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Abstract Model checking is an automatic method to for-
mally verify the correctness of a system specification. Such
model checking specifications can be viewed as implicit
descriptions of a large directed graph or state space, which,
for most model checking operations, needs to be analysed.
However, construction or on-the-fly exploration of the state
space is computationally intensive and often can be pro-
hibitive in practical applications. In this work, we present
techniques to perform graph generation and exploration
using general purpose graphics processors (GPUs). GPUs
have been successfully applied in multiple application
domains to drastically speed up computations. We explain
the limitations involved when trying to achieve efficient state
space exploration with GPUs and present solutions how to
overcome these. We discuss the possible approaches involv-
ing related work and propose an alternative, using a new
hash table approach for GPUs. As input, we consider models
that can be represented by a fixed number of communicating
finite-state Labelled Transition Systems. This means that we
assume that all variables used in a model range over finite
data domains. Additionally, we show how our exploration
technique can be extended to detect deadlocks and check
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1 Introduction

Model checking [3] is an automatic technique used to
formally verify properties of specifications of complex,
safety-critical (usually embedded) systems. The technique
often involves many time- and memory-demanding compu-
tations. The analysis of the specification results in building
a graph, or state space, that describes the complete potential
behaviour of the system. Many model checking algorithms
rely on on-the-fly state space exploration, meaning that the
state space size is not known in advance, but it is rather gen-
erated on demand by interpreting the specification.

In recent years, general-purpose graphics processing units
(GPUs) have been used in many research areas, beyond
the realm of computer graphics, to accelerate computa-
tions. Also, in model checking GPUs have been successfully
applied to perform computations when the state space is given
apriori. Examples of such applications are verifying Markov
Chains w.r.t. probabilistic properties [9,10,44], decompos-
ing state spaces into strongly connected components [5,46],
comparing and minimising state spaces using some notion of
bisimilarity [43], and checking state spaces w.r.t. LTL prop-
erties [4,6].

However, very few attempts have been made to perform
the exploration itself entirely using GPUs, due to it not nat-
urally fitting the data parallel approach of GPUs. In [45], we
were the first to propose a way to do so, and since then, Bar-
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tocci et al. [7] have proposed an approach to use GPUs with
the SPIN model checker. Even though current GPUs have a
limited amount of memory, we believe it is relevant to inves-
tigate the possibilities of GPU state space exploration, if only
to be prepared for future hardware developments (for exam-
ple, GPUs are already being integrated in CPUs). We also
believe that the gained insights can be relevant for solving
other on-the-fly graph problems.

In this article, we first describe several options to imple-
ment basic state space exploration, i.e. reachability analysis,
for explicit-state model checking on GPUs. To keep the input
finite and straightforward, we consider models that can be
represented by a finite number of processes, where each
process can be modelled as a finite-state labelled transition
system (LTS). This means that we practically restrict mod-
els to using variables that only take values from finite data
domains. We focus on CUDA-enabled GPUs of NVIDIA,
but the options can also be implemented using other inter-
faces. Next, we discuss how the proposed technique can be
extended to on-the-fly check for deadlocks and violations of
safety properties.

We experimentally compare the different implementation
options using various GPU configurations. Based on the
obtained results, we draw conclusions.

Where relevant, we use techniques from related work,
but practically all related implementations are focussed on
explicit graph searching, in which the explicit graph is given,
as opposed to on-the-fly constructing the graph.

This article is based on [45] and extends it in various ways:
First of all, the many-core exploration technique is discussed
in much more detail. Second, checking for deadlocks and
violations of safety properties is a new addition, and third,
additional experimental results obtained using the Cuckoo
hash table by Alcantara et al. [2] are reported.

The structure of the article is as follows: in Sect. 2, the
required background information is given. Then, Sect. 3
contains the description of several implementations of many-
core state space exploration using different extensions. How
to extend those implementations to support on-the-fly dead-
lock detection and checking for violations of safety properties
is discussed in Sect. 4. In Sect. 5, experimental results are
given, and finally, Sect. 6 contains conclusions and discusses
possible future work.

2 Background and related work

2.1 State space exploration

The first question is how a specification should be repre-
sented. Most descriptions, unfortunately, are not very suitable

for our purpose, since they require the dynamic construction
of a database of data terms during the exploration. GPUs are
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particularly unsuitable for dynamic memory allocation. We
choose to use a slightly modified version of the networks of
LTSs model [25]. In such a network, the possible behaviour of
each process or component of the concurrent system design is
represented by a process LTS, or Labelled Transition System.
An LTS can be defined as follows:

Definition 1 (Labelled transition system) A Labelled Tran-
sition System G is a tuple (S, A, 7T, so), where S is a (finite)
set of states, A is a set of actions or transition labels,
7 € 8 x A x S is a transition relation, and s € S is
the initial state.

Actions in A are denoted by a, b, ¢, etc. We use sg 4 S1
to indicate that (sg, a, s1) € 7. If s 4 $1, an action a can
be performed in state sg, and doing so leads to state s7.

A process LTS describes all potential behaviour of a cor-
responding process. Each transition has a label indicating the
event that is fired by the process.

A network of LTSs defines a concurrent system by means
of a finite list of process LTSs, and a synchronisation mech-
anism, describing how those LTSs may interact. Thus, such
a network is able to capture the semantics of specifications
with finite-state processes at a level where all data have been
abstracted away and only states remain. It is used in particu-
lar in the CADP verification toolbox [15]. In this paper, we
restrict synchronisation mechanisms to multi-rendezvous as
used in LOTOS [21]: we allow rules saying that if a particular
number of LTSs can perform a particular action a, then they
can synchronise on that action, resulting in the system as a
whole performing an a action.

Both infinite-state processes and more general synchro-
nisation mechanisms are out of the scope. Concerning the
latter, we experienced that many systems can be described
using multi-rendezvous rules. Nevertheless, removing both
limitations is considered future work.

We define the notion of a network of LTSs (with multi-
rendezvous synchronisation) as follows:

Definition 2 (Network of LTSs) A network of LTSs M of
size n is a tuple (1, V), where

— [T is a vector of n (process) LTSs. For each i € 1..n, we
write I1[i] = (S;, Ai, T;, s?), and s i>,- s7 is shorthand
for (s1,a, s2) € T;;

— Vs afinite set of synchronisation rules. A synchronisa-
tion rule is a tuple (7, a), where a is an action label, and
f is a vector of size n called a synchronisation vector, in
which for all i € 1..n, 7[i] € {a, o}, where e is a special
symbol denoting that T[] performs no action.

Besides a finite number of LTSs, a network also contains
a finite set V of synchronisation rules, describing how behav-
iour of different processes should synchronise. Through this
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mechanism, it is possible to model synchronous communica-
tion between processes. Each rule (7, a) consists of an action
a on which it is applicable, and a vector £ of size n, describing
which process LTSs need to be involved to have successful
synchronisation. The result of a synchronisation is again a.
As an example, consider the two LTSs at the top in Fig. 1,
together defining a network with n = 2 of a simple traffic
light system specification, where process I1[1] represents the
behaviour of a traffic light (the states representing the colours
of the light) and process IT[2] represents a pedestrian. We
also have V = {({crossing, crossing), crossing)}, meaning
that there is only a single synchronisation rule, expressing
that the crossing event of I1[1] can only be fired if event
crossing of I1[2] is fired at the same time, resulting in the
event crossing being fired by the system as a whole.

