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Abstract Lie symmetries are discussed for the Wheeler-De
Witt equation in Bianchi Class A cosmologies. In particu-
lar, we consider general relativity, minimally coupled scalar-
field gravity and hybrid gravity as paradigmatic examples of
the approach. Several invariant solutions are determined and
classified according to the form of the scalar-field potential.
The approach gives rise to a suitable method to select clas-
sical solutions and it is based on the first principle of the
existence of symmetries.

1 Introduction

Nowadays astronomical observations have shown that if we
consider our Universe on a large scale, its visible struc-
ture is accelerating, homogeneous and isotropic, and, essen-
tially, filled with pressureless dust. The simplest cosmic
model which describes a Universe with the above proper-
ties is the Friedmann–Lemaître–Robertson–Walker (FLRW)
model [1]. The evolution of the Universe from the radiation
dominant epoch till the present cosmic acceleration can be
well explained by the FLRW model with a cosmological con-
stant (the so-called �CDM model). However, it fails if one
tries to address the whole early and late history of the Uni-
verse starting from the origin and the inflation epoch where
quantum effects should be taken into account.

Anisotropies observed in the cosmic microwave back-
ground (CMB) are small enough to suggest that anisotropic
models of spacetimes become isotropic ones by evolving in
time [2–4]. One can expect that pre-inflationary anisotropies
played an important role (for example, they can be respon-
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sible for the coupling between the gravitational field and
the inflaton field) so if inflationary models are considered,
one should understand the dynamics of anisotropies. Models
describing anisotropic but homogeneous Universes are the
so-called Bianchi cosmologies. They can be considered in
standard general relativity and in its extensions containing
scalar fields.

In this paper we will consider the Lie symmetries of the
Wheeler–DeWitt equation (WDW) in general relativity and
in scalar field cosmology assuming Bianchi spatially homo-
geneous spacetimes. We will use the Lie symmetries in order
to define the unknown potential and derive exact solutions for
the WDW equation and for the field equations. Symmetries
are considered to play a central role in physical problems
because they provide first integrals which can be utilized in
order to simplify a given system of differential equations and
thus to determine the integrability of the system. Indeed, in
[5,7] it has been shown that the Lie symmetries of a dynami-
cal system are related to the geometry of the underlying space
where the dynamics occurs.

The application of symmetries in gravitational theories is
an important tool which could lead to exact solutions of the
field equations. In particular, the symmetries which can be
used are the Noether symmetries of the Lagrangian of the
field equations and they have been applied in several models
such as scalar-tensor cosmology [8–15], f (R) gravity and
higher-order theories of gravity [16–21], spherically sym-
metric spacetimes [22–25], and many others. [26–29]. The
application of the Noether symmetries in Bianchi spatially
homogeneous spacetimes can be found in [5,30–32]. Accord-
ing to this results one can deal with the so-called Noether
symmetry approach.
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In this work we will not apply the Noether symmetries
of the field equations but the Lie symmetries of the WDW
equation. It has been proved in [7] that the Lie symmetries of
the WDW equation could form a greater Lie algebra than the
Noether symmetries of the Lagrangian of the field equations.
Hence, it is possible to determine new cases where the field
equations are integrable. This method was applied in a scalar-
tensor cosmological models adopting a FLRW geometry with
a perfect fluid and new integrable models, cosmologically
viable, raised [33,34]. Recently a similar method has been
applied to some axisymmetric quantum cosmologies with
scalar fields [35].

The layout of the paper is the following. In Sect. 2 we
give the basic definition of the Bianchi classification while
in Sect. 3 we study the Lie symmetries of the WDW equa-
tion of Class A Bianchi spacetimes in the case of general
relativity. In Sect. 4, the previous results are applied in order
to reduce the WDW equation by using the Lie invariants and
determine invariant solutions. Sections 5 and 6 are devoted to
the same analysis in the case of a minimally coupled scalar-
tensor gravity and we use the Lie symmetries in order to
determine the field potential by using the Lie symmetries of
the WDW equation as a geometric criterion. We show that, in
scalar-tensor cosmology, there exist invariant solutions of the
WDW equation: in Bianchi I spacetime, for constant poten-
tial and for exponential potential and, in Bianchi II spacetime,
for a kination scalar field. For convenience of the reader, we
present the Lie symmetry classification for each model in
tables. Furthermore in Sect. 7, we show how these results
are related with the so-called hybrid gravity and conformal
transformations. Finally, in Sect. 8, we discuss our results
and draw our conclusions. “Appendix A” completes our pre-
sentation. Here the basic theory of Lie symmetries is briefly
discussed.

2 The Class A of Bianchi spacetimes

The class of Bianchi spatially homogeneous cosmologies
contains several important cosmological models which have
been used for the discussion of anisotropies of primordial
Universe and for its evolution toward the observed isotropy
of the present epoch [2,36,37,39,40]. In these models, the
spacetime manifold is foliated along the time axis, with
three dimensional homogeneous hypersurfaces which admit
a group of motions G3. Bianchi classified all three dimen-
sional real Lie algebras and has shown that there are nine
possible G3 groups. This results in nine types of Bianchi spa-
tially homogeneous spacetimes. The importance of Bianchi
cosmological models is that, in these models, the physical
variables depend on the time only, reducing the Einstein and
other governing equations to ordinary differential equations.

In the (3 + 1) decomposition of the spacetime manifold
(Arnowitt–Deser–Misner (ADM) formalism), the line ele-
ment of the Bianchi models can be written in the following
form [41,42]:

ds2 = − 1

N (t)2 dt2 + ḡi j (t)ω
i ⊗ ω j , (1)

where N (t) is the lapse function and {ωi } denotes the canon-
ical basis 1-forms satisfying the Lie algebra

dωi = Ci
jkω

j ∧ ωk (2)

where Ci
jk are the structure constants of the algebra. The

spatial metric ḡi j is diagonal (following the notation of [5,30]
and references therein) and can be factorized as follows:

gi j (t) = e2λ(t)e−2βi j (t) (3)

where eλ(t) is the scale factor of the Universe and the matrix
βi j is diagonal and traceless. The matrix βi j depends on
two independent quantities β1, β2 , which are called the
anisotropy parameters. The matrix βi j can be selected as1

βi j = diag

(
β1,−1

2
β1 +

√
3

2
β2,−1

2
β1 −

√
3

2
β2

)
(4)

and, in these variables, it is
√
ḡ = e3λ. The structure con-

stants of the Lie algebra G3 can be expressed in terms of
a three dimensional vector field ai and a symmetric 3 × 3
tensor mi j as follows [43]:

Ci
jk = ε jksm

si + δika j − δij ak, (5)

and the Bianchi models are grouped in two classes: Class A
for ai = 0 and Class B for ai �= 0. Each class is divided
into several types according to the rank and the signature of
the tensor mi j . Specifically, the Bianchi models are divided
into two subclasses A (ai = 0) and B (ai �= 0) containing
Bianchi types corresponding to the form of the metric mi j . In
this paper, we are interested in the Class A models for which
there exists a Lagrangian of the field equations.

