = 0, 1, 2, 3 and τ0 = 12, is given in terms of the following expansion

Γ(C)
µ

(
k2
)

= iγ5γµg
(C)
A

(
k2
)

+
1

2MN
kµγ5g

(C)
P

(
k2
)
. (9.2)
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∂µπ
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µ
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(b) Coupling with mediating

mesons.

Figure 5. Cubic vertex corresponding to the matrix element 〈p′, s′|J µA |p, s〉 between bary-

onic states.

The form factors g
(C)
A,P (k2) are not independent in the massless theory because current

conservation imposes

g
(C)
P =

4M2
N

k2
g

(C)
A . (9.3)

However when the quark masses are non zero ∂µJ µA 6= 0 and this relation no longer holds.

When we allow for a strong CP violation also other terms may arise. These look as

the previous ones, without the γ5 insertion.

The matrix element (9.1) describes a cubic interaction between two nucleon states and

the external source coupled to the field (V(−)
µ in this case), so it actually computes diagrams

of the type in figure 5(a). However we can imagine that the mesons are mediating this

interaction and we already know their coupling (8.11) with the external field. Hence we

find something of the form shown in figure 5(b). Diagrams such as that in figure 5(b) arise

from effective interactions between mesons and nucleons described by

Leff =
∑
n≥1

(
ĝanNN â

n
µNiγ5γ

µ12

2
N + ganNNa

n c
µ Niγ5γ

µ τ
c

2
N

)
+

+ 2i

(
ĝπNN π̂Nγ5

12

2
N + gπNNπ

cNγ5
τ c

2
N

)
.

(9.4)

This is only the CP conserving part: the CP breaking one is the same but without iγ5.

For example the coupling gπNN appears as

Leff��CP = 2

(
ĝπNN π̂N

12

2
N + gπNNπ

cN
τ c

2
N

)
+ (vector mesons) . (9.5)

Since the η′ is very massive we expect that the low energy physics is dominated by the

isovector coupling gπNN .

Let us proceed to write down the amplitude of figure 5(b) retaining only the CP

conserving terms of Leff plus the CP breaking gπNN . The propagators can be read from

the kinetic terms for the mesons (A.8), namely a Proca propagator and a scalar propagator

(not massless in this case because the pions acquire a mass)

〈p′, s′|J µCA |p, s〉 =
√

2p0

√
2p′0u

(
~p′, s′

)[
A µC

]
u(~p, s) , (9.6)
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where

A µC =

δC0δI′3I3
2

iγ5γν∑
n≥1

ηµν+kµkν/λ2n
k2+λ2n

gan ĝanNN+2kµfπ

(
γ5ĝπNN−iĝπNN

) 1

k2+m2
π


+
δCa(τa)I′3I3

2

iγ5γν∑
n≥1

ηµν+kµkν/λ2n
k2+λ2n

ganganNN+2kµfπ(γ5gπNN−igπNN)
1

k2+m2
π


+ (��CP vector mesons).

(9.7)

The Lorentz tensor structure can be readily compared with the general form factor: take

for instance only the isoscalar CP conserving part

ĝA(k2) =
∑
n≥1

gan ĝanNN
k2 + λ2n

,

ĝP (k2) = 2MN
2fπ ĝπNN
k2 +m2

π

− 4M2
N

∑
n≥1

gan ĝanNN
λ2n

1

k2 + λ2n
.

(9.8)

It is worth noticing the following feature: the relation (9.3), that holds only when m2
π = 0,

implies that the residue at the pole of gP in k2 = 0 is proportional to gA, more precisely

gA(0) =
fπgπNN
MN

. (9.9)

This is known as the Goldberg-Treitman relation. However when the pion is massive the

pole of gP is displaced and the conservation of the axial current is broken also at the

classical level, so this relation no longer holds.