A network of LTSs M = (I1, V) is an implicit description
of all possible system behaviour. We call the explicit behav-
iour description of a network M the system LTS LTS(M). It
can be obtained by combining the IT[i] according to the rules
in V. Here, we define the system LTS of a network differently
from Lang [25]. Namely, we say that an independent action,
i.e. an action that requires no synchronisation with other
actions, does not require a matching synchronisation rule
to be fireable. A consequence of this is that we do not allow
nondeterministic synchronisation of actions. However, in our
experience, this only rarely poses a real limitation in practice,
while it allows for more compact definitions of synchroni-
sation mechanisms. In the following definition, the set Af”d
refers to the set of all actions of [7[i] that do not require syn-
chronisation, i.e. A" = {a € A; | =3, a) € V.i[i] = a}.

Definition 3 Given a network of LTSs M = (I1,V). The
LTS describing all potential behaviour of M explicitly is
called its system LTS LTS(M) = (Snms A, T s?w),
with

- s?w =(s?,...,s2);
- Am = UieL.n Aj;

- Spm=81 x - xSy
— Taq is the smallest transition relation satisfying

. V{i,a) e V,i € l..n.

(tli] = o A5'[i] = 5[i]) LN
V (fli1 = a A 5[] = §1i])

2. Viel.un,ae A,
5[] S, 5] = 5575,
withVj € 1.n\{i}.5'[j] = 5[j].

When doing state space exploration, we are actually inter-
ested in the subgraph of LTS (M) that is reachable from 59\4’

1] 2]

delay

crossing approach approach

delay

crossing| | wait

V = {((start, continue), crossing) }

approach delay

Fig. 1 Exploring the state space of a traffic light specification

This can be discovered on-the-fly as follows: First, the initial
states of the process LTSs (in Fig. 1 these are indicated by
an incoming transition without a source state) are combined
into a system state vector 39\/1' For the traffic light system, we
have S_(/)\/l = (R, 0). In general, given a vector s, the corre-
sponding state of IT[i], withi € 1..n,is5[i]. In the following,
we refer with V{ to the synchronisation vectors in M that
are applicable on action a of IT[i]. It is defined as

Vi={t|(t,a) eV ntli] =a}

The set of outgoing transitions of 5 (and their corresponding
target states or successors of 5) involving a particular I7[i]
can now be determined using the following check for each
transition s[i] 5 pi , with p; a state of IT[i]:

1. if V¢ =, then § > § with §'[i] = p; AVj € 1.n\{i}.
5'Lj1 =51/1

2. else, forall f € Vi“, check the following: if we have for
all j € 1.n\(i} that 7[j] = e V 5[j] > p;, then§ 5 §
withVj € L.n.([j] = e AS'[j] = S[j]) V (t[j] #
e AS'[j1=pj)
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The first case is applicable to all independent transitions,
i.e. transitions on which no rule is applicable; hence they can
be fired individually, and, therefore, directly ‘lifted’” to the
system level. The second case involves applying synchroni-
sation rules. If we perform the above check for all I7[i] on
each visited state vector, starting with S?\/l , then the reachable
system state space will be fully explored. In Fig. 1, part of the
system state space obtained by applying the defined checks
on the traffic network is displayed at the bottom.

2.2 GPU programming

NVIDIA GPUs can be programmed using the CUDA inter-
face, which extends the C and FORTRAN programming
languages. These GPUs contain tens of streaming multi-
processors (SM) (see Fig. 2, with N the number of SMs),
each containing a fixed number of streaming processors (SP),
e.g. 192 for the Kepler K20m GPU, and fast on-chip shared
memory. Each SM employs single instruction, multiple data
(SIMD) techniques, allowing for data parallelisation. A sin-
gle instruction stream is performed by a fixed size group of
threads called a warp. Threads in a warp share a program
counter and hence perform instructions in lock-step. Due
to this, branch divergence can occur within a warp, which
should be avoided: for instance, consider the if-then-else con-
struct if (C) then A else B. If a warp needs to execute this,
and for at least one thread C holds, then all threads must
step through A. It is, therefore, possible that the threads must
step together through both A and B, thereby decreasing per-
formance. The size of a warp is fixed and depends on the
GPU type; usually it is 32 and we refer to it as WarpSize.
A block of threads is a larger group assigned to a single
SM. The threads in a block can use the shared memory to
communicate with each other. An SM, however, can han-
dle many blocks in parallel. Instructions to be performed by
GPU threads can be defined in a function called a kernel.

Multiprocessor 1

’Shared memory‘ ’Shared memory‘
}128B 1288 }
’ L1 & L2 cache ‘

Multiprocessor N

’ Texture cache ‘
y 4 )

’ Global memory ‘

Fig. 2 Hardware model of CUDA GPUs
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When launching a kernel, one can specify how many thread
blocks should execute it, and how many threads each block
contains (usually a power of two). We refer to the number of
launched blocks with NrOfBlocks and to the size of a block
with BlockSize. Each SM then schedules all the threads of
its assigned blocks up to the warp level. Data parallelisation
can be achieved using the predefined keywords Blockld and
Threadld, referring to the ID of the block a thread resides in,
and the ID of a thread within its block, respectively.

From the predefined keywords NrOfBlocks, BlockSize,
Blockld, and Threadld, it is possible to derive other useful
keywords. For instance, we refer with Warpld to the block-
local ID of a warp, which can be defined as Warpld =
Threadld WarpSize. Furthermore, we define WarpTld =
Threadld mod WarpSize as the ID of a thread within
its warp, and GlobalWarpld = (BlockSize/WarpSize) -
Blockld + Warpld refers to the global ID of a warp; it can be
determined by computing how many warps are run per block,
multiplying this with the block ID of the thread (thereby
obtaining the number of warps with an ID below the one of the
thread), and finally adding the block-local warp ID. Finally,
the number of warps NrOfWarps can be determined by com-
puting NrOfWarps = (BlockSize/WarpSize) - NrOfBlocks.

Most of the data used by a GPU application reside in
global memory or device memory. It embodies the interface
between the host (CPU) and the kernel (GPU). Depending
on the GPU type, its size is currently between 1 and 12 GB.
It has a high bandwidth, but also a high latency; therefore,
memory caches are used. The cache line of most current
NVIDIA GPU L1 and L2 caches is 128 Bytes, which directly
corresponds to each thread in a warp fetching a 32-bit integer.
If memory accesses in a kernel can be coalesced within each
warp, efficient fetching can be achieved. In this case, the
threads in a warp perform a single fetch together filling one
cache line. When memory accesses are not coalesced, the
accesses of threads in a warp are performed using different
fetches that are serialised by the GPU, thereby losing many
clock-cycles. This plays an important role in the hash table
implementation we propose.

Finally, read-only data structures in global memory can be
declared as fextures, by which they are connected to a texture
cache. This may be beneficial if access to the data structure is
expected to be random, since the cache may help in avoiding
some global memory accesses.

2.3 Sparse graph search on GPUs

In general, the most suitable search strategy for parallelisa-
tion is breadth-first search (BFS) since each search level is a
set of vertices that can be distributed over multiple workers.
Two operations dominate in BFS: neighbour gathering, i.e.
obtaining the list of vertices reachable from a given vertex
via one edge, and status lookup, i.e. determining whether
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a vertex has already been visited before. There exist many
parallelisations of BFS; here, we will focus on GPU versions.

Concerning model checking, Edelkamp and Sulewski [14]
propose a GPU on-the-fly exploration approach using both
the CPU and GPU, restricting the GPU to neighbour gather-
ing. It uses bitstate hashing; hence it is not guaranteed to be
exhaustive. Barnat et al. [4,6] check explicitly known state
spaces w.r.t. LTL properties.

The vast majority of GPU BFS implementations are
quadratic parallelisations, e.g. [12,18]. To mitigate the
dependency of memory accesses on the graph structure, each
vertex is considered in each iteration, yielding a complexity
of O(|V|> + | E|), with V the set of vertices and E the set of
edges. Hong et al. [20] use entire warps to obtain the neigh-
bours of a vertex.