For the line element (1) with the definitions (3) and (4),
the Ricci scalar of the Bianchi Class A spacetimes can be
written as

R = R(4) + R∗ (6)

where

R(4) = 3

2
N
(

4N λ̈ + 4Ṅ λ̇ + 8N λ̇2 + N β̇2
1 + N β̇2

2

)
(7)

and R∗ = R∗ (λ, β1, β2) is the component of the three
dimensional hypersurface which depends on the structure
constants of the algebra N1−3 of the Killing algebra of the
Bianchi algebras [44]. The general form of R∗ is

1 These are the Misner variables [42].
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R∗ = −1

2
e−2λ

⎡
⎢⎣ N2

1 e
4β1 + e−2β2

(
N2e

√
3β2 − N3e

−√
3β2

)2 +
−2N1e

β1
(
N2e

√
3β2 − N3e

−√
3β2

)2

⎤
⎥⎦

+1

2
N1N2N3(1 + N1N2N3) (8)

and the special forms for the Class A spacetimes can be found
in Table 1.

In the case of general relativity, when the action of the
field equations is the Einstein–Hilbert action (we consider
the spacetime to be empty)

SGR =
∫

dx4√−gR, (9)

the field equations for the Bianchi Class A spacetimes follow
from the Lagrangian

L
(
N , λ, β1, β2, λ̇, β̇1, β̇2

)
= N (t) e3λ

(
6λ̇2 − 3

2

(
β̇2

1 + β̇2
2

))
+ e3λ

N (t)
R∗, (10)

and the corresponding field equations are the Euler–Lagrange
equations with respect to the variables {N , λ, β1, β2}. The
Euler–Lagrange equations for the variables β1, β2 are

β̈(1,2) + Ṅ

N
β̇(1,2) + 3λ̇β̇(1,2) + 1

3N 2 R
∗
,(1,2) = 0; (11)

for the variable λ

4λ̈ +
(

6λ̇2 + 3

2
(β̇1

2 + β̇2
2
) + 1

2
φ̇2
)

+ Ṅ

N
λ̇ − 1

N 2

(
R∗ + 1

3

∂R∗

∂λ

)
= 0, (12)

and for the variable N we have the G0
0 = 0 Einstein equation

N (t) e3λ

(
6λ̇2 − 3

2

(
β̇2

1 + β̇2
2

))
− e3λ

N (t)
R∗ = 0. (13)

The Lagrangian (10) is singular since ∂L
∂ Ṅ

= 0, however,
if we consider

N (t) = N0 or N (t) = N (λ (t) , β1 (t) , β2 (t))

then the Lagrangian (10) becomes a regular time independent
Lagrangian which admits always, as a Noether integral, the
Hamiltonian constant. Hence, Eq. (13) can be seen as the
energy constraint of the field equations.

In the following we will quantize Eq. (13) in order to
write the Wheeler–DeWitt (WDW) equation and to perform
a symmetry analysis using the Lie point symmetries in the
case of general relativity and minimally coupled scalar-tensor
cosmology.

3 Symmetries of the WDW equation in general
relativity

In order to simplify Eq. (13), we consider N (t) = N̄ (t)e−3λ

in the line element (1). Furthermore, we consider the change

of the variables (λ, β1, β2) = (
√

3
6 x,

√
3

3 y,
√

3
3 z), then the

Lagrangian (10) becomes

L = 1

2
N̄
(
ẋ2 − ẏ2 − ż2

)
+ 1

N̄
e
√

3x R∗. (14)

Therefore, we define the momentum p(x,y,z) = ∂L
∂(ẋ,ẏ,ż)

and Eq. (13) has now the form

1

2

(
p2
x − p2

y − p2
z

)
− e

√
3x R∗ = 0. (15)

Equation (15) can be seen as the Hamiltonian of a par-
ticle moving in the space M3 with potential V (x, y, z) =
−e

√
3x R∗. Furthermore, the field equations are the Hamilto-

nian constraint (15) and the Hamilton equations

ẋ = 1

N̄
px , ẏ = − 1

N̄
py, ż = − 1

N̄
pz (16)

ṗx = −√
3
(
1 + (

ln R∗)
x

)
e
√

3x R∗, (17)

ṗy = e
√

3x R∗
,y, ṗz = e

√
3x R∗

,z . (18)

Since the minisuperspace is flat, that is, the Ricci scalar van-
ishes, the WDW equation can be achieved by a standard quan-
tization, assuming the conjugate momenta pi = ∂L

∂xi
. Hence

from (15), we have the WDW equation of the form


,xx − 
,yy − 
,zz − 2e
√

3x R∗
 = 0, (19)

which is nothing else but the Klein–Gordon equation in the
M3 space.

In order to determine the Lie symmetries of (19), we
will use the geometric results in Ref. [7]. The M3 space-
time admits a ten dimensional conformal algebra. In partic-
ular, it admits a six dimensional Killing algebra which is the
T 3 ∪ SO (3) with elements

K(x) = ∂x , K(y) = ∂y , K(z) = ∂z,

R(xy) = y∂x + x∂y , R(xz) = z∂x + x∂z, R(yz) = z∂y − y∂z,

one gradient homothetic Killing vector (HV),

H = x∂x + y∂y + z∂z, ψH = 1,

and three special conformal Killing vectors (CKVs), which
are

C(x) = 1

2

(
x2 + y2 + z2

)
∂x + xy∂y + xz∂z, ψ(x) = x,

C(y) = xy∂x + 1

2

(
x2 + y2 − z2

)
∂y + zy∂z, ψ(y) = y,

C(z) = xz∂x + yz∂y + 1

2

(
x2 + z2 − y2

)
∂z, ψ(z) = z.
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Table 1 The Ricci scalar of the
3d hypersurfaces of the Class A
Bianchi spacetimes

Model R∗ (λ, β1, β2)

Bianchi I 0

Bianchi II − 1
2 e

(4β1−2λ)

Bianchi VI0/VII0 − 1
2 e

−2λ

(
e4β1 + e

−2
(
β1−√

3β2

)
± 2eβ1+√

3β2

)

Bianchi VIII − 1
2 e

−2λ

⎛
⎜⎝ e4β1 + e−2β1

(
e
√

3β2 + e−√
3β2

)2 +
−2e−β1

(
e
√

3β2 − e−√
3β2

)2

⎞
⎟⎠

Bianchi IX − 1
2 e

−2λ

⎛
⎜⎝ e4β1 + e−2β1

(
e
√

3β2 − e−√
3β2

)2 +
−2e−β1

(
e
√

3β2 + e−√
3β2

)2

⎞
⎟⎠ + 1

See Ref. [7] for details. Furthermore, by applying the results
in [7], we find that the WDW equation (19) admits: (1) for
the Bianchi I model, 11 Lie symmetries, (2) for the Bianchi
II model, five Lie symmetries, (3) two Lie symmetries for
the models VI0/VII0, and (4) one Lie symmetry, the linear
one, for the models VIII and IX. In Table 2, we give the
corresponding Lie symmetries of the WDW equation (19)
for each Bianchi model.

