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Pharmacogenomics and migraine: possible implications
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Abstract Pharmacogenomics is the science about how

inherited factors influence the effects of drugs. Drug

response is always a result of mutually interacting genes

with important modifications from environmental and

constitutional factors. Based on the genetic variability of

pharmacokinetic and in some cases pharmacodynamic

variability we mention possible implications for the acute

and preventive treatment of migraine. Pharmacogenomics

will most likely in the future be one part of our therapeutic

armamentarium and will provide a stronger scientific basis

for optimizing drug therapy on the basis of each patient’s

genetic constitution.
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Introduction

The human genome consists of approximately three billion

base pairs, and the number of coding sequences (‘‘genes’’)

ranges from 20 to 25,000 [1]. Single nucleotide polymor-

phisms or SNPs (pronounced ‘‘snips’’) are DNA sequence

variations that occur when a single nucleotide (A, T, C, or

G) in the genome sequence is altered in at least 1% of the

population. SNPs, which make up about 90% of all human

genetic variation, occur every 100–300 bases along the

3-billion-base human genome. SNPs can occur in both

coding (gene) and noncoding regions of the genome. Many

SNPs have no effect on cell function, but some could

predispose people to disease or influence their response to a

drug. Pharmacogenomics is the science about how inher-

ited factors influence the effects of drugs [2]. It is a new

science about how the systematic identification of all the

human genes, their products, interindividual variation,

intraindividual variation in expression and function over

time may be used both to predict the right treatment in

individual patients and to design new drugs.

Drug response is always to some extent determined by

genetic factors. It is never determined by a single gene

alone or by a group of genes. Drug response is always a

result of mutually interacting genes with important modi-

fications from environmental and constitutional factors.

Genotyping before treatment is of possible value if drug

response mainly is determined by a single or just a few

genes characterized for all clinically relevant SNPs, and

when all clinically relevant environmental and constitu-

tional influences are known and measurable both when

treatment is initiated and during treatment.

The classical phenotype definition of genetic polymor-

phism is a phenotypic trait that exists in the population in at

least two phenotypes (and presumably in at least two

genotypes) the rarest of whom exist in say 1% of the

population.

In the past, pharmacogenetics mostly dealt with genetic

polymorphism in drug metabolism. The main enzyme

system responsible for drug metabolism is the cytochrome

P450 (CYP) enzyme system. In humans there are 57 CYP

genes and 33 pseudogenes. They are organized into 18

families and 42 subfamilies. The CYP enzymes that

metabolize drugs belong to families 1, 2 and 3.
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The pharmacogenomic research ultimately aims of

developing better and safer drugs and/or better and safer

use of currently available drugs.

Migraine can be regarded as an episodic–chronic dis-

order [3] and in the treatment of migraine one should

consider treatment of the migraine attacks and in many

cases also preventive treatment. Therefore the possible

implications of pharmacogenomics will be dealt with in the

following separately for acute and preventive migraine

treatment. In each of these sections the possible pharma-

cokinetic and pharmacodynamic implications will be

described.

Very little has been achieved until the recent demon-

stration in cluster headache that the response to triptans is

related to polymorphism in the G protein b3 [4].

In 2001 it was stated: as migraine has been demonstrated

to have a strong, but complex, genetic component, phar-

macogenetics bears great promise in providing new targets

for drug development and optimization of individual spe-

cific therapy [5]. Better, preferably prophylactic, treatment

of migraine patients is desired because the drugs now used

are not effective in all patients, allow recurrence of the

headache in a high percentage of patients and sometimes

have severe adverse events [5].

Acute migraine treatment

The anti-migraine, specific triptans, 5-HT1B/1D receptor

agonists, are generally regarded, as very effective acute

migraine drugs [6]. This fact, however, is not always evi-

dent in current randomised clinical trials with oral triptans

[7–9]. One could argue that this is so because only the most

severely afflicted patients participate in these randomised

clinical trials. However, in migraine patients with infre-

quent attacks recruited by general practitioners and by

advertisement the results are quite similar [10].

It was recently stated that many patients have no

response to triptans and complete pain relief is the excep-

tion rather than the rule [11]. How high is then the

maximum effect of triptans? After subcutaneous naratrip-

tan 10 mg the pain-free response was 87% [12, 13]. Hence,

with parenteral naratriptan one gets near the maximum for

pain-free.