There are only a few linear parallelisations in the liter-
ature: Luo et al. [26] describe a hierarchical scheme using
serial neighbour gathering and multiple queues to avoid high
contention on a single queue. Merrill et al. [29] suggest an
approach using prefix sum and perform a thorough analysis
to determine how gatherings and lookups need to be placed
in kernels for maximum performance.

All these approaches are, however, not directly suitable
for on-the-fly exploration. First of all, they implement status
lookups by maintaining an array, but in on-the-fly explo-
ration, the required size of such an array is not known a priori.
Second of all, they focus on using an adjacency matrix, but
for on-the-fly exploration, this is not available, and the mem-
ory access patterns are likely to be very different.

Related to the first objection, the use of a hash table seems
unavoidable. Not many GPU hash table implementations
have been reported, but the ones by Alcantara et al. [1,2]
are notable. They are both based on Cuckoo hashing [33]. In
Cuckoo hashing, collisions are resolved by shuffling the ele-
ments along to new locations using multiple hash functions.
Whenever an element must be inserted, and hash function
hg refers it to a location [ already populated by another ele-
ment, then the latter element is replaced using the next hash
function for that element, i.e. if it was placed in / using hash
function £;, then function #; 1 | mod H, with H the number
of hash functions, is used. Alcantara et al. [2] suggest to set
H =4.

Also, Alcantara et al. [1,2] perform a comparison to radix
sorting, in particular to the implementation of Merrill and
Grimshaw [30]. On a GPU, sorting can achieve high through-
put, due to the regular access patterns, making list insertion
and sorting faster than hash table insertion. Lookups, how-
ever, are slower than hash table lookups if one uses binary
searches, as is done by Alcantara et al. [1,2]. An alternative
is to use B-trees for storing elements, improving memory
access patterns by grouping the elements in warp-segments. !

1 See http://www.moderngpu.com (visited 18/4/2013).

Algorithm 1 State space exploration

Require: network (I7, V), initial state 57
Open, Visited < {s7}

2: while Open # ¢ do

5 <= Open; Open < Open\s
4:  forall i’ € constructSystemSuccs(s) do

if 5/ ¢ Visited then
6: Visited < Visited U (5"}
Open < Open U {§'}

Although we have chosen to use a hash table approach
(for on-the-fly exploration, we experience that the sorting
approach is overly complicated, requiring many additional
steps), we will use this idea of warp-segments for our hash
table.

Finally, more recently, GPUs have been employed to speed
up on-the-fly state space exploration and safety property
checking of the SPIN model checker [7]. The proposed tech-
nique is based on the multi-core BFS algorithm of SPIN [19]
and uses the GPU Cuckoo hashing technique of Alcantara
et al. However, by doing so, they restrict themselves to state
vectors of at most 64 bits since the Cuckoo hashing tech-
nique depends on atomic element insertion. Because of this
restriction, we have chosen to develop an alternative hashing
technique.

3 GPU parallelisation

Algorithm 1 provides a high-level view of state space explo-
ration. As in BFS, one can clearly identify the two main
operations, namely successor generation (line 4), analogous
to neighbour gathering, and duplicate detection (line 5), anal-
ogous to status lookup. Finally, at lines 67, states are added
to the work sets, Visited being the set of visited states and
Open being the set of states yet to be explored (usually imple-
mented as a queue). In the next subsections, we will discuss
our approach to implementing these operations.

3.1 Data encoding

As mentioned before, memory access patterns are usually
the main cause for performance loss in GPU graph traversal.
The first step to minimise this effect is to choose appropriate
encodings of the data. Figure 3 presents in the top left corner
how we encode a network into three 32-bit integer arrays. The
first, called ProcOffsets, contains the start offset for each of
the I7[i] in the second array. The second array, StateOffsets,
contains the offsets for the source states in the third array.
Finally, the third array, TransArray, actually contains encod-
ings of the outgoing transitions of each state. As an example,
let us say we are interested in the outgoing transitions of state
5 of process LTS I7[8], in some given network. First, we look
at position 8 in ProcOffsets, and find that the states of that
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32
ProcOffsets | .- 67 | . .
StateOffsets | 201, 206 | [ [ - 101]
TransArray ‘ e byt ‘ L L e |
5[4] 53] s[2]  s[1]

32

T T TN

—_—

Tgt, Tgt, Tgty, apf

Fig. 3 Encodings of a network, a state vector and a transition

process are listed starting from position 67. Then, we look at
position 67 + 5 in StateOffsets, and we find that the outgo-
ing transitions of state 5 are listed starting at position 201 in
TransArray. Moreover, at position 67 + 6 in StateOffsets, we
find the end of that list. Using these positions, we can iterate
over the outgoing transitions in TransArray.

One can imagine that these structures are practically going
to be accessed randomly when exploring. However, since
these data are never updated, we can store the arrays as tex-
tures, thereby using the texture caches to improve access.

Besides this, we must also encode the transition entries
themselves. This is shown at the bottom of Fig. 3. Each entry
fills a 32-bit integer as much as possible. It contains the fol-
lowing information: the lowest bit (8) indicates whether or
not the transition is independent. The next log, (|.4 o¢|) num-
ber of bits encodes the transition label («). Note that A o4 can
be constructed a priori as the union of the A;. We encode the
labels, which are basically strings, by integer values, sorting
the labels occurring in a network alphabetically. After that,
given that the transition belongs to /1[i], each log, (|S;|) bits
encode a target state. If there is non-determinism w.r.t. the
involved label from the source state, multiple target states
will be listed, possibly continuing in subsequent transition
entries.

In the top right corner of Fig. 3, the encoding of state
vectors is shown. These are simply concatenations of encod-
ings of process LTS states. Depending on the number of bits
needed per LTS state, which in turn depends on the number
of states in the LTSs, a fixed number of 32-bit integers is
required per vector.

Finally, the synchronisation rules need to be encoded.
Multi-rendezvous rules can be encoded as bit sequences of
size n, where for each process LTS, 1 indicates that the
process should participate, and 0 that it should not partic-
ipate in synchronisation. Two integer arrays then suffice, one
containing these encodings, the other containing the offsets
for all the labels. In that way, when a state vector s must be
explored, one can fetch for each label on at least one outgoing
transition of an 5[i] all bit sequences relevant for that label,
and check for each sequence whether the condition encoded
by it is met in s or not.

Note that the lowest bit B indicates whether such bit
sequences need to be fetched or not. Encoding this in the

@ Springer

individual transition entries is in fact redundant, since for
each particular I7[i] and label a, either all transitions with
that label are independent, or they are not. However, storing
this dependency information per transition only costs one bit
per entry, while the benefit is that additional memory accesses
can be completely avoided for independent transitions.

3.2 Successor generation

At the start of a search iteration, each block fetches a tile of
new state vectors from the global memory. How this is done
is explained at the end of Sect. 3.3. The tile size depends on
the block size BlockSize.

On GPUs, one should realise fine-grained parallelism to
obtain good speedups. Given the fact that each state vector
consists of n states, and the outgoing transitions information
of different I7[i] needs to be fetched from physically sepa-
rate parts of the memory, it is reasonable to assign n threads
to each state vector to be explored. In other words, in each
iteration, the tile size is at most BlockSize /n vectors. Assign-
ing multiple threads per LTS for fetching, as done by Hong et
al. [20], does not lead to further speedups, since the number
of transition entries to fetch is usually quite small due to the
sparsity of the LTSs, as observed before by us [44].

Algorithm 2 presents in pseudo-code our approach to suc-
cessor generation. At line 1, several arrays are allocated in
the (block-local) shared memory. They are declared extern,
meaning that their size is given when launching the kernel. In
practice, all available shared memory is claimed for a single
array, which is then divided into the tile, B, cache, and cnt
arrays.