4 Invariant solutions of the WDW equation in general
relativity

In this section, we will apply the zeroth-order invariants of
the Lie point symmetries to reduce the order of the WDW
equation (19) and to determine invariant solutions. An impor-
tant remark is due at this point. In general, invariant solutions
are defined as the solutions following from the application
of invariant functions of an admitted symmetry vector for
the given differential equation.2 In other words [38], a solu-
tion 
 = 
(xi ), xi = x, y, . . ., is invariant under a group
generated by the vector X = ξi∂xi + η∂
 , if and only if the
characteristic vanishes on the solution, that is, an invariant
solution satisfies the invariant n-surface condition (n being
the number of independent variables):

η − ξ i∂xi 
 = 0.

We will see that solutions given in the following sections
satisfy the above condition.

From the results of Table 2, we can see that it is possible
to find invariant solutions for the WDW equation for Bianchi
I and II spacetimes.

2 For details on the application of Lie symmetries see “Appendix A”.

4.1 Bianchi I cosmology

Since for Bianchi I spacetimes the property holds that R∗ =
0, the WDW equation (19) is the (1 + 2) wave equation. The
reduction of the (1 + 2) wave equation and the invariant solu-
tions have been studied in [45] and recently in [46]. However,
we want to give a concrete example of the application of the
Lie symmetries.

Let us consider the Lie algebra {X I
(x), X

I
(y)} with commu-

tators [X I
(x), X

I
(y)] = 0 where

X I
(xi)

= K(xi) + μi
∂
. (20)

Consider the Lie symmetry vector X I
(x) = ∂x + μ1
∂
 ,

from which we find that the zeroth-order Lie invariants
are {y, z, exp (−μ1x) 
}. Considering now as 
 = exp
(μ1x) 
̄ (y, z), where 
̄ is the new dependent variable, then
Eq. (19) reduce to the two-dimensional linear Klein–Gordon
equation

μ2
1
̄ − 
̄,yy − 
̄,zz = 0.

If we continue with the application of the Lie invariants of
the symmetry vectors X I

(y) and X I
(z), then we find following

solution:


I (x, y, z) = exp (μ1x + μ2y)

[
c1 exp

(√
μ2

1 − μ2
2z

)

+ c2 exp

(
−
√

μ2
1 − μ2

2z

)]
. (21)

From this one can see that (21) is invariant under the point
transformation with generators the vector fields (20).

One can also consider the Lie algebra {X I
(x), X

I
(yz) =

R(yz) + μ
∂
} for which the invariant solution is
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Table 2 Lie symmetries of the
WDW equation of the Class A
Bianchi models in general
relativity

Model # Lie Symmetries

Bianchi I 11 
∂
, K(x), K(y), K(z), R(xy), R(xz), R(yz), H(
C(x) − 1

2 x
∂


)
,
(
C(y) − 1

2 y
∂


)
,
(
C(z) − 1

2 z
∂


)
Bianchi II 4 
∂
, K(z), K(x) − 1

2 K(y), R(xz) − 1
2 R(yz)

Bianchi VI0/VII0 2 
∂
, K(x) − 1
2 K(y) +

√
3

2 K(z)

Bianchi VIII/IX 1 
∂



I (x, y, z)

=
[
c1 Iiμ

(
μ1

√
y2 + z2

)
+ c2Kiμ

((
μ1

√
y2 + z2

))]

× exp

(
μ arctan

y

z
+ μ1x

)
(22)

where Iiμ, Kiμ are the modified Bessel functions of the
first and the second kinds. Similarly, for the others Lie sub-
algebras, we can construct invariant solutions. We want also
to recall that the WDW equation is a linear second-order par-
tial differential equation and any linear combination of the
solutions is also a solution.

4.1.1 The WKB approximation and the classical solution

Adopting the WKB approximation to the WDW equation
(
 � exp (i S)), Eq. (19) becomes(

∂S

∂x

)2

−
(

∂S

∂y

)2

−
(

∂S

∂z

)2

= 0, (23)

which is the null Hamilton–Jacobi equation of the Hamilto-
nian system (15)–(18), where pi = ∂S

∂xi
. The solution of (23)

is

S (x, y, z) = s1y + s2z + ε

√
s2
1 + s2

2 x + s0, with ε = ±1.

(24)

Hence the Hamilton equations (16)–(18) reduce to the fol-
lowing system (where N̄ = 1):

ẋ = ε

√
s2

1 + s2
2 , ẏ = −s1, ż = −s2 (25)

and therefore we have the solutions

(λ (t) , β1 (t) , β2 (t)) =
(√

3

6
ε

√
s2
1 + s2

2 t, −
√

3

3
s1t, −

√
3

3
s2t

)

(26)

and, by the coordinate transformation dτ = e3λdt in the line
element (1), we obtain a Kasner spacetime. Let us note that
Kasner parameters s1, s2, are related to the constants μ1, μ2

and correspond to the oscillatory terms of the solution (21).

4.2 Bianchi II cosmology

For the Bianchi II spacetime, using Table 2, we see that if
we use the Lie symmetries {X I

(z), X I
(x) − 1

2 X
I
(y)} with zero

commutator, the invariant solution is


1
I I (x, y, z) = exp

(
2μ12

3
(y + 2x) + μ3z

)
× (

c1 Ic0 (u (x, y)) + c2Kc0 (u (x, y))
)

(27)

where μ12 = μ1 − μ2, c0 =
√

12μ2
12−9μ2

3

3 , u(x, y) =
exp(

√
3(2y+x)

3 ), and Ic0 , Kc0 are the modified Bessel func-
tions of the first and the second kinds, respectively. For the
Lie algebra

K I
(x) − 1

2
K I

(y), R(xz) − 1

2
R(yz)

we have the invariant solution


2
I I (x, y, z) = (c1 I0 (u (x, y)) + c2K0 (u (x, y))) . (28)

The last solution 
2
I I is included in the solution 
1

I I for
μ12 = μ3 = 0.

