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Abstract

Background: Improved DNA sequencing methods have transformed the field of genomics over the last decade.
This has become possible due to the development of inexpensive short read sequencing technologies which have
now resulted in three generations of sequencing platforms. More recently, a new fourth generation of Nanopore
based single molecule sequencing technology, was developed based on MinlON" sequencer which is portable,
inexpensive and fast. It is capable of generating reads of length greater than 100 kb. Though it has many specific
advantages, the two major limitations of the MinlON reads are high error rates and the need for the development
of downstream pipelines. The algorithms for error correction have already emerged, while development of
pipelines is still at nascent stage.

Results: In this study, we benchmarked available assembler algorithms to find an appropriate framework that can
efficiently assemble Nanopore sequenced reads. To address this, we employed genome-scale Nanopore sequenced
datasets available for £. coli and yeast genomes respectively. In order to comprehensively evaluate multiple
algorithmic frameworks, we included assemblers based on de Bruijn graphs (Velvet and ABySS), Overlap Layout
Consensus (OLC) (Celera) and Greedy extension (SSAKE) approaches. We analyzed the quality, accuracy of the
assemblies as well as the computational performance of each of the assemblers included in our benchmark. Our
analysis unveiled that OLC-based algorithm, Celera, could generate a high quality assembly with ten times higher
N50 & mean contig values as well as one-fifth the number of total number of contigs compared to other tools.
Celera was also found to exhibit an average genome coverage of 12 % in E. coli dataset and 70 % in Yeast dataset
as well as relatively lesser run times. In contrast, de Bruijn graph based assemblers Velvet and ABySS generated the
assemblies of moderate quality, in less time when there is no limitation on the memory allocation, while greedy
extension based algorithm SSAKE generated an assembly of very poor quality but with genome coverage of 90 %
on yeast dataset.
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Conclusion: OLC can be considered as a favorable algorithmic framework for the development of assembler tools
for Nanopore-based data, followed by de Bruijn based algorithms as they consume relatively less or similar run
times as OLC-based algorithms for generating assembly, irrespective of the memory allocated for the task. However,
few improvements must be made to the existing de Bruijn implementations in order to generate an assembly with
reasonable quality. Our findings should help in stimulating the development of novel assemblers for handling

Nanopore sequence data.
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Nanopore

Background

In recent years, next generation sequencing technologies
have been evolving rapidly with the potential to acceler-
ate the research in sequencing biology [1-3]. However,
today’s next generation sequencing technologies such as
[lumina, 454 Roche, Ion Torrent, SMRT (single —mol-
ecule real time sequencing) from Pacific biosciences,
have various significant limitations [4] especially amplifi-
cation biases, short read lengths and genome assembly
complexities. For example, Illumina — one of the most
commonly used technologies for sequencing in recent
years, produces read length of 75-100 base pairs (bp) [5]
and hence is believed to suffer from short read lengths
resulting in poor assembly of complex regions like long
repeats and duplications [4, 6, 7]. However, the applica-
tion of the SMRT platform to small microbial as well as
complex eukaryotic genomes have improved the quality
of genome assembly but the commercial availability and
price of sequencing are the major limitations of this ap-
proach [8-10]. Similar improvements were also accom-
plished by the Illumina Truseq synthetic long-read
sequencing strategy [11, 12], but the long range poly-
merase chain reaction step included in the library prep-
aration will be a limitation in time-constrained projects,
thus making it inaccessible to the whole research com-
munity. To overcome such limitations efforts are now
been made to develop an inexpensive single-molecule
Nanopore-based fourth generation DNA sequencing
technology [13-17]. In fact, the concept of single mol-
ecule sequencing using biological Nanopores was first
proposed by Deamer & Akeson [6, 14, 18] in the year
1996, since then intense efforts have been made to over-
come the formidable technical challenges and finally in
the year 2014, Oxford Nanopore Technologies Ltd re-
leased the first commercial Nanopore sequencer [19, 20]
to early access customers. The MinION device, which is
no larger than a typical smartphone consists of pores
embedded into a membrane which is placed over an
electric grid, as the DNA bases i.e. A(adenine), T(thy-
mine), G(guanine) & C(cytosine) pass through the pores
they generate a particular intensity of ionic current,

which are further base called using metricorr software
[21, 22]. The reads generated by this sequencer, can be
classified into three types: 2D reads, template reads and
complement reads [23]. In our study, we analyzed all
three types of reads but mainly focussed on 2D reads
since they are optimal reads that consist of consensus in-
formation of both the strands [22]. However, similar re-
sults were observed upon analyzing all three types of
reads, illustrating the reproducibility of our results irre-
spective of the type of reads analyzed.