We group the threads into vector groups of size n to assign
them to state vectors. Each vector group has a block-local
unique ID, which we refer to as the VGID (line 3). Since
each vector group is assigned to a state vector, we have up
to BlockSize/n vector groups per block. For a vector s, each
thread with ID i w.r.t. its vector group (its VGTID, see line
4) fetches the outgoing transitions of s[i + 1]. Atline 6, 5 is
fetched from the work tile, and at line 7, s[i + 1] is retrieved.
Next, at lines 8—10, the necessary offsets are calculated to
fetch the outgoing transitions of s[i + 1].

The purpose of the B array is to buffer the outgoing tran-
sitions fetched by the threads. In particular, for all transitions
with 8 = 1, cooperation between the threads in a group
must be achieved, to identify possible synchronisations. It is
important that the size of B is chosen such that all relevant
transitions can be buffered, but catering for the worst case,
i.e. expecting n times the maximum branching factor, may
exceed the amount of available shared memory. Therefore,
we opt for fetching the transitions in several iterations. The
threads iterate over their transitions in order of label ID (LID).
To facilitate this, the outgoing transitions in TransArray of
each state have been sorted on LID before exploration started.
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Algorithm 2 Multi-threaded successor generation

extern volatile shared_unsigned int rile[], B[], cachel[], cnt(]
2: < fill tile with state vectors to explore > (Alg. 5)
VGID < Threadld /n
4: VGTID < Threadld mod n
6:
8:

if VGID < |tile| then
§ < tile[VGID)
s < S[VGTID + 1]
procoffset <— ProcOlffsets[VGTID]
stateoffset] < StateOffsets|procoffset + s]
10:  stateoffser2 < StateOffsets[procoffset + s + 1]
startB < (VGID - n + VGTID) - M
12:  active < false
if VGTID = 0 then
14: cnt[VGID] < (VGID < ltile]) ?1: 0
while cnt[VGID] = 1 do
16:  if —active then
reset B[startB]...B[startB + M]

18: while stateoffset] < stateoffset2 do
T <« TransArray|stateoffset]]
20: if —=7.p then
GRS
22: for all Tgt € T do
S'[VGTID + 1] < Tgt
24: if =STOREINCACHE(s”) then
STOREINGLOBALHASHTABLE(s")
26: stateoffset] < stateoffset] + 1
else
28: break
i < startB
30: if stateoffset] < stateoffset2 then
active < true
32: getAct(actl, T)
Blil] < T
34: i—i+tl
stateoffset]l < stateoffset] + 1
36: while stateoffset] < stateoffset2 do
T < TransArray|stateoffsetl]
38: getAct(acr2, T)
if act] = acr2 then
40: Blil« T
i<—i+1
42: stateoffset] < stateoffset] + 1
else
44: break
_syncThreads()

46:  if VGTID = 0 then
cnt[VGID] < min. of B[startBl.« . ..B[startB +n - M].a
48:  syncThreads()
if active and cnt[VGID) = B|startB).« then

50: active < false
for all 7 € V[cnt[VGID]] do
52: if OWNS(VGTID, ) A ISAPPLICABLE(?) then
for all 5’ € CONSTRUCTSUCC(s, 7) do
54: if —~STOREINCACHE(S”) then

STOREINGLOBALHASHTABLE(S)
56:  syncThreads()
if VGTID = 0 then
58: cnt[VGID] < 0
_syncThreads()
60:  if stateoffset] < stateoffset2 v active then
cnt[VGID)] < 1

The buffer size required for a single thread to store transitions
with the same LID can now be determined before exploration
as the maximum number of outgoing transitions with the
same LID for any state in any of the I7[i], where § = 1. In
Algorithm 2, we refer to this size as M. At line 11, the start
offset for a thread i in B is calculated using M: It depends on
the ID of the group, i.e. VGID - n threads have buffer areas
that are physically before the one of i, and the group thread
id, since VGTID threads also have buffer areas before the
one of i. Finally, this total is multiplied by M to obtain the
absolute address of the area of i.

Note that B is not required for transition entries with 8 =
0. These can directly be processed, and the corresponding
target state vectors can immediately be stored for duplicate
detection (see Sect. 3.3).

Atline 12, the active variable is set to false. The purpose
of this variable is to indicate whether a thread still has ‘active’
transition entries in its buffer, i.e. whether the buffer contents
still needs to be processed. Successor generation is performed
in the while-loop starting at line 15; its condition depends
on the value of cnt[VGID], which is set, when checking,
to 1 as long as the vector group still has work to be done
with the current state vector, and 0 otherwise. Threads with
a non-active buffer contents first reset their buffer area at
line 17, after which the next outgoing transition is fetched.
If the transition does not require synchronisation (line 20),
the new successor state vectors are constructed (lines 21-23)
and stored in a local cache (line 24). If the cache is full, the
thread tries to store new vectors immediately in a global hash
table (line 25). In Section 3.3, a detailed explanation of both
the local caches and the global hash table is given.

Alternatively, if the newly fetched transition requires syn-
chronisation, subsequent transition entries with the same LID
are fetched and stored in the buffer area (lines 30—44). Note
that active is then set to true to indicate that the buffer con-
tents requires work. Since groups may cross warp boundaries,
the threads in a group are not necessarily automatically syn-
chronised. Because of this, a block-local synchronisation is
required (line 45), after which the vector group leader, the
one with VGTID = 0, determines the lowest LID currently
in the buffer of the vector group and stores this value in
cnt[VGID] (lines 46-47).

After another synchronisation, all threads with the low-
est LID, i.e. those with transitions labelled cnt[VGID] (line
49) fetch all relevant synchronisation vectors from the global
memory (line 51). We say that thread i owns synchronisation
vector 7 iff there is no j € 1..n with j < i and 7[j] # e. If
a synchronisation vector is owned by the current thread, and
applicable w.r.t. the current vector group buffer contents (line
52), then it is used to construct all derivable successors (line
53), which are then stored in the local cache, or, if not possi-
ble, the global hash table. Finally, at lines 57-61, cnt[VGID]
is set to represent whether at least one thread still has work
to be done.

To further illustrate the successor generation procedure,
Figure 4 provides an example situation for a vector with

TransArray |

e

= | TP

cnt tho thy the ths

Fig. 4 Fetching transitions
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n = 4. Threads thy to th; have fetched transitions with the
lowest LIDs for their respective process states that have not
yet been processed in the successor generation, and thread
tho has determined that the next lowest LID to be processed
by the vector group is 1. This value is written in the cnf loca-
tion. Since transitions in TransArray are sorted per state by
LID, we know that all possible transitions with LID = 1 have
been placed in the vector group buffer. Next, all threads that
fetched entries with the lowest LID, in the example threads
tho and thy, start scanning the encodings of synchronisation
vectors in ) applicable on that LID. If a thread encounters a
rule that it owns, then it checks the buffer contents to deter-
mine whether the rule is applicable. If it is, it constructs the
target state vectors and stores them for duplicate detection.
In the next iteration, all entries with lowest LID are removed,
the corresponding threads fetch new entries, and the vector
group leader determines the next lowest LID to be processed.

3.3 Closed set maintenance

Local state caching As explained in Section 2, we choose
to use a global memory hash table to store states. Research
has shown that in state space exploration, due to the charac-
teristics of most networks, there is a strong sense of locality,
i.e. in each search iteration, the set of new state vectors is
relatively small, and most of the already visited vectors have
been visited about two iterations earlier [28,36]. This allows
effective use of block local state caches in shared memory.
Such a cache, implemented as a linear probing hash table,
can be consulted quickly, and many duplicates can already be
detected, reducing the number of global memory accesses.
We implemented the caches in a lockless way, apart from
using a compare-and-swap (CAS) operation to store the first
integer of a state vector.

When processing a tile, threads add successors to the
cache. When finished, the block scans the cache, to check
the presence of the successors in the global hash table. Thus,
caches also allow threads to cooperatively perform global
duplicate detection and insertion of new state vectors.