4.2.1 The WKB approximation and the classical solution

One can also apply the WKB approximation for the Bianchi
II model to Eq. (19):(

∂S

∂x

)2

−
(

∂S

∂y

)2

−
(

∂S

∂z

)2

+ e
2
√

3
3 (2y+x) = 0 (29)

Let us adopt, the coordinate transformation y = w − x
2 in

the Hamiltonian system. Hence, the new Hamilton–Jacobi
equation (29) becomes

(
∂S

∂x

)2
+
(

∂S

∂x

)(
∂S

∂w

)
− 3

4

(
∂S

∂w

)2
−
(

∂S

∂z

)2
+ e

4
√

3
3 w = 0,

(30)

with the solution

S (x, w, z) = S1 (x) + S2 (w) + S3 (z) , (31)

123
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where the functions S1,2,3 follow from the system

S1 (x) = c1x, S3 (z) = c2z, (32)

(
dS2

dw

)2

= 4

3

[
c1

(
c1 + dS2

dw

)
+ c2

2 − 2e
4
√

3
3 w

]
= 0. (33)

The Hamilton function S (x, w, z) is

S (x, w, z) = c1x + c2z + 2

3
c1w − ε

√
3

3

×
(
M (w) − √

c12 arctan

(
M (w)√

c12

))
, with ε = ±1

(34)

where c12 = 3c2
2 − 4c2

1 and M (w) =
√

3e
4
√

3
3 w − c12.

Therefore the reduced Hamiltonian system is (recall that
N̄ = 1)

ż = −2c2, ẇ = εM (w) (35)

ẋ = 8

3
c1 − ε

2

3
M (w) (36)

Hence the solution of the system (35), (36) is

z(t) = −2c2t (37)

w(t) = −
√

3

4
ln

⎛
⎜⎝ cos2

(
2
√

3
3 ε

√
c12 (t + w0)

)
c12

⎞
⎟⎠ (38)

x(t) =
√

3

6
ln

[
cos2

(
2
√

3

3
ε
√
c12 (t + w0)

)]
+ 8

3
c1t + x0,

(39)

which is the solution of the empty Bianchi II spacetime in
general relativity.

In the following section we will apply the same procedure
in the case of minimally coupled scalar-tensor cosmology.
Furthermore, we will use the Lie symmetries of the WDW
equation in order to determine the unknown potential of the
scalar field.

5 Symmetries of the WDW equation in minimally
coupled scalar-tensor cosmology

Let us continue the Lie symmetry analysis of the WDW equa-
tion for cosmological containing a minimally coupled scalar
field in the gravitational action. The Noether symmetry clas-
sification of the field equations has been studied in [30–32].
Noether symmetries have been adopted in the jet space in [5].
In Ref. [6], a detailed study of integrable cosmological mod-
els with non-minimally coupled scalar fields is presented.

Let us now take into account the following action:

S =
∫

dx4√−g

(
R − 1

2
gμνφ,μφν + V (φ)

)
. (40)

From the line element (1) and equations (6), (7) we find the
Lagrangian [36]

L
(
N , λ, β1, β2, φ, λ̇, β̇1, β̇2, φ̇

)
= N (t)e3λ

(
6λ̇2 − 3

2

(
β̇2

1 + β̇2
2

)
− 1

2
φ̇2
)

+ e3λ

N (t)

(
V (φ) + R∗) . (41)

Hence, by applying the Euler–Lagrange vector in (41), we
find four field equations which are the two equations (11)
and

4λ̈ +
(

6λ̇2 + 3

2
(β̇1

2 + β̇2
2
) + 1

2
φ̇2
)

+ Ṅ

N
λ̇ − 1

N 2

(
V + R∗ + 1

3

∂R∗

∂λ

)
= 0, (42)

Ne3λ

(
6λ̇2 − 3

2

(
β̇2

1 + β̇2
2

)
− 1

2
φ̇2
)

− e3λ

N

(
V + R∗) = 0.

(43)

The latter corresponds to the G0
0 = T 0

0 Einstein equation.

Furthermore, from the Euler–Lagrange equation d
dt

(
∂L
∂φ̇

)
− ∂L

∂φ
, we obtain the field equation for the scalar field

φ̈ + 3λ̇φ̇ + Ṅ

N
φ̇ + 1

N 2

∂V

∂φ
= 0, (44)

which can also be derived by the Bianchi identity Tμν

;ν = 0,
where Tμν is the energy-momentum tensor for scalar field.
As in the case of general relativity, the coordinate trans-

formations (λ, β1, β2) = (
√

3
6 x,

√
3

3 y,
√

3
3 z) and N (t) =

N̄ (t)e−3λ, can be adopted. Hence, Eq. (43) becomes

1

2
N̄
(
ẋ2 − ẏ2 − ż2 − φ̇2

)
− 1

N̄
e
√

3x (V (φ) + R∗) = 0.

(45)

Moreover, by using the momentum p(x,y,z,φ) = ∂L

∂xi
, equa-

tion (45) becomes

1

2

(
p2
x − p2

y − p2
z − p2

φ

)
− e

√
3x (V (φ) + R∗) = 0

(46)

and hence, from (46), we have the following WDW equation:


,xx − 
,yy − 
,zz − 
,φφ − 2e
√

3x (V (φ)+R∗)
 = 0,

(47)
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since the minisuperspace of Eq. (46) is the flat space M4. We
note that Eq. (47) is the Klein–Gordon equation in M4.

Since we want to use the geometric approach in Ref. [7],
we need the conformal algebra of the M4 spacetime. The four
dimensional flat space M4 admits ten Killing vectors (KVs)
which are

K(x), K(y), K(z), K(φ) = ∂φ,

R(xy), R(xz), R(yz), R(xφ) = φ∂x + x∂φ,

R(yφ) = φ∂y − y∂φ, R(zφ) = φ∂z − z∂φ,

one gradient HV

H̄ = x∂x + y∂y + z∂z + φ∂φ,

and four special CKVs

C̄(x) = C(x) + 1

2
φ2∂x + φx∂φ, ψ(x) = x,

C̄(y) = C(y) − 1

2
φ2∂y + φy∂φ, ψ(y) = y,

C̄(z) = C(z) − 1

2
φ2∂z + φz∂φ, ψ(z) = z,

C̄(φ) = xφ∂x + yφ∂y + zφ∂z

+ 1

2

(
x2 + φ2 − y2 − z2

)
∂φ, ψ(φ) = φ.

One can find that the WDW equation (47) admits Lie symme-
tries for an arbitrary potential V (φ); in the case of a Bianchi
I, spacetime Eq. (47) admits four Lie symmetries; for Bianchi
II, one has two Lie symmetries and one Lie symmetry for the
rest of the Bianchi models. Therefore, for special forms of the
potentials V (φ), it is possible that the WDW equation (47)
admits extra symmetries. The special forms of the potentials
that we found are: (a) V (φ) = 0, in which the scalar field
behaves as stiff matter; (b) V (φ) = V0 with V0 �= 0, and
(c) V (φ) = V0eμφ . The results of the symmetry analysis are
collected in Tables 3 and 4.