In order to have a non zero gπNN in the theory, we would need a term in the form

factor proportional to

(τa)I′3I3δs′sk
µ , (9.10)

which means in the current a term like

JµaV = Ia
∂

∂Xµ
f
(
Z, ~x− ~X

)
, 〈nz, nρ|f

(
Z, ~x− ~X

)
|nz, nρ〉 6= 0 . (9.11)

The derivative with respect to X can be traded for a derivative with respect to x, which

in Fourier transform yields kµ. The isospin operator defined in (6.21) is explicitly given by

Ia = −4iπ2κρ2Tr
(
τaa ȧ−1

)
. (9.12)

Clearly this term, which contains an ȧ, can only appear in the field F a0z, as a result of the

modified Gauss Law constraint (8.15). Indeed we have

F ′0z = −V (DzΦ)V −1 − V (DzA0)V −1 . (9.13)

The relevant term is the first one, indeed

V ∂zΦV
−1 ∼

z�1
iaȧ−1

∞∑
n=1

cn(r)∂zψn(z) , (9.14)

as we argued in (8.17). In the axial current, as it is easy to see from the definition,

only the terms with even n contribute. Clearly cn for even n has to vanish for θ = 0, as a
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consequence of CP conservation and as it can also be inferred by (8.18) computed at Z = 0.

Now the argument is simple: since cn solves an equation D2
MΦ = 0, it gets contribution

only from the non Abelian fields, the CP breaking part of those is proportional to cos θ
2 .

The only way for cn to vanish at θ → 0 is to be identically zero.

9.2 A more direct argument

Let us notice, as in [20], that a possible way to define the gπNN coupling is to take the

large r behavior of the pion expectation value in a nucleon state

〈N |πa|N〉 ≈ − gπNN
8πMN

mπx
i

r2
e−mπr〈σiτa〉 . (9.15)

In the same fashion, including the CP breaking contribution gives

〈N |πa|N〉 ≈ − gπNN
8πMN

mπx
i

r2
e−mπr〈σiτa〉 − gπNN

8π

mπ

r2
e−mπr〈τa〉 . (9.16)

In our model this expectation value becomes

〈N |π|N〉 = 〈N |
∫
dz A′z

(
xM ;a

)
|N〉 , (9.17)

where the moduli dependence has been explicitly indicated. There are essentially two

reasons why this does not give a CP breaking contribution to the πNN coupling. The first

one is analogous to the one above: Az, being a non Abelian field, contains contributions

proportional to cos θ2 , which cannot automatically vanish in the limit θ → 0 unless gπNN is

identically zero. Secondly, we would expect a precise moduli dependence from Az, namely

Az,��CP ∼ aȧ
−1. On the contrary, we have a dependence

Az,��CP ∼ a(~x · ~τ)a−1 . (9.18)

This can be explicitly checked by the solution given in section 7.3, but there is no need

to do it since the one in (9.18) is the only combination compatible with the spin-isospin

symmetry with no time derivatives. This dependence gives precisely the CP conserving

behavior 〈σiτa〉.

10 Conclusions

In this paper we have studied effects of the θ parameter in the Witten-Sakai-Sugimoto

model [25, 26], the top-down holographic theory closest to QCD. The (small) quark mass

needed to make the θ parameter physical has been introduced by means of world-sheet

instantons [27, 28].

Let us recapitulate our main results. To begin with, we have studied the vacuum

structure at finite θ, showing that it is identical to that of QCD, as derived from the

chiral Lagrangian [13]. Then, we have analyzed the baryon spectrum, arguing that the

θ parameter affects it only at subleading order (O(θ2)). Moreover, the existing solitonic

solutions corresponding to baryons have been extended to include the leading quark mass

and θ parameter corrections. We have reviewed and discussed in detail the results in [32]
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for the neutron electric dipole moment: we have extracted a value of the NEDM which is of

the same order of magnitude as existing results in the literature based on effective models;

we have discussed the dependence of the NEDM and the associated charge distribution on

the theory parameters; exploiting the advantage of the holographic model on the effective

theories for QCD, we have analyzed the dependence of the NEDM on higher vector mesons,

showing that the first few modes are important to obtain the result at percent accuracy

level. Moreover, we have presented a novel study of the full electromagnetic dipole form

factor. Finally, we have argued that the CP-violating pion-nucleon coupling constant is

subleading in the 1/Nc expansion.