Pharmacogenomics and pharmacokinetics

Eletriptan is metabolised by CYP3A4 and the oral bio-

availability (OBA) is 50%. Sumatriptan (OBA 14%),

rizatriptan (OBA 40%), almotriptan (OBA 80%) are all

metabolised by monoamine oxidase (MAO)-A [9, 14, 15].

Zolmitriptan (OBA 39%) is metabolised by CYP 1A2 and

the active metabolite 183C91 by MAO-A [16]. Naratriptan

(OBA 74%) is excreted by the kidney and metabolism

represents only a minor route of elimination of the

drug [17].

The Cmax after oral 200 mg sumatriptan varied from 52

to 227 ng/ml in healthy volunteers [18]. In migraine

patients outside attacks the 2 h plasma levels of zolmi-

triptan varied from 3 to 27 ng/ml and during attacks the

plasma levels varied from 0 to 15 ng/ml after zolmitriptan

10 mg [19]. Such large variability in plasma levels sug-

gests heterogeneity in the metabolism in the liver most

likely due to heterogeneity of MOA-A and CYP1A2.

Clinical comments

Ideally, one could try whether the migraine patient respond

to subcutaneous sumatriptan 6 mg, the currently most

effective available treatment [8, 9]. If the patient respond to

subcutaneous sumatriptan one could then because can be

inconvenient and because of the high cost of the subcuta-

neous sumatriptan (35 Euro per injection) try oral

administration of a triptan. In theory genotyping of the

patient may be useful, if the patient is not responding, and

depending on the triptan in question it could in theory be

genotyping of MAO-A, CYP 1A2 and CYP3A4 (see

above). However, genotyping for these three enzymes is

not relevant in clinical practice because the prediction of

the phenotype is poor.

A CGRP antagonist BIBN079BS was effective when

given intravenously [11] and CGRP antagonists are now

being developed for oral use. The CGRP antagonist

MK-0974 300 mg (68%) was superior to placebo (46%) for

headache relief in a phase II study [20]. The pharmacoki-

netic profile of MK-0974 and variability of its metabolic

pass way is currently unknown.

Pharmacogenomics and pharmacodynamics

Freedom of pain after 2 h is the currently suggested pri-

mary efficacy parameter in randomised, clinical trials in

migraine [21]. Treatment with an oral triptan results in

pain-free responses from 30 to 40% of the patients in

randomised, clinical trials when the headaches are mod-

erate or severe [7]. When the migraine attacks are treated in

the mild phase of headache the 2 h pain-free responder rate

increases considerably. Thus, the pain-free response was

43% after zolmitriptan 2.5 mg [22], 51–66% after suma-

triptan 50–100 mg [23, 24], and 70% after rizatriptan

10 mg [25].

For subcutaneous naratripan the dose-response curve

was established in one early study in the development
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programme of the drug, see Fig. 1 [12]. The mere fact that

a dose-response could be established in this relatively small

study (n = 34–69 per dose) and that a high maximum

response of 87% (95% confidence intervals: 78–93%)[12,

13] was found suggest homogeneity in the pharmacody-

namic response to naratriptan.

The pain-free response was lower for sumatriptan: -

33% (95% confidence intervals: -15 to -51%) [12]. The

high maximum effect for naratriptan 10 mg, 87% pain-free

[12], could be inherent to this drug because it is 2–3 times

more potent than sumatriptan at the 5-HT1B/1D receptor in

some animal models relevant to migraine [26, 27] but, at

present, this remains a matter of speculation.

The CGRP receptor on human middle meningeal artery

is CGRP (1) [28]. There is no information about possible

genetic heterogeneity of this receptor in man. In coronary

arteries there is heterogeneity of the CGRP receptor CGRP

(1), CGRP (2) and unknown [29].

One large study in cluster headache was recently pub-

lished [4]. In 231 cluster headache patients the GNB3

genotype and allele frequency were indistinguishable from

other cross-sectional German samples [4]. A total of 180

patients used a triptan, of whom 71% reported treatment

success. The adjusted odds ratio for treatment response to

triptans for heterozygotous carriers of the GNB3 825T

allele was 2.96 (95% confidence interval 1.34–6.56;

P = 0.0074) versus carriers of the 825CC genotype [4].