We will continue our analysis using the results of Tables 3
and 4 in order to determine invariant solutions of the WDW
equation (47) for cases where it is possible.

6 Invariant solutions of the WDW equation
in scalar-field cosmology

From the symmetries in Tables 3 and 4, we observe that
invariant solutions for the WDW equation can be determined
for the Bianchi type I model for (a) V (φ) = 0, (b) V (φ) =
V0, (c) V (φ) = V0eμφ ; and, for the Bianchi II model, for
zero potential. It is worth noticing that, in the following, we
will choose N̄ (t) = 1.

6.1 Bianchi I cosmology

For the Bianchi I spacetime, the WDW equation (47)
becomes


,xx − 
,yy − 
,zz − 
,φφ − 2e
√

3x V (φ)
 = 0. (48)

If the potential V (φ) = 0, then (48) becomes the (1+3)
wave equation in E3 [45], hence we will omit this case. When
V (φ) = V0, V0 �= 0, the field equations are equivalent to the
case of general relativity with stiff matter and a cosmological
constant. In this case, we use zeroth-order invariants of the
Lie symmetries

X̄(A) = K(A) + μ(A)
∂
, A = y, z, φ, (49)

which form a closed Lie algebra. In this case, Eq. (48) reduces
to the linear second-order ordinary differential equation

�′′ −
(
μ(y) + μ(z) + μ(z) + 2V0e

√
3x
)

� = 0 (50)

where 
 = �(x) exp
(
μ(y)y + μ(z)z + μ(φ)φ

)
and �′ =

d�(x)
dx . Therefore, the solution of Eq. (50) is

�(x) = �1 Jc

(
i
2
√

6V0

3
e

√
3

2 x
)

+ �2Yc

(
i
2
√

6V0

3
e

√
3

2 x
)
(51)

Table 3 Lie symmetries of the
WDW equation of the Class A
Bianchi models in scalar-field
cosmology for V (φ) = 0

Model V (φ) = 0 # Lie symmetries

Bianchi I 16 
∂
, K(x), K(y), K(z), K(φ), R(xy), R(xz)

R(yz), R(xφ), R(yφ), R(zφ), H̄ ,
(
C̄(x) − x
∂


)
,(

C̄(y) − y
∂


)
,
(
C̄(z) − z
∂


)
,
(
C̄(φ) − φ
∂


)
Bianchi II 7 
∂
, K(z), K(φ), K(x) − 1

2 K(y), R(zφ)

R(xz) − 1
2 R(yz), R(xφ) − 1

2 R(yφ)

Bianchi VI0/VII0 3 
∂
, K(φ), K(x) + 1
4 K(y) +

√
3

4 K(z)

R(xφ) + 1
4 R(yφ) +

√
3

4 R(zφ)

Bianchi VIII/IX 2 
∂
, K(φ)
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Table 4 Lie symmetries of the
WDW equation of the Class A
Bianchi models in scalar-field
cosmology for non-zero
potentials

Model V (φ) = V0 # Lie symmetries

Bianchi I 7 
∂
, K(y), K(z), K(φ), R(yz), R(yφ), R(zφ)

Bianchi II 4 
∂
, K(z), K(φ), R(zφ)

Bianchi VI0/VII0 2 
∂
, K(φ)

Bianchi VIII/IX 2 
∂
, K(φ)

Model V (φ) = V0eμφ # Lie symmetries

Bianchi I 7 
∂
, K(y), K(z), R(yz),
√

3
3 μK(x) − K(φ),

R(yφ) +
√

3
3 μR(xy), R(zφ) +

√
3

3 μR(xz)

Bianchi II 4 
∂
, K(z), K(x) − 1
2 K(y) −

√
3

μ
K(φ)

R(zφ) +
√

3
3 μ

(
R(xz) − 1

2 R(yz)
)

Bianchi VI0/VII0 2 
∂
, K(x) − 1
2 K(y) −

√
3

2 K(z) −
√

3
μ
K(φ)

Bianchi VIII/IX 1 
∂


Model V (φ) = V (φ) # Lie symmetries

Bianchi I 4 
∂
, K(y), K(z), R(yz)

Bianchi II 2 
∂
, K(z)

Bianchi VI0/VII0 1 
∂


Bianchi VIII/IX 1 
∂


where Jc,Yc are the Bessel functions of the first and second

kind and the constant is c = 2
√

3
3 (

√
μ2

(y) + μ2
(z) + μ2

(z)). For

the exponential potential, we apply the zeroth-order invari-
ants of the Lie symmetries

X̄(y), X̄(z),

√
3

3
μK(x) − K(φ) + ν
∂
 (52)

and the WDW equation (48) becomes

(
3 − μ2

)
�′′ (w) + 6ν�′ −

((
μ2

(y) + μ2
(z)

)
μ2

−3ν2 + 2V0μ
2eμw

)
� = 0 (53)

where
 (x, y, z, φ) = �(w) exp
(√

3ν
μ

x + μ(y)y + μ(z)z
)

,

�′ = d�(w)
dw

, and w =
√

3
μ
x + φ. Hence, for various values

of the constant μ from (53), we have

�(w) = exp

(
3μw

μ2 − 3

)[
�1 Jc̄

(
2

√
2V0

μ2 − 3
e

μ
2 w

)

+�2Yc̄

(
2

√
2V0

μ2 − 3
e

μ
2 w

)]
, with μ �= √

3

(54)

where c̄ = 2|μ2−3|
√

3ν2 − (
μ2 − 3

) (
μ2

(y) + μ2
(z)

)
and

�(w) = �0 exp

[
1

2ν

(
μ2

(y) + μ2
(z)

)

−ν

2
w +

√
3

3

V0

ν
e
√

3w

]
, for |μ| = √

3, ν �= 0.