Along the way, we have also pointed out a Horava-Witten-like solution to the

anomalous Bianchi identity in the WSS model, which as far as we know was not present

in the literature.

Given the qualitative and quantitative success of the WSS model in comparing with

phenomenology, it is certainly worth extending the results of this paper on the θ dependence

of QCD physics. An obvious generalization concerns the calculation of the NEDM with

three quarks of different masses. But it would also be worth studying nuclear observables

in the same setting.
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A Meson sector

In this appendix we give a brief review of the holographic description of mesons in the WSS

model [26]. Let us consider the Yang-Mills part of the D8-brane effective action (2.22)

setting Nf = 1 for the moment:

S = −κ
2

∫
d4xdz

(
1

2
h(z)FµνFµν + k(z)FµzFµz

)
. (A.1)

The expansions (2.25) for the fields Aµ and Az imply that

Fµν(xµ, z) =
∑
n

(
∂µB

(n)
ν (xµ)− ∂νB(n)

µ (xµ)
)
ψn(z)

≡
∑
n

F (n)
µν (xµ)ψn(z) ,

Fµz(xµ, z) =
∑
n

(
∂µϕ

(n)(xµ)φn(z)−B(n)
µ (xµ)ψ′n(z)

)
.

(A.2)
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The functions ψn and φn will be discussed in a moment and ψ′ means ∂zψ.

Let us first set the ϕ(n) to zero. The action (A.1) then becomes

S = −κ
2

∫
d4xdz

(
1

2
h(z)

∑
m,n

F (n)
µν Fµν (m)ψnψm + k(z)

∑
m,n

B(n)
µ Bµ (m)ψ′nψ

′
m

)
. (A.3)

Imposing the conditions

κ

∫
dz h(z)ψn(z)ψm(z) = δmn , κ

∫
dz k(z)ψ′n(z)ψ′m(z) = λnδmn , (A.4)

and integrating by parts (the ψn approach zero for z → ±∞ because of the normalization)

we get the eigenvalue equations (2.26). When the λn are ordered such that λ1 < λ2 <

· · · it can be shown that ψn has positive (negative) parity for n odd (even) under the

transformation z → −z. The transformation (xµ, z) → (−xµ,−z) is interpreted as the

holographic equivalent of the parity transformation in the boundary theory.

If we use the above relations we find a Proca action for the fields B
(n)
µ , with masses

m2
n = λn (in units MKK = 1). These fields are interpreted as the vector mesons of the

field theory.

Now it is easy to include scalar fields ϕ(n) as well. As before, let us require

κ

∫
dz k(z)φnφm = δmn . (A.5)

We can take φn to be just φn = ψ′n/
√
λn. However there is a zero mode

φ0 =
1√
κπ

1

k(z)
, (A.6)

which is orthogonal to all the ψ′n. In fact the ψ0 mode whose derivative would be φ0 is

proportional to arctan(z): this is not normalizable by means of the integral (A.4). The field

φ0, instead, has the correct normalization with respect to (A.5). The Fµz field strength is

rewritten as

Fµz = ∂µϕ
(0) 1√

κπ

1

k(z)
+
∑
n≥1

(
m−1
n ∂µϕ

(n) −B(n)
µ

)
. (A.7)

The gauge transformation B
(n)
µ 7→ B

(n)
µ +m−1

n ∂µϕ
(n) can be used to eliminate all the ϕ(n)

with n ≥ 1 from the theory; the ϕ(0) mode survives instead. All in all we get the following

four dimensional action

S = −κ
∫
d4x

∑
n≥1

(
1

4
F (n)
µν Fµν(n) +

1

2
m2
nB

(n)
µ Bµ(n)

)
+

1

2
∂µϕ

(0)∂µϕ(0)

 . (A.8)

The massless field ϕ(0) is associated to the mode ψ0 ∝ arctan z which is an odd function:

it is thus a pseudoscalar field and we interpret it as the pion field, which is the Goldstone

boson of the spontaneous chiral symmetry breaking.