The C825TC polymorphism had a positive predictive value

for triptan response of 0.82 and a negative predictive value

of 0.35. The C825T polymorphism has been associated

with an enhanced signal transduction via G protein-coupled

receptors [4]. The same polymorphism has been associated

with hypertension [30, 31], with the response to

antidepressant [32] and with the venous response to

nitroglycerin [33].

In another study with same patient population it was

found that the G1246A polymorphism in the hypocretin

receptor 2 gene was not associated with treatment response

[34].

Previously, no evidence for involvement of the 5-HT1F

receptor gene in the response to sumatriptan in migraine

patients was found [35]. Similarly, in the same migraine

patient population there was no association of drug

response and 5-HT1B receptor polymorphism [36]. A

recent study found no evidence that variants F124C and

A-161T of the 5-HT receptor are major determinants in the

clinical response to sumatriptan [37]. One recent study

suggested that the DRD2/NcoI allele may be considered a

susceptibility factor heralding a good response to oral

rizatriptan [38].

Clinical comments

The results for G protein b3 polymorphism in cluster

headache [4] should be investigated in migraine patients. If

there is an association between the response in migraine

patients to triptans and the polymorphism then genotyping

for this gene will be an option in the future.

There is heterogeneity of the 5-HT1B receptor but this

was not linked to treatment response

Preventive migraine treatment

The majority of drugs currently used in migraine preven-

tion were not developed for migraine prophylaxis [39–42].

The serotonin antagonists methysergide and pizotifen were

developed 40–50 years ago for migraine prophylaxis [43].

Preventive drugs for migraine, beta-blockers, serotonin

antagonists, calcium blockers, antiepileptics, NSAIDs, and

antidepressants, are not universally effective. The respon-

der rates (a 50% decrease in incidence) range from 40 to

50% [39–42, 44]. Ideally, preventive treatment should

results in no or one attack per month [43] but this cannot be

obtained with current unspecific therapy. In the future, one

can hope that migraine specific preventive therapy will be

developed.

Pharmacogenetics and pharmacokinetics

The two beta-blockers propranolol and metoprolol have very

varied pharmacokinetics, in both cases most likely due to

differences in the first-passage effect and metabolic excre-

tion by CYP enzymes. The recommended doses vary
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Fig. 1 Pain-free response after 2 h for placebo (n = 63), and

subcutaneous naratriptan (Na) (0.5 mg (n = 69), 1 mg (n = 55),

2.5 mg (n = 42), 5 mg (n = 34), 10 mg (n = 34), and sumatriptam

6 mg (n = 47) [12]
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considerable, for example in essential tremor: 60–800 mg

propranolol daily [45]. In migraine the recommended doses

are 40–320 mg propranolol and 50–200 mg metoprolol [39].

Propranolol is highly lipophilic and it is well absorbed.

Most of the drug is metabolized by the liver during its first

passage through the portal circulation resulting in 25% oral

bioavailability [39]. There is great interindividual variation

in the presystemic clearance of propranolol resulting in

enormous variability in plasma concentration after oral

administration of the drug (approximately 20-fold). Pro-

pranolol is extensively metabolized and one of the products

of hepatic metabolism is 4-hydroxypropranolol, which

posses some b-blocking effect.

Propranolol is metabolised mainly by the P450 isozyme

CYP1A2 [46]. CYP1A2 displays considerable interindi-

vidual variability, and this is due mainly to genetic factors

[46]. So far no SNP or haplotype in the CYP1A2 has yet

been identified that can unequivocally be used to predict

the metabolic phenotype in any individual patient [47].

CYP1A2 and CYP2D6 hydroxylate propranolol and they

exhibit racial differences [48]. The genotype responsible

for the more than 60-fold interindividual differences in

human hepatic CYP1A2 constitutive expression is not

known [47]. There is a racial difference in the expression

of CYP1A2 [49].

Metoprolol is well absorbed but there is considerable

first-pass metabolism resulting in about 40% oral bio-

availability [40]. Plasma-concentrations of the drug vary

widely (up to 17-fold). Metoprolol is metabolised by

CYP2D6 and there is a 30-fold difference between the

highest and lowest clearance values [50] and a 30-fold

variability in AUC for the extensive metabolisers of

metoprolol [51]. For CYP2D6 there is genetic polymor-

phism with autosomal recessive heritage. Seven percent of

white Caucasians and 1–2% of Blacks and Orientals [39,

52] do not express this enzyme and are ‘‘poor metabolis-

ers’’. There is a pronounced allelic heterogeneity:

approximately 80 known variants, mainly in the form of

single nucleotide polymorphisms’s. CYP2D6*3, *4 and *5

together predict about 90% of poor metabolisers [53].