(55)

6.1.1 The WKB approximation and the classical solutions

In the WKB approximation the WDW equation (48) becomes
the Hamilton–Jacobi equation

1

2

[(
∂S

∂x

)2

−
(

∂S

∂y

)2

−
(

∂S

∂z

)2

−
(

∂S

∂φ

)2
]

− e
√

3x V (φ) = 0 (56)

where S = S (x, y, z, φ) describes a motion of a particle in
the M4 space. The solution of the Hamilton–Jacobi function
leads to the following reduced Hamiltonian system:

ẋ = ∂S

∂x
, ẏ = ∂S

∂y
, ż = ∂S

∂z
, φ̇ = ∂S

∂φ
. (57)

For V (φ) = 0, from Eq. (56) we have that

S0 (x, y, z, φ) = c1y + c2z + c3φ + ε

√
c2

1 + c2
2 + c2

3x,

ε = ±1. (58)
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Then from (57) and (58) we have

x (τ ) = ε

√
c2

1 + c2
2 + c2

3t + x0. (59)

y (t) = −c1t + y0, z (t) = −c2t + z0,

φ (t) = −c3t + φ0. (60)

Similarly, for constant potential, i.e. V (φ) = V0, we have

SV0 (x, y, z, φ) = c1y + c2z + c3φ

+ε
2
√

3

3

(
L (x) + √

c1−3 arctan h
L (x)√
c1−3

)
(61)

where L (x) =
√
c2

1 + c2
2 + c2

3 + 2V0e
√

3x and c1−3 = c2
1 +

c2
2 + c2

3. Hence the reduced Hamilton equations (57) are

ẋ = L (x) , ẏ = −c1, ż = −c2, φ = −c3, (62)

and the exact solution of the field equations is

x (t) = 1

3
ln

[
c1−3

2V0

(
tanh

(√
3

2
√
c1−3 (t + x0)

)
− 1

)]
,

(63)

y (t) = c1t + y0, z (t) = c2t + z0, φ (t) = c3t + φ0. (64)

For the exponential potential, V (φ) = V0eμφ, as we saw
previously, there exist different solutions of the WDW equa-
tion for different values of the constant μ. Hence, the solution
of the Hamilton–Jacobi equation (56) is determined by the
various values of μ.

Let us set μ = −√
3. Applying the coordinate transfor-

mation φ = ψ + x in the Hamiltonian system, the new
Hamilton–Jacobi equation is

1

2

[(
∂S

∂x

)2

− 2

(
∂S

∂x

)(
∂S

∂ψ

)
−
(

∂S

∂y

)2

−
(

∂S

∂z

)2
]

−V0e
−√

3ψ = 0 (65)

and the reduced Hamiltonian system is

ẋ =
(

∂S

∂x

)
−
(

∂S

∂ψ

)
, ẏ = −∂S

∂y
, ż = −∂S

∂z
,

ψ̇ = −∂S

∂x
. (66)

Therefore from (65) the Hamilton action is

S (x, y, z, ψ) = c1x + c2y + c3z +
(
c2

2 + c2
3 − c2

1

)
2c1

ψ

−
√

3V0

6c1
e−√

3ψ (67)

and the field equations reduce to the system

ẋ =
(
c2

1 − c2
2 − c2

3

) − V0e
√

3ψ

2c1
, ẏ = −c2, ż = −c3,

ψ̇ = −c1, (68)

with the solution

y (t) = −c2t + y0, z (t) = −c3t + z0,

ψ(t) = −c1t + ψ0, (69)

and

x (t) = 3

2
c1t −

(
c2

2 + c2
3

)
2c1

t +
√

3V0

6c2
1

e−√
3ψ0e

√
3c1t + x0.

(70)

Furthermore, for |μ| �= √
3, we apply the coordinate trans-

formation φ = ψ −
√

3
μ
x ,

1

2

[(
∂S

∂x

)2
− 2

√
3

μ

(
∂S

∂x

)(
∂S

∂ψ

)
−
(

1 − 3

μ2

)(
∂S

∂ψ

)2

−
(

∂S

∂y

)2
−
(

∂S

∂z

)2
]

− V0e
μψ = 0; (71)

hence from the Hamilton–Jacobi equation (56) we have

S (x, y, z, ψ) = c1x + c2y + c3z + γ (ψ) (72)

where

(
dγ

dψ

)2
= μ2

μ2 − 3

(
2
√

3

μ

dγ

dψ
− V0e

μψ +
(
c2

1 − c2
2 − c2

3

))
.

(73)

The reduced Hamiltonian system (57) in the new coordi-
nates becomes

ẏ = −∂S

∂y
, ż = −∂S

∂z
, (74)

ẋ =
(

∂S

∂x

)
−

√
3

μ

(
∂S

∂ψ

)
,

ψ̇ = −
√

3

μ

(
∂S

∂x

)
−
(

1 − 3

μ2

)(
∂S

∂ψ

)
(75)

and therefore from (72) and (73) the last equation becomes

ẏ = −c2, ż = −c3, (76)

ẋ = c1 −
3 − √

3
√(

3 − μ2
)
c1−3V0eμψ

μ2 − 3
, (77)

ẏ = −2
√

3

μ
c1 − 1

μ

√(
3 − μ2

)
c1−3V0eμψ. (78)
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However, if one wants to write an analytical solution of this
system, we have to perform another transformation that is
dt → dτ . The exact solution of the exponential potential in
Bianchi I scalar-field cosmology was found in [5] so we will
omit the derivation in this work.

6.2 Bianchi II cosmology

One can observe from Tables 3 and 4 that, for Bianchi type
II spacetimes, we can determine invariant solution of the
WDW equation only for zero potential, i.e. the scalar field is
a kination fluid acting as stiff matter pφ = ρφ . In this case,
the WDW equation (47) becomes


,xx − 
,yy − 
,zz − 
,φφ + e
2
√

3
3 (2y+x)
 = 0. (79)

By applying the zeroth-order invariants of the following three
dimensional closed Lie algebra with vanishing commutators:

K(x) − 1

2
K(y) + ν
∂
, K(z) + μ(z)
∂
, K(φ) + μ(φ)
∂


(80)

we find the invariant solution


1 (x, y, z, φ) = exp

(
2ν

3
(y + 2x) + μ(z)z + μ(φ)φ

)
(
1 Iλ (u (x, y)) + 
2Kλ (u (x, y))) (81)

where λ = 1
3

√
12ν2 − 9

(
μ2

(z) + μ2
(φ)

)
and u (x, y) = exp(√

3
3 (2y + x)

)
.

One can also consider the Lie algebra
{
K(z), K(x)− 1

2 K(y),

R(xz) − 1
2 R(yz)

}
for which we have the invariant solution


2 (x, y, z, φ) =
(

3e

c1φ + 
4e
−c1φ

) (

1 Iic1 (u (x, y))

+
2Kic1 (u (x, y))
)

(82)

whereas, for the Lie algebra
{
K(φ), K(x) − 1

2 K(y), R(xφ) − 1
2

R(yφ)

}
, the invariant solution is


3 (x, y, z, φ) = (

3e

c1z + 
4e
−c1z

) (

1 Iic1 (u (x, y))

+
2Kic1 (u (x, y))
)
. (83)

The Lie algebras
{
R(zφ), K(x) − 1

2 K(y), R(xφ) − 1
2 R(yφ)

}
and{

R(zφ), K(x) − 1
2 K(y), R(xz) − 1

2 R(yz)

}
provide the solution of

the form


4 (x, y, z, φ) = 
1 I0 (u (x, y)) + 
2K0 (u (x, y)) . (84)

In the WKB approximation, where the WDW equation (79) reduces
to the Hamilton–Jacobi equation, we apply the same approach as
for the case of general relativity, Sect. 4.2.1, hence we will omit it.
However, we would like to note that the solution for the kination
scalar field is φ (t) = cφ t , where cφ is a constant. In the following
section, we discuss how these solutions can be applied, under a
conformal transformation, in the case of f (R) hybrid gravity. This

means that the approach can easily be extended to higher-order
gravity and non-minimally coupled cases.