Global hash table For the global hash table, we initially used
the Cuckoo hash table of Alcantara et al. [2]. Cuckoo hashing
has the nice property that lookups are done in constant time,
namely it requires H memory accesses, with H the number
of hash functions used.

However, an important aspect of Cuckoo hashing is that
elements are relocated in case collisions occur. Algorithm 3
describes how looking up and inserting elements, i.e. a
find-or-put operation, for a Cuckoo hash table functions. A
new element is inserted using an atomic exchange operation
(atomicExch); given a memory address and the element to
store, the exchange procedure atomically stores the element
at the address and returns the old value stored there. If the
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Algorithm 3 Find-or-put for Cuckoo hash table

location < hy(s)
2: for i = 0 to maxiters do
entry < atomicExch(&Visited[location], 5)
4:  if entry = empty V entry = 5 then
return true

6: 5 < entry
for j =0to H do
8: location2 <« hj (s)
if location2 = location then
10: location < (location2 + 1) mod H
break

12: return false

memory location was initially empty or already contained
the given element, then the find-or-put can terminate (line
4-5). Otherwise, the old element needs to be relocated to a
new address using the next in line hash function. This relo-
cating of elements is allowed up to a predetermined number
of times (maxiters).

Alcantara et al. [2] store key-value pairs in 64-bit integers,
on which atomic exchange operations can still be applied. In
model checking, however, state vectors frequently require
more than 64 bits, ruling out atomic insertions. After having
created our own extension of the hash table of Alcantara
et al. [2] that allows for larger elements, we experienced in
experiments that the number of explored states far exceeded
the actual number of reachable states, showing that in many
cases, threads falsely conclude that a vector was not present
(a false negative). This effect is already noted by Alcantara
et al. [2] for 32 and 64-bit elements; consider an element A
being added to the hash table at location /, and after that,
an element B is inserted in the same location, causing A to
be moved to another location. Now, if a thread looks for A
starting at /, it will find B, conclude that A is not present
in the hash table, swap A and B, and move B to another
location. In the resulting situation, A is stored twice in the
hash table. This effect tends to get worse for elements that
do not allow atomic insertions. In that case, threads may
read elements which have only partially been stored at that
moment. When this happens, the involved thread either needs
to wait until the storing has finished, which is hard to manage,
or move on to another location, missing the opportunity to
identify a duplicate. The latter option also has another bad
side-effect: we experienced that many times, states could not
be placed at any of their H potential locations. In order for the
exploration to continue, we had to assume in those cases that
the state vector was already present, making the exploration
potentially non-exhaustive. In Sect. 5, we report on the effects
of using Cuckoo hashing in our GPU exploration tool.

In order to decrease the number of false negatives and
guarantee that explorations are exhaustive, we chose as an
alternative to implement a hash table using buckets, linear
probing and bounded double hashing. Itis implemented using
an array, each consecutive WarpSize 32-bit integers forming
a bucket. This plays to the strength of warps: when a block
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of threads is performing duplicate detection, all the threads
in a warp cooperate on checking the presence of a particular
s.

The hash functions we use are constructed in a fashion
similar to the one proposed by Alcantara et al. [2]. Each
function h; : Spq — IN is defined as

hi(5) = D (a; -5; + b;) mod P mod NrOfBuckets

jel..c

Here, the 5; represent the integers that together store ¥,
¢ being the number of integers required to store a state vec-
tor. Furthermore, P is a predefined large prime number, the
total number of buckets in the hash table is represented by
NrOfBuckets, and each h; has two randomly generated con-
stants a; and b; . For our hash table, we use two hash functions.
The first hash function A is used to find the primary bucket,
and the second one & is used to jump to another bucket
each time a full bucket has been encountered. A warp can
fetch a bucket with one memory access, since the bucket
size directly corresponds with one cache line. Subsequently,
the bucket contents can be checked in parallel by the warp.
This is similar to the walk-the-line principle of Laarman et
al. [22]; instead that here, the walk is done in parallel, so we
call it warp-the-line. Note that each bucket can contain up
to WarpSize/c vectors, with ¢ the number of 32-bit integers
required for a vector. Hence, the underlying assumption is
that a single state vector never requires more than WarpSize
integers. If this is not the case, though, one can generalise the
technique to each warp fetching multiple consecutive buck-
ets.

If the vector is not present and there is a free location, the
vector is inserted. If the bucket is full, /1 is used to jump
to another bucket, and so on. This is similar to the approach
of Dietzfelbinger et al. [13]; instead that we do not move
elements between buckets.

The pseudo-code for scanning the local cache and per-
forming a find-or-put operation in the case that state vectors
fit in a single 32-bit integer is displayed in Algorithm 4. The
implementation contains the more general case. Once a work
tile has been explored and the successors are in the cache,
each thread participates in its warp to iterate over the cache
contents (lines 6-27). If a vector is new (line 8, note that
empty slots are marked ‘old’), insertion in the hash table will
be tried up to H € IN times. At lines 11-13, warp-the-line is
performed, each thread in a warp investigating the appropri-
ate bucket slot (the Visited array contains the buckets). If any
thread sets 5 as old at line 13, then all threads will detect this
at line 15 since s is read from shared memory. If the vector is
not old, then it is attempted to insert the vector in the bucket
(lines 15-23). This is done by the warp leader (WarpTld =0,
line 18), by performing a CAS. CAS takes three arguments,
namely the address where the new value must be written,

Algorithm 4 Warped find-or-put for hash table with buckets
(single integer state vectors version)

extern volatile shared_unsigned int cache []

2: < process work tile and fill cache with successors > (Alg. 2)
Warpld < Threadld | WarpSize

4: WarpTld < Threadld mod WarpSize

6:

8:

i < Warpld
while i < |cache| do
§ < cacheli]
if ISNEWVECTOR(3) then
for j =0to H do

10: Bucketld < h(5)
entry < Visited[Bucketld + WarpTId]
12: if entry = 5 then
SETOLDVECTOR (cache[i])
14: § < cacheli]
if ISNEWVECTOR(s) then
16: for [ = 0 to WarpSize do
if Visited[Bucketld + 1] = empty then
18: if WarpTld = 0 then
old = atomicCAS (& Visited|[Bucketld + 1], empty, 5)
20: if old = empty then
SETOLDVECTOR(5)
22: if =ISNEWVECTOR(5) then
break
24: if —-ISNEWVECTOR(5) then
break
26: Bucketld < Bucketld + h (5)

i < i 4 BlockSize/WarpSize

the expected value at the address, and the new value. It only
writes the new value if the expected value is encountered and
returns the encountered value; therefore, a successful write
has happened if empty has been returned (line 20). Finally,
in case of a full bucket, &1 is used to jump to the next one
(line 26).

We experienced good speedups and no unresolved colli-
sions using a double hashing bound H of 8, and, although
still present, far fewer false negatives compared to Cuckoo
hashing. For a detailed discussion of this, see Sect. 5. Finally,
it should be noted that chaining is not a suitable option on a
GPU since it requires memory allocation at runtime, and the
required sizes of the chains are not known a priori.