Despite the high error content of the MinION reads
[20, 24], Aston et al. [25] have demonstrated the utility
of these reads in microbial sequencing, which incited the
need for the development of new tools either to correct
the erroneous reads or for the downstream analysis. The
error correcting algorithms have already emerged [24, 26]
while, development of downstream pipelines is at
nascent stage. A major computational step in any of the
DNA sequencing pipelines is assembly and can be de-
fined as a hierarchical data structure that maps the se-
quence data for the reconstruction of the target genome.
This process involves initially grouping the reads into
contigs and then contigs into scaffolds thereby generat-
ing the assembly. Currently, the most common algorith-
mic frameworks on which assembly algorithms are
developed include the Overlap Layout Consensus (OLC)
[27], de Bruijn Graph (DBG) [28] which uses some form
of k-mer graph method and greedy extension graphs
which use either OLC or DBG [29]. There are about 24
academically available de novo assemblers [29] which
have been developed by implementing one of these three
assembler algorithms. Most of the assembler algorithms,
generally take a file of sequence reads and a quality-
score file as input, but for Nanopore data, the quality
scores are not available so we failed to test assemblers
which insist on the requirement of the quality score file
as a compulsory input. An example of one such assem-
bler is PCAP, which although is specifically developed
for long read data does not accept reads without quality
score information [30]. On the other hand, most of the
assemblers such as Newbler failed to assemble Nanopore
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reads due to the length of the reads. Due to these con-
straints we finally employed in our study one or two as-
semblers for each type of assembly algorithm and
analyzed the quality, accuracy and efficiency of each as-
sembler on whole genome Nanopore sequencing data for
E. coli and yeast. Our study unveiled OLC as the optimal
algorithm, in multiple contexts benchmarked in this study,
providing a direction for further development of assembly
tools for Nanopore data.

Methods

Data retrieval

Through an early access program of Nanopore sequen-
cer (MAP), Quick et al. [23] sequenced the genome of
the model organism, Escherichia coli K12 substr. Ini-
tially, we have used this dataset to benchmark various
assembler algorithms but due to high error rate all the
existing assemblers failed to assemble such long errone-
ous reads (5000 — 50,000 bp) (~35 % error) [24]. Later,
in January 2015, Schatz and co-workers, developed a
novel hybrid algorithm called Ncorr to correct these er-
roneous reads. By implementing this Ncorr algorithm
[24] they have error corrected the reads of the E. coli
dataset sequenced by Quick et al. [23] and the reads of
the yeast dataset sequenced by Goodwin et al. [24].
These error corrected datasets have been retrieved from
the Schatzlab website [24] in FASTA format for all sub-
sequent analysis.

Composition of the nanopore sequencing datasets used
in this study

The E. coli dataset consisted of 1,8842 2D reads (when
two strands are read accurately and consensus is built
from them) as well as 25,432 template and 11,130 com-
plement reads (which cannot be converted to 2D reads)
while, the yeast dataset consisted of 28,258 2D reads,
56,046 and 20,506 template and complement reads
respectively.

Assembler algorithms employed in this study

Velvet

Velvet (developed in C) is a secure and reliable de Bruijn
graph-based assembler. It extensively uses graph simpli-
fication strategy to scale down non-intersecting paths
into single nodes. This simplification compresses the
graph without much loss of information. To reduce the
time-complexity of the algorithm, Velvet implements
bubble search (to narrow down the candidate bubbles)
and read threading (removal of paths that represent
fewer reads than the threshold) [29, 31].

ABySS
ABySS (developed in C++) is a de Bruijn graph based as-
sembler mainly developed to address the memory issues
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while assembling mammalian—size genome. ABySS im-
plements a partition approach at the level of individual
graph nodes (for efficiency each graph node is processed
separately as each node is individually assigned to a
CPU). To overcome the memory requirements, the as-
signment of graph node to CPU is attained by convert-
ing K-mer to an integer using strand-neutral formula i.e.
k-mer and its reverse complement map to same integer.
ABySS also implements graph simplification like Velvet
and then performs bubble smoothening by bounded
search where priority is given to the path supported by
more reads [32].

Celera

Celera is an Overlap Layout Consensus (OLC)-based as-
sembler, which was developed at the time of Sanger se-
quencing by Celera Genomics. In recent years, the
algorithm has been modified to handle long Pac Bio
reads whose nature is similar to nanopore reads. The re-
vised pipeline is named as CABOG (Celera assembler
with best overlap graph). CABOG constructs an overlay
graph from the reads and reports the best overlaps,
which are then used to build unitigs. These unitigs are
joined to build contigs and finally these contigs are con-
nected to form scaffolds [27].

SSAKE

SSAKE is a greedy graph-based assembler. It does not
use the graph explicitly. Instead, it iteratively searches
for reads with overlap to build the contigs. Initially, it
will look for reads with end —to —end confirmation by
favoring error-free reads and then performs the exten-
sion [29].

Binning of reads

In order to test the performance of various metrics in
relation to the size of the datasets, we have divided the
total reads in a dataset into four bins ie. 25 %, 50 %,
75 % and 100 % of the reads. To avoid the prejudice in
selecting the reads, the binning of the data was per-
formed by randomly generating the bins of the reads ten
times using python script, and finally the average result
of all the ten trials after processing the each trial is re-
ported in the figures.

Implementation of the benchmarking pipeline

According to our survey there are at least 24 de novo as-
semblers which can be accessed with a free academic li-
cense [33], that have been developed by implementing
one among the following three algorithms namely de
Bruijn graphs, Overlap Layout Consensus (OLC) and
greedy extension. Out of these only few assemblers i.e.
Velvet [24] (de Bruijn graph), Abyss (de Bruijn graph)
[25], Celera (OLC method) [34] and SSAKE (greedy
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extension based method) [29] could be successfully run
for assembling the nanopore reads. All the other assem-
blers failed to