A similar analysis can be performed to include also the massive scalar mesons: they

arise as fluctuations of the embedding of the D8-branes in the background.
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It is possible to generalize the pion effective action to Nf > 1 flavors. The gauge fields

Aα approach zero at z → ±∞, but we still have a residual gauge symmetry for functions

that approach constants as z → ±∞. This residual gauge symmetry is interpreted as the

global symmetry of the boundary theory Gglob = U(Nf )L ×U(Nf )R

Aα(xµ, z) 7→ g(xµ, z)Aα(xµ, z)g−1(xµ, z)− ig(xµ, z)∂αg
−1(xµ, z) ,

lim
z→±∞

g(xµ, z) = g± , lim
z→±∞

∂αg(xµ, z) = 0 , (g+, g−) ∈ Gglob .
(A.9)

We know that the Wilson line from a point xA to a point xB transforms with the gauge

function evaluated at the two points. If in particular we consider the path given in (2.28),

then the transformation law is U 7→ g+Ug−1
− . This is precisely the transformation law for

the pion matrix. We can thus define the pion field as

U(xµ) ≡ exp

(
2i

fπ
πa(xµ)T a

)
, (A.10)

where T a are U(Nf ) generators normalized to Tr (T aT b) = 1
2δab and fπ is the pion decay

constant.19

Let us now move to a gauge where Az = 0. This is done using a gauge function g

defined as

g(xµ, z) = P exp

(
i

∫ z

0
dz′Az

(
xµ, z′

))
. (A.11)

Under this gauge transformation also Aµ changes, but now the requirement Aµ → 0 as

z → ±∞ is not satisfied anymore (this is not a problem since we are dropping the CS

terms). We obtain in fact

Az 7→ gAzg−1 − ig∂zg−1 = 0 ,

Aµ 7→ gAµg−1 − ig∂µg−1 −→
z→±∞

−iξ±∂µξ−1
± ,

(A.12)

where we have defined ξ± as the limit for z → ±∞ of g. As a result, the expansion

in terms of the ψn is not valid anymore (because all those functions approach zero): we

have to include the non-normalizable zero mode ψ0 = 2
π arctan (z). This has the limit

ψ0 → ±1 as z → ±∞. The following expansion matches the limit properly (we have

defined ψ±(z) = − i
2(1± ψ0(z)))

Aµ(xµ, z) = ξ+∂µξ
−1
+ ψ+(z) + ξ−∂µξ

−1
− ψ−(z) . (A.13)

There is a further residual gauge symmetry given by all the functions h(xµ) that are

independent on z: it is possible to impose ξ− = 1, but in this case ξ+ becomes exactly the

inverse of the pion matrix: U−1

Aµ(xµ, z) = U−1∂µU ψ+ . (A.14)

19This implies that the decay constant for the singlet fS equals fπ: this is true only if, as in the present

case, we work up to first order in Nf/Nc in the Nc →∞ limit.
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We can finally substitute these fields in the DBI action. The field strengths read

Fµν = −i
[
U−1∂µU ,U−1∂νU

]
ψ+ψ− ,

Fµz = U−1∂µUψ′+ .
(A.15)

Using the normalization conditions given at the beginning of this section we find

S = −κ
∫
d4xTr

(
a
(
U−1∂µU

)2
+ b

([
U−1∂µU ,U−1∂νU

])2)
, (A.16)

where a and b are constants given by

a =

∫
dz k(z)(ψ′+)2 =

1

π
, b =

∫
dz

1

2
h(z)(ψ+ψ−)2 = − 1

2π4
· 15.25 . . . (A.17)

The constant 15.25 . . . is the integral
∫
dz 1

1+z2

(
π2

4 − arctan2(z)
)2

.