Recall that the two important data structures are Open and
Visited. Given the limited amount of global memory, and that
the state space size is unknown a priori, we prefer to initially
allocate as much memory as possible for Visited. But also the
required size of Open is not known in advance, so how much
memory should be allocated for it without potentially wast-
ing some? We choose to combine the two in a single hash
table using the highest bit in each vector encoding to indi-
cate whether it should still be explored or not. The drawback
is that unexplored vectors are not physically close to each
other in memory, but the typically large number of threads
can together scan the memory relatively fast, and using one
data structure drastically simplifies implementation. It has
the added benefit that load-balancing is handled by the hash
functions, due to the fact that the distribution over the hash
table achieves distribution over the workers. A consequence
is that the search will not be strictly BFS, but this is not a
requirement.
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Algorithm 5 Work scanning

extern volatile shared_unsigned int rile[], tilecount
2: Warpld < Threadld | WarpSize
WarpTld <— Threadld mod WarpSize
4: GlobalWarpld < (NrOfBlocks|WarpSize) - Blockld + Warpld
6:
8:

NrOfWarps < (BlockSize/WarpSize) - NrOfBlocks

i < GlobalWarpld

while i < NrOfBuckets A tilecount < (BlockSize/n) do
5 < Visited[(i - WarpSize) + WarpTId]
if ISNEWVECTOR(s) then

10: j < atomicAdd (&rilecount, 1)
if j < BlockSize/n then
12: tile[j] <5

SETOLDVECTOR(Visited[(i - WarpSize) + WarpTId])
14: i < i + NrOfWarps

The pseudo-code for scanning the global hash table in
order to gather a tile of work is presented in Algorithm 5,
again for the case that state vectors fit in a single 32-bit inte-
ger. The warps iterate over the buckets in the global hash
table, hence each thread must be aware of the global ID of
the warp it resides in, the ID of itself w.r.t. that warp, and the
total number of warps. As long as the tile is not filled and
there are buckets left to scan (line 7), the scanning continues.
Variable tilecount indicates the current tile size. At line 8, a
state vector is fetched from the bucket assigned to the current
warp, and if this is a new state (line 9), tilecount is atomically
increased using the atomicAdd operation. In case the new
tile size does not exceed the maximum size, the state vector
is added to the tile, and the original state in the global hash
table is marked old.

As mentioned, work scanning can be done reasonably fast,
but in practice it still represents a performance bottleneck. In
the next section, we discuss possible extensions to improve
performance.

3.4 Further extensions

On top of the basic approach, we implemented the following
extensions. First of all, instead of just one, we allow a variable
number of search iterations to be performed within one kernel
launch. This improves duplicate detection using the caches
due to them maintaining more of the search history (shared
memory data are lost once a kernel terminates).

Second of all, building on the first extension, we imple-
mented a technique we call work claiming. When multiple
iterations are performed per launch, and a block is not in
its final iteration, its threads will immediately add the unex-
plored successors they generated in the current iteration to
their own work tile for the next iteration. In other words,
while adding new state vectors to the global hash table, each
block claims those vectors immediately for exploration work
in the next iteration. This reduces the need for scanning for
new work at the start of that iteration. In the final iteration of a
kernel launch, though, this cannot be done since the contents
of shared memory is wiped whenever a kernel run terminates.
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Work claiming does not cause too much imbalance in the
work loads of the blocks. Blocks that do not produce many
new state vectors may scan for work at the start of the next
iteration, while blocks that do produce many vectors will only
claim a fixed number of them (depending on the maximum
tile size), leaving the remaining vectors to be gathered by
other blocks.

4 Checking for deadlocks and safety property
violations

The many-core exploration technique we described in Sect. 3
can be straightforwardly extended to support verifying func-
tional properties that can be checked through reachability
analysis. In particular, deadlock detection and the detection
of violations of safety properties can be added.

Deadlock detection involves keeping track of whether
from each reachable state, at least one transition is enabled.
This is not completely trivial, since in the many-core explo-
ration technique, multiple threads collaborate on checking
the outgoing transitions of a state vector. In other words, the
threads in a vector group need to communicate with each
other whether they were able to reach at least one succes-
sor or not. We enabled this communication by reusing the B
array between successor generation iterations (Algorithm 2).
Whenever a deadlock state is detected, a global flag is set to
indicate that the exploration should immediately terminate.

Safety properties require a more involved mechanism, but
they can straightforwardly be added to the input by extending
the networks of LTSs with an LTS representing the property.
This property LTS is constructed in such a way that whenever
the system can perform an action which is relevant for the
property, then the property LTS will synchronise with the
system on that action, thereby changing state as well. Then,
during the exploration, it must be checked whether for each
constructed successor state vector, the property LTS is not
in a predefined error state. When it is, the exploration can
immediately terminate. Extending an LTS with a predefined
error state s [f actually results in a finite automaton for which
s} is a final state.

It should be noted that property LTSs actually correspond
with so-called monitors in runtime verification, i.e. they can
be used to monitor a property while exploring the state space.
As explained in [8], the class of monitorable languages is
actually more expressive than the class of safety properties,
meaning that it is more precise to claim that our exploration
technique supports checking monitorable properties.

To facilitate the design, we use for the properties finite
automata (property LTSs) defined over an alphabet of regu-
lar expressions. The regular expressions correspond to sets of
actions from the component LTSs of the model, i.e. LTS vec-
tor I1. More formally, the property automaton A, is a tuple
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(Sp, Ap, Ty, sg, slf), where S, is a finite set of states, A, is
afinite set of actions, 7, € S, x A, x S, is afinite set of tran-
sitions, sg € Sy istheinitial state, and s 5 € §pisafinal state.
Intuitively, since we work with the negation of the verified
property, the final state s [f is an error state. Let p be a func-
tion from A, to 29 A which assigns to each action-regular
expression r € A, a set of actions from IT satisfying r.
The regular automaton is translated to a property automaton
A’p =(S ,A’p, 7;;, sg, slf), where A'p =f{alIreAyac
p(r)}, and (s,a,s’) € 7;; iff (s,r,s") € T, and a € p(r).

A network of LTSs M and an automaton (property LTS)
A;, can be combined into a network M’ = (1T, V'), in which

- I =[], Onl. A)). )
-V ={{f®(e),a) | (f,a) eVAra¢ A’p}U{(tEB(a),a) |
(t,a) eV/\ae.A;,}.

In the above formula, & is a concatenation operator for
vectors. V' is constructed in such a way, that all transitions
in the property LTS must synchronise with transitions with
the same label that are enabled in the system. Now, whenever
during the search a state vector is generated that contains the
final state of A’p, a property violation can be signalled.

An example of a property automaton A, that corresponds
to a mutual exclusion property for a network of two process
LTSs is given in Fig. 5. The intuition is that from the ini-
tial state sg with action CSinl (resp. CSout2) LTS 1 (resp.
2) enters the critical section state s [1, (resp. 5[27), whereas
any CSout action leads to the error (final) state s[f since
a process that is not in the critical section is not able to
leave it. The CSout actions of both LTSs are captured by
the regular expression “CSout[112]”. From the critical sec-
tion state s}, (resp. slz,) we can go back to the initial state
sg with action CSoutl (resp. CSout2). Any other action,
represented by the regular expression “(CSout2|CSin[112])”
(resp. “(CSoutl|CSin[112])”) results in the error state sg.
The occurrence of a CSin2 (resp. CSinl) action indicates
the erroneous situation that the two processes are both in
the critical section, while the other actions should be dis-

A,

"CSout2|(CSin[1|2])" "CSout1|(CSin[1|2])"

Fig. 5 Automaton A, over regular expressions for a mutual exclusion
property

CSout2,CSin1,CSin2 CSout1,CSin1,CSin2

Fig. 6 Property automaton (LTS) A’p that corresponds to automaton
Ap

abled since they do not correspond with the current situation
(only processes in the critical section can leave it, and only
processes outside the critical section can enter it).

Automaton A’p corresponding to A, is given in Fig. 6. The
regular expressions of A, are unfolded to the corresponding
actions of A;,. For instance, unfolding “(CSout11CSin[112])”
results in the three separate actions CSoutl, CSinl, and
CSin2.

5 Implementation and experiments

We implemented the exploration techniques in CUDA C
using the CUDA toolkit 5.5.> The implementation was tested
using 25 models from different sources; some originate
from the distributions of the state-of-the-art model checking
toolsets CADP [15] and mCRL2 [11], and some from the
BEEM database [35]. In addition, we added two we created
ourselves. Here, we discuss the results for a representative
subset.