Results in cardiovascular patients suggested that phar-

macogenomic measures could be used to design more

individualized metoprolol dosage regimen for patients [50].

In hypertensive patients, however, there was no association

between variable pharmacokinetics or CYP2D6 genotypes

and beta-blocker-induced adverse events or efficacy [51].

Topiramate is not extensively predominately metabo-

lised and 50% is excreted by the kidneys as unmetabolised

drug [54]. Valproate is metabolised in the liver mainly by

glucuronidation but also by oxidation by several CYP [54].

The calcium entry blocker flunarizine is metabolised by

CYP2D [55]. Methysergide is a prodrug and is metabolised

with demethylation in the liver during the first-passage to

an active metabolite methylergometrine [56]. After oral

administration the AUC is 10 times greater for methyler-

gometrine than for methysergide [56]. Amitriptyline is

metabolised by N-demethylation by to nortiptyline by

CYP2C19, CYP1A2 and CYP3A4 [53].

Clinical comments

Preventive treatment in migraine is generally started with

low doses that are then, if necessary, increased over weeks

or months [39], the ‘‘start low go slow’’ dictum. With

genotyping of relevant metabolic enzymes one can proba-

bly in an advance design more individualized drug dosage

regimen for patients. Whether such regimens results in

better treatment depends on whether there is an association

between plasma levels and drug response. So far, this has

only been investigated in a small (n = 17) open study for

propranolol where no correlation was found [57].

For valproate determination of plasma levels is a routine

and one normally tend to titrate the dose to the levels used

in epilepsy.

Amitriptyline is N-demethylated to nortriptyline via

CYP1A2, CYP2C19 and CYP3A4 and 10-hydroxylated by

CYP2D6 [53]. All four enzymes are under genetic control,

but there is not a single genotype test, which predicts the

plasma levels of amitriptyline and nortriptyline.

Pharmacogenomics and pharmacodynamics

A variety of genetic and nongenetic factors determine b1-

blocker response [58]. Besides inherited differences in the

metabolism and disposition of drugs, gene polymorphisms

in the targets of drug therapy, for example receptors, can

have a significant influence on the efficacy and toxicity of

medications [59]. As mentioned above, there was no

association between variable pharmacokinetics or CYP2D6

genotypes and beta-blocker-induced adverse events or

efficacy [51]. In contrast, polymorphisms of the b1-adre-

noceptor determined the response to metoprolol in

hypertension in two studies [58, 59].

The mode of action of b-blockers in migraine is

unknown but is most likely via an effect on the brain,

probably on the central catecholaminergic system, as

indicated by the effect of b-blockers on contingent negative

variation in migraineurs [39, 60].

Clinical comments

If the effect of b-blockers in migraine is exerted by an

effect on the b1-receptor genotyping for this receptor could
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possibly in advance predict responders and nonresponders

confer the results in hypertension [58, 59].

For the other preventive medications in migraine, sero-

tonin antagonists, calcium entry blockers, antiepileptic

drugs, antidepressants, their mode of action in migraine is

unknown [40–43] and one can thus not for the moment

suggest what genes one should type in order to predict

response.

Final comments

Until now attempts to use pharmacogenomics in migraine

have been few and most have fail. In the future this will be

different. Pharmacogenomics will most likely in the future

be one part of our therapeutic armamentarium. Before use

of medication we will in some cases ask for genotyping of

relevant pharmacokinetic or pharmacodynamic genotypes

and then tailor the drug regimen to the individual patient.

The need for genotyping is most likely greatest in pre-

ventive treatment also in order to minimize the adverse

events, which frequently occur with this treatment [39–42,

44]. Pharmacogenomics will thus provide a stronger sci-

entific basis for optimizing drug therapy on the basis of

each patient’s genetic constitution [61] and will be an

integral determination of drug therapy [2]. This is most

likely to be the case when new migraine-specific, better

preventive drugs based on knowledge of the pathophysi-

ology of migraine have been developed.

Conflicts of interest None.
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