7 Hybrid gravity in Bianchi cosmology

In this section we consider the action of the hybrid metric-Palatini
gravity with the action of the form [47–49]

S = 1

2κ2

∫
d4x

√−g[R + f (R)], (85)

where R is the metric Ricci curvature scalar and f (R) is a function
of the Palatini curvature scalar which is constructed by an indepen-
dent connection �̂. A variation of the above action with respect to
the metric gives the gravitational field equations

Gμν + f ′(R)Rμν − 1

2
f (R)gi j = 0 (86)

where Gμν is the Einstein tensor for metric gi j while Rμν is the
Ricci tensor constructed by the conformally related metric hμν =
f ′(R)gμν [50]. It is well known that hybrid gravity is equivalent
to a non-minimally coupled scalar-tensor theory [49]. In particular,
if we consider a new scalar field ψ = f ′ (R) by using a Lagrange
multiplier and the relation between the two Ricci scalars R and R,
the action (85) can be written in the following form:

S = 1

2κ2

∫
d4x

√−g[(1 + ψ)R + 3

2ψ
∂μψ∂μψ − V (ψ)], (87)

where

V (ψ) = R f ′(R) − f (R) (88)

is a Clairaut equation with the singular solution

∂V
(
f ′ (R)

)
∂ f ′ (R)

− R = 0. (89)

Furthermore, from the action (87) and for the Bianchi spacetimes
(1), we see that the Lagrangian of the field equations is

L f (R) = N (t)e3λ

×
[
(1 + ψ)

(
6λ̇2 − 3

2

(
β̇2

1 + β̇2
2

))
+ 6λ̇ψ̇ + 3

2ψ
ψ̇2

]

+ e3λ

N (t)

(
V (ψ) + (1 + ψ) R∗) . (90)

As shown in [29], the action (87) of the hybrid gravity is equivalent
to a phantom minimally coupled scalar field under the conformal
transformation ḡi j = (1 + ψ) gi j , and the action (87) becomes

S =
∫

d4x
√−g

×
[
R̄ + 3

2

(
2φ + 3

2 (1 + φ) φ

)
gi jψ;iψ; j − 1

(1 + ψ)2 V (ψ)

]
(91)

where R̄ is the Ricci scalar of the conformal metric ḡi j ; therefore

under the transformation d� = i

√(
6ψ+9

2(1+ψ)ψ

)
dψ and V̄ (φ) =

− 1
(1+ψ)2 V (ψ), we have the action of the form of (40). From the
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transformation ψ → φ, we find that the only potential which admits
Lie point symmetries has the following form:

V (ψ) = V0 (1 + ψ)2 exp
(
−κ arctan

√
ψ
)

(92)

which is the exponential potential in the case of minimally coupled
scalar-field cosmology with κ = κ (μ) and κ (0) = 0, i.e. V (ψ) =
V0 (1 + ψ)2. This potential transforms to the constant potential in
the case of minimally coupled scalar field [55].

8 Discussion and conclusions

In this work we studied the Lie symmetries of the WDW equation in
the Bianchi Class A spacetimes for general relativity and scalar field
cosmologies, considering minimally coupled scalar-tensor gravity
and non-minimally coupled gravity coming from Hybrid Gravity.
We applied the Lie invariants in order to construct solutions of the
WDW equation. In the case of general relativity, we found exact
solutions of the WDW equation for the Bianchi I and Bianchi II
spacetimes. In scalar-field cosmology, we applied the Lie symme-
tries as a criterion for the selection of the unknown potential of
the scalar field and we were able to construct exact solutions for
the Bianchi I spacetime for zero potential V (φ) = 0, constant
potential V (φ) = V0, and exponential potential V (φ) = eμφ . For
the Bianchi II spacetime we obtained solutions for the zero poten-
tial case. In each case, we show that when the WDW equation is
invariant under the action of the three dimensional Lie algebra with
zero commutators, the Hamilton–Jacobi equation of the Hamilto-
nian system, which was defined by the field equations, can be solved
by the method of separation of variables; that means that the field
equations are Liouville integrable. It is important to note that, in the
case of FLRW scalar cosmology, we have more potentials where
the WDW admits Lie symmetries. However, since the Lie symme-
tries are connected to the conformal algebra of the minisuperspace,
in the case of FLRW scalar-field cosmology, the dimension of the
minisuperspace is two, which means that the last admits an infi-
nite number of conformal killing vectors, whereas, for the Bianchi
models, the minisuperspace has dimension four and admits a 15
dimensional conformal algebra, i.e. less possible generators for the
Lie symmetries of the WDW equation.

Finally, we studied the case of the hybrid gravity in the Bianchi
Class A spacetimes. Since hybrid gravity is equivalent to a scalar-
tensor theory, we were able to related all the potentials we found in
the case of minimally coupled scalar field to that of hybrid gravity.

This analysis is important in the sense that can be used in order to
construct solutions of the wave function of the Universe and, at the
same time, conservation laws, and classical solutions for the field
equations. Following the discussion in [56], the presence of sym-
metries gives rise to a straightforward interpretation of the Hartle
criterion: the symmetries generates oscillatory behaviors in the wave
function of the Universe and then allow correlations among physi-
cal variables. This give rise to classically observable cosmological
solutions. Here we generalized this result considering Bianchi mod-
els. On the other hand, other general selection rules can be identified
in quantum cosmology, as discussed in [57]. This will be the topic
of forthcoming papers.

A final remark is now in order concerning the possible applica-
tions of the above solutions. In general, the solutions of the WDW
equation can be used to construct/determine the quantum potential

[24,35,58,59] in the semi-classical approach of Bohmian mechan-
ics [60,61]. Specifically, if the solution of the WDW equation is



(
xk
)

= A
(
xk
)
ei B

(
xk
)
, where A

(
xk
)

is not, in general, a slow-

roll function, then substituting this solution in the WDW equation
gives

H
(
pk , x

k
)

+ QV = 0, (93)

where H
(
pk , x

k
)

is the Hamiltonian function which generates

the WDW equation. Starting from our considerations in the lhs
of Eqs. (15) and (45), QV = �(A)

A , is the quantum potential and

pμ = ∂B
(
xk
)

∂xμ . Equation (93) is the new Hamiltonian of the field
equations providing the semi-classical solution.