Sequential experiments have been performed using
ExP.OPEN [25] with GENERATOR, both part of CADP. These
are highly optimised for sequential use. Those experiments
were performed on a machine with an INTEL XEON E5520
2.27 GHz CPU, 1 TB RAM, running Fedora 12. The GPU
experiments were done on machines running CentOS Linux,
with a Kepler K20m GPU, an INTEL ES5- 2620 2.0 GHz CPU,
and 64 GB RAM. The GPU has 13 SMs, 5 GB global memory
(realising a hash table with about 1.3 billion integers), and
48kB (12,288 integers) shared memory per block. We chose
not to compare with the GPU tool of [14], since it is a CPU-
GPU hybrid and, therefore, does not clearly allow to study to
what extent a GPU can be used by itself for exploration. Fur-
thermore, it uses bitstate hashing, thereby not guaranteeing
exhaustiveness.

2 The implementation and experimental data is available at http:/
www.win.tue.nl/~awijs/GPUexplore. For the CUDA toolkit, see http://
developer.nvidia.com/cuda-zone.
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We also decided not to experimentally compare our tech-
niques with the ones proposed by Bartocci et al. [7], for the
same reasons given by them for not comparing with our work.
Too many aspects are different in design to allow for a fair
comparison. The required inputs of the tools are very differ-
ent and require quite some manual preparation at the moment.
Even when inputs are obtained that fundamentally describe
the same system, the derived state spaces are usually very
different in terms of number of states and transitions. This
directly relates to the underlying frameworks: performance
comparisons between SPIN and action-based model check-
ers such as the mCRL2 and CADP toolsets are very hard to
fairly perform for the same reason.

Some experiments were conducted with the model checker
LTSMIN [23] using the six CPU cores of the machines
equipped with K20s. LTSMIN uses the most scalable multi-
core exploration techniques currently available.

Table 1 displays the characteristics of the models we con-
sider here. The first five are models taken from and inspired
by those distributed with the mCRL2 toolset (in general *.1’
suffixed models indicate that we extended the existing models
with extra independent actions to obtain larger state spaces).
The non-extended models have the following origins:

— The 1394 model is written in the mCRL2 modelling lan-
guage and describes the 1394 or firewire protocol. It has
been created by Luttik [27].

— The Acs model describes a part of the software of the
ALMA project of the European Southern Observatory,
which involves controlling a large collection of radio tele-
scopes. It consists of a manager and some containers and
components. The model was created by Ploeger [38].

— WAFER STEPPER.] is an extension of a model of a wafer
stepper included in the mCRL2 toolset.

The next two have been created by us. These can be
described as follows:

— ABPis a model consisting of six independent subsystems,
each involving two processes communicating using the
Alternating Bit Protocol.

— BROADCAST consists of ten independent subsystems,
each containing three processes that together achieve a
barrier synchronisation via a sequence of two-party syn-
chronisations.

The seven models after that originate from CADP. Their
origins are the following:

— The TRANSIT model describes a Transit-Node [31].
— Crs.1 is an extended model of a coherency protocol of
the Cluster File System [34].
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Table 1 Benchmark characteristics

Model #States #Transitions #Bits 5
1394 198,692 355,338 36
1394.1 36,855,184 96,553,318 49
Acs 4,764 14,760 35
Acs.1 200,317 895,004 41
WAFER STEPPER. 1 4,232,299 19,028,708 32
ABP 235,754,220 945,684,122 78
BROADCAST 60,466,176 705,438,720 70
TRANSIT 3,763,192 39,925,524 37
CFs.1 252,101,742 1,367,483,201 83
ASYN3 15,688,570 86,458,183 65
ASYN3.1 190,208,728 876,008,628 70
OppP 91,394 641,226 31
Opp.1 7,699,456 31,091,554 40
DES 64,498,297 518,438,860 49
LAMPORT.8 62,669,317 304,202,665 36
LANN.6 144,151,629 648,779,852 37
LANN.7 160,025,986 944,322,648 45
PETERSON.7 142,471,098 626,952,200 62
SZYMANSKI.S 79,518,740 922,428,824 45

— ASYN3 describes the asynchronous Leader Election pro-
tocol used in the HAVi (Home Audio-Video) standard,
involving three device control managers. The model is
fully described by Romijn [39].

— ODP is a model of an open distributed processing
trader [17].

— The DES model describes an implementation of the data
encryption standard, which allows to cipher and decipher
64-bit vectors using a 64-bit key vector [32].

The final five models were taken from the BEEM data-
base. These models have first been translated manually to
mCRL2 since our input, network of LTSs, uses an action-
based representation of system behaviour, but BEEM models
are state-based and hence this gap needed to be bridged. In
the following, we briefly describe these models:

LAMPORT.8 is an instance of Lamport’s Fast Mutual
Exclusion algorithm [24].

LANN.6 and LANN.7 are two instances of the Lann Leader
Election algorithm for Token Rings [16].

— PETERSON.7 is an instance of Peterson’s Mutual Exclu-
sion protocol [37].

SZYMANSKLS5 is an instance of Szymanski’s Mutual
Exclusion protocol [40].

The characteristics given in Table 1 for each model are
the total number of states reachable from the initial state, the
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number of reachable transitions, and the size in bits of each
state vector.

An important question is how the exploration should
be configured, i.e. how many blocks should be launched,
and how many iterations should be done per kernel launch.
Regarding the block size, we ended up selecting 512 threads
per block, since other numbers of threads resulted in reduced
performance. We tested different configurations with that
block size, using double hashing with work claiming; Figs. 7
and 8 show our results launching a varying number of blocks
(note the logscale in Fig. 8), each performing 10 iterations
per kernel launch. The ideal number of blocks for the K20m
seems to be 240 per SM, i.e. 3120 blocks. For GPU standards,
this is small, but launching more often negatively affects per-
formance, probably due to the heavy use of shared memory.

Figures 9 and 10 show our results on varying the number of
iterations per kernel launch. Here, it is less clear which value
leads to the best results, either 5 or 10 seems to be the best
choice. With a lower number, the more frequent hash table
scanning becomes noticable, while with higher numbers, the
less frequent passing along of work from SMs to each other
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leads to too much redundancy, i.e. re-exploration of states,
causing the exploration to take more time.

For further experimentation, we opted for 10 iterations
per launch. Figures 11 and 12 show our runtime results (note
the log scale). The GPU extension combinations used are
Double Hashing (DH), DH+work Claiming (DH+C), and
DH without local caches (NC). The smaller state spaces are
represented in Fig. 11. Here, DH and NC often do not yet
help to speed up exploration; the overhead involved can lead
to longer runtimes compared to sequential runs. However,
DH+C is more often than not faster than sequential explo-
ration. The small differences between DH and NC and the
big ones between NC and DH+C (which is also the case in
Fig. 12) indicate that the major contribution of the caches
is work claiming, as opposed to localised duplicate detec-
tion, which was the original motivation for using the caches.
DH+C speeds up DH on average by 42 %.

Also, note that in the smaller cases in Fig. 11, NC tends
to outperform DH. Apparently, the effects of localised dupli-
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cate detection and more coalesced global hash table accesses
with fewer parallelism only have a positive impact when the
state space has a considerable size. In NC, local caches are
absent, so each thread needs to check for duplicates indepen-
dently, i.e. for complete state vectors, whereas in DH, this is
done by all threads in a warp in collaboration. The BROAD-
CAST and ABP cases show impressive speedups of almost
two orders of magnitude. Both involve large state vectors
involving 30 processes, showing that successor generation
is particularly efficient if many threads can collaborate on
exploring the outgoing transitions of a given state vector,
that is, if there is much potential for fine-grained parallelism.
This is a very positive result since industrial-sized models
tend to have many processes.