We see that we have obtained the Skyrme model (see [50] for a review) with parame-

ters (2.27).

B The C7 and F̃2 action

Let us consider the following off-shell action20

Sl = − 1

4π(2πls)6

∫
F̃2 ∧? F̃2 +

1

2π

∫
C7 ∧

(
TrF ∧ ωy − dF̃2

)
, (B.1)

where
∫
dy ωy = 1. The three fields F̃2, C7,F are all independent.

The equation of motion for F̃2 gives the usual duality relation21

?F̃2 = −(2πls)
6dC7 , (B.2)

which gives the on-shell action (remembering that ?(?F̃2) = −F̃2)

S(1) = − 1

4π
(2πls)

6

∫
dC7 ∧? dC7 +

1

2π

∫
C7 ∧ TrF ∧ ωy , (B.3)

in terms of the well-defined field C7, supplemented by the Hodge duality relation (B.2).

Alternatively, the equation of motion for C7 gives

dF̃2 = TrF ∧ ωy , (B.4)

which gives the on-shell action used in [26]

S(2) = − 1

4π(2πls)6

∫
F̃2 ∧? F̃2 , (B.5)

supplemented by the modified Bianchi for F̃2 (B.4).

20We are grateful to Luca Martucci for a relevant discussion about this section.
21Note that we could start with a plus sign for the term dF̃2 in the action; this just amounts to a different

convention of the sign of the Hodge dual of F̃2.
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Working directly with the action (B.1), we see that the modified Bianchi are not

imposed but actually arise among the equations of motion

?F̃2 = −(2πls)
6dC7 , (B.6)

dF̃2 = TrF ∧ ωy , (B.7)

δSl
δA

=
1

2π

∫
dC7 ∧ ωy . (B.8)

Obviously eq. (B.6) implies

d?F̃2 = 0 . (B.9)

C Alternative choice of parameters

The standard choice for the parameters in the WSS model, MKK = 949 MeV, λ = 16.63,

is fixed to reproduce the mass of the ρ meson and the pion decay constant [26]. This

choice performs very well against phenomenology for mesonic observables. Nevertheless, it

is known to produce large discrepancies when applied to some baryonic observables, e.g.

the mass spectrum [30]. For this reason, in order to provide an estimate of the NEDM, it

is perhaps more suitable to obtain the parameters of the model by fitting directly baryonic

observables. In particular, in [41] a number of observables have been calculated, which are

quite close to the NEDM in nature. Here we extract the values of the parameters MKK , λ

from the best fit of these observables.

To be more precise, we consider the following observables:22 the mean squared radius

of the isoscalar state and of the excited states, the mean charge squared radius of the

isovector state (proton) and of the excited states,23 the axial radius, the isovector and

isoscalar g-factors,24 the axial and πNN couplings.25 We perform the best fit of our two

parameters by minimizing

χ =
1

n− 2

n∑
i=1

(
O

(m)
i −O(e)

i

O
(m)
i

)2

, (C.1)

where n is the number of fitted observables and O
(m)
i , O

(e)
i are the values of the observables

provided by the model and by experiments.26 By using the leading Nc, leading λ results

in the model (i.e. not considering the full wave function of the baryons), the result is27

MKK = 790 MeV, λ = 12.44. (C.2)

Including the baryon wave functions gives instead

MKK = 785 MeV, λ = 19.38. (C.3)
22Cfr. the first table in section 5 of [41].
23We do not consider the (ground state) neutron because the model result is automatically null.
24In this context it is more appropriate to consider these observables rather than their combinations,

namely the neutron and proton magnetic moments, since they are of different order in Nc.
25We do not consider the ρNN coupling since the experimental value is not fixed with sufficient precision.
26We weight with the model values rather than the errors because the experimental ones are tiny, while

the theoretical ones are difficult to estimate reliably.
27Note that a very similar value for λ was advocated in [51] to have a good fit of the ratio of the ρ meson

mass and the (square root of) the string tension.
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