Furthermore, in the limit QV → 0, or A is a slow-roll function,

we are in the WKB approximation if and only if B
(
xk
)

is a solu-

tion of the related Hamilton–Jacobi equation. Let us consider now
the wavefunction (21) for the Bianchi I spacetime, where we can
see that, for μ1, μ2 ∈ I , the quantum potential is zero. Since the

corresponding function B
(
xk
)

is the classical action integral, this

wavefunction leads to a Kasner Universe as discussed in Sect. 4.1.
On the other hand, for the wavefunction (22), where μ1,μ ∈ I∗,

and for large values of
√
y2 + z2, due to the anisotropic parameters

β1, β2, the wavefunction (22) can be approximated by


I (x, y, z) �
cos

(√
y2 + z2

)
(
y2 + z2

) 1
4

× exp

(
i

(
Im (μ) arctan

y

z
+ Im (μ1) x

))
(94)

and then the quantum potential is QV = 1 − 1
4

(
x2 + y2

)−1
. The

semi-classical field equations are

ẋ = Im (μ1) , ẏ = Im (μ)

y2 + z2 , ż = − Im (μ)

y2 + z2 (95)

or by selecting the new variables y = r cos θ, z = r sin θ , we find
that ṙ = 0, that is, r = r0, and θ = − Im(μ)

r2
0

t + θ0, where r0 is

large. Hence

x � t, y � r0 cos

(
− Im (μ)

r2
0

t + θ0

)
,

z � r0 sin

(
− Im (μ)

r2
0

t + θ0

)
, (96)

which differs from the above Kasner solution (26).
In a forthcoming work we will extend our analysis and we study

the difference of the semi-classical solutions arising from the group
invariant solutions of the WDW equation.
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Appendix A: Symmetries of differential equations
and invariant functions

In this appendix, we briefly discuss the basic properties and defi-
nitions of the symmetries of differential equations (DEs). Further-
more we discuss the application of the Lie symmetries of the WDW
equation showing that if the WDW equation admits Lie symmetries,
which form a Lie algebra with zero commutators, then the WDW
equation admits oscillatory terms in the solution as many as the
dimension of the minisuperspace and, at the same time, the Hamil-
tonian system which defined by the field equations is Liouville inte-
grable; that is, the field equations can be solved by quadratures. In
such a case, classical cosmological solutions can be derived.

Lie point symmetries and invariant functions

A second-order DE is a function H = H(xi , uA, uA
,i , u

A
,i j ) in the

jet space BM , where xi are the independent variables and uA are
the dependent ones. Let

X = ξ i (xk , uB)∂xi + ηA(xk , uB)∂uA . (A1)

be the generator of the infinitesimal point transformation

x̄ i = xi + εξ i (xk , uB), (A2)

ū A = ū A + εηA(xk , uB). (A3)

The function H = 0, is invariant under the action of the infinites-
imal point transformation (A2), (A3) if there exists a function λ such
that [51]

X[2](H) = λH. (A4)

The vector field X is called Lie point symmetry of the function H
and X [n] is the second prolongation of X in the jet space BM

X[2] = X + ηA
i ∂ẋ i + ηA

i j ∂uA
i j
, (A5)

where

ηA
i = ηA

,i + uB,i η
A
,B − ξ

j
,i u

A
, j − uA,i u

B
, j ξ

j
,B (A6)

and

ηA
i j = ηA

,i j + 2ηA
,B(i u

B
, j) − ξk,i j u

A
,k + ηA

,BCu
B
,i u

C
, j

−2ξk,(i |B|uBj)uA,k − ξk,BCu
B
,i u

C
, j u

A
,k + ηA

,Bu
B
,i j − 2ξk,( j u

A
,i)k

−ξk,B

(
uA,ku

B
,i j + 2uB(, j u

A
,i)k

)
. (A7)

The importance of Lie point symmetries is that they can be
used in order to reduce an order of a differential equation. When
a reduction is possible, one can determine invariant solutions or
transform them to other ones [52]. From condition (A4) one defines
the Lagrange system

dxi

ξ i
= du

η
= dui

η[i]
= dui j

ηi j
,

whose solution provides the characteristic functions

Z [0]
(
xk , u

)
, Z [1]i

(
xk , u, ui

)
, Z [2]

(
xk , u, u,i , ui j

)
.

The solution Z [k] is called the kth-order invariant of the Lie sym-
metry vector (A1). By writing the DE in terms of the invariants
Z [k], we can reduce the order of the DE; for details see for instance
[52,53]. Below we discuss the application of the Lie symmetries
and of the Lie invariants for the WDW equation.

Reduction and invariant solutions of the WDW equation by
Lie point symmetries

In order to determine the Lie symmetries of the WDW equation
we apply a geometric method which is established by Paliathanasis
and Tsamparlis [7]. The method relates the Lie symmetries of the
Klein–Gordon equation to the conformal algebra of the underlying
geometry. Hence, in the following we will not present the construc-
tion of the Lie symmetries of the WDW equation but we will give
the results.

In particular, the general form of a Lie symmetry of the WDW
equation is

X = ξ i
(
xk
)

∂i +
(

2 − n

2
ψ
 + a0


)
∂
, (A8)

where ξ i
(
xk
)

is a CKV of the metric which defines the conformal

Laplace operator, (in our consideration the minisuperspace) and

ψ
(
xk
)

is the conformal factor of the CKV, recall that since ξ i is a

CKV of gi j , it means that Lξ gi j = 2ψgi j .
Furthermore, it is possible to consider a coordinate transforma-

tion xi → x̄ i so that ξ i
(
xk
)

∂i → ∂J (these are called normal

coordinates). In the normal coordinates the symmetry vector takes
the following simple form:

X = ∂J +
(

2 − n

2
ψ
 + a0


)
∂u (A9)

where now either with the method of Lie invariants, or with the
method of linear differential operators (see [33] for details) we find
the following expression for the solution of 
:



(
x̄b, x̄ J

)
= �

(
x̄b
)

exp

[∫ (
2 − n

2
ψ − Q0

)
dx̄ J

]
, (A10)

from which follows again that the coordinate x J is factored out
from the solution 
.

Furthermore, in [7] it was also shown that the symmetries of the
WDW equation can be used in order to find Noether symmetries for
classical particles.3 The exact relation among the Lie symmetries
of the WDW equation, the Noetherian conservation laws of the field
equations, and the interpretability conditions is given in [33].

3 A similar methodology by using the variational symmetries has been
established recently in [54].
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