It should be noted that for vectors requiring multiple inte-
gers, GPU exploration tends to perform on average 2 %
redundant work, i.e. relatively few states are re-explored. In
those cases, data races occur between threads writing and
reading vectors since only the first integer of a vector is writ-
ten with a CAS. However, we consider these races benign
since it is important that all states are explored, not how many
times, and adding additional locks hurts the performance.

@ Springer

Table 2 Work redundancy results with Cuckoo hashing. 0.0.t. = out
of time (>3 hrs.)

Model #States % Redundancy
1394 188,434 —5.2
1394.1 37,760,386 24
Acs 3,484 —26.9
Acs.1 149,040 —25.6
WAFER STEPPER. | 3,773,815 —10.8
ABP 0.0.t. -
BROADCAST 0.0.t. -
TRANSIT 0.0.t. -
CFs.1 0.0.t. -
ASYN3 0.0.t. N
ASYN3.1 0.0.t. -

OppP 91,400 0.0
Opp.1 8,395,804 9.0
DES 0.0.t. -
LAMPORT.8 64,459,411 2.86
LANN.6 0.0.t. -
LANN.7 0.0.t. -
PETERSON.7 59,557,610 —58.2
SZYMANSKI.S 0.0.t. -

To put the average amount of duplicate work performed
using our hash table into perspective, we also conducted some
experiments with a version of our tool where the hash table
with buckets was replaced by the Cuckoo hash table of Alcan-
tara et al. [2]. The results are listed in Table 2. First of all, for
many models, the predetermined upper bound for the run-
time, set at 3 hours, was reached. This is caused by the fact
that we were forced to use a heuristical duplicate detection
procedure, already mentioned in Sect. 3.3. After extending
the standard Cuckoo hash table find-or-put of Algorithm 3
to support multi-integer entries, we quickly observed that
for practically all the state spaces only very small fragments
were explored before an error was reported that a state vector
could not be added to the hash table. When looking up and
storing elements is no longer atomic, threads may encounter
vectors in their target locations which have only partially
been written at that moment. Then, it must be decided what
should happen next, and the only workable option is to try
to insert the new vector in another location. However, with
state spaces, which tend to have a high locality in terms of
revisiting states, we observed that such situations occur very
frequently, and in those cases, some new state vectors could
not be stored in any of their H possible locations, which
causes a hash table error. One can mitigate this by setting H
to a higher value, i.e. using more hash functions (the results
in Table 2 are for experiments with H = 7), but this does not
effectively remove most of the erroneous situations.
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Therefore, on top of using more hash functions, we had to
resort to use the heuristics that if a new vector could not be
stored in any of its H possible locations, then it must already
have been visited before. This resolves the error situations,
but in a number of experiments, it could be observed that the
number of new state vectors in the hash table now fluctuated
indefinitely; when an old vector s is evicted from its location,
and a hash table error occurs trying to place s somewhere
else, it may be effectively removed from the hash table, in
case no more copies of it are stored elsewhere. In that case,
whenever s is revisited again later, it is concluded that it has
not yet been explored, and it is again added as a new vector.
This causes the total number of new state vectors to increase
again. Later, s can again be evicted, and this whole scenario
may be repeated indefinitely.

Another bad effect of the used heuristics is that explo-
rations are no longer guaranteed to be exhaustive. In fact, in
five cases we observed that a significant part of the state
space, in one case consisting of even more than half the
space, was ignored. This is represented by a negative redun-
dancy percentage in the third column of Table 2. Finally, in
the remaining cases, we observed work redundancy ranging
between 2.4 and 9.0 %.

Figure 12 also includes results for LTSMIN using six CPU
cores. This shows that, apart from some exceptions, our GPU
implementation on average has a performance similar to
using about 10 cores with LTSMIN, based on the fact that
LTSMIN demonstrates near-linear speedups when the num-
ber of cores is increased. In case of the exceptions, such
as the ABP case, about two orders of magnitude speedup
is achieved. This may seem disappointing, considering that
GPUs have an enormous computation potential. However,
on-the-fly exploration is not a straightforward task for a
GPU, and a one order of magnitude speedup seems rea-
sonable. Still, we believe these results are very promising
and merit further study. Existing multi-core exploration tech-
niques, such as in [23], scale well with the number of cores.
Unfortunately, we cannot test whether this holds for our GPU
exploration, apart from varying the number of blocks; the
number of SMs cannot be varied, and any number beyond 15
on a GPU is not yet available.

Finally, we have also conducted some experiments involv-
ing on-the-fly detection of deadlocks and violations to safety
properties. The results of these experiments are displayed
in Figs. 13 and 14. For deadlock detection, we used some
slightly altered versions of the (originally deadlock-free)
models, in which a few deadlocks were introduced. The
safety properties that were checked for each model are
described in Table 3, together with the outcome of each
check (in the ‘?’ column), and the state vector size (in bits) of
each model-property combination. The entry ‘limited action
occurrence’ in the property description refers to a property
stating that at most two occurrences of a given action (type) a
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Table 3 Checked safety properties
Model Property description ? #Bits 5
1394 Limited action occurrence v 39
1394.1 Limited action occurrence v 52
WAFER STEPPER.1 Mandatory precedence v 34
TRANSIT Bounded response X 39
CFs.1 Limited action exclusion X 85
DES Exact occurrence number v 54
LAMPORT.8 Mutual exclusion X 39
LANN.6 Mutual exclusion X 40
LANN.7 Mutual exclusion X 48
PETERSON.7 Mutual exclusion v 65
SZYMANSKI.5 Mutual exclusion X 48

are allowed between two consecutive occurrences of another
action (type) b. The ‘mandatory precedence’ property states
that action (type) a is always preceded by action (type) b.
‘Bounded response’ refers to a property stating that after
an occurrence of action a, an action b of a given set must
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occur. ‘Limited action exclusion’ is a property in which an
action a cannot occur between two consecutive occurrences
of actions b and c. In ‘exact occurrence number’, it is required
that action a occurs an exact number of times, if action b has
previously occurred. Finally, ‘mutual exclusion’ has the stan-
dard meaning (see the example in Sect. 4).

Of course, the runtimes in Figs. 13 and 14 very much
depend on where the violations are located in the state spaces,
and in what order the states are explored, but the results
also provide some interesting insights. In particular, while
in most cases, violations could be found significantly faster
than the time required to fully explore the state space, in some
cases, safety property checking takes more time. The cause
of this is that sometimes, by involving the property in the
input network of LTSs, the related state space grows in size.
The purpose of the property LTS is merely to monitor how
the specified system relates to the property in each state, but
doing so may cause states which were previously indistin-
guishable to now be different in terms of the property. On the
other hand, any network of LTSs can be checked for dead-
locks without alterations, so this effect cannot be observed
in any of the deadlock detection experiments.

6 Conclusions

We presented an implementation of on-the-fly GPU state
space exploration, proposed a novel GPU hash table, and
experimentally compared different configurations and com-
binations of extensions. Compared to state-of-the-art sequen-
tial implementations, we measured speedups of one to two
orders of magnitude.

Our choices regarding data encoding and successor gen-
eration seem to be effective, and our findings regarding a
new GPU hash table, local caches, and work claiming can
be useful for anyone interested in GPU graph exploration.
Work claiming seems to be an essential mechanism to obtain
an efficient, competitive GPU exploration approach.

We also demonstrated that this approach can be extended
for efficient on-the-fly checking of deadlocks and violations
to safety properties.

We think that GPUs are a viable option for state space
exploration. Of course, more work needs to be done to really
use GPUs to do model checking. For future work, we will
investigate how to support LTS networks that explicitly use
data variables and experiment with partial searches [41,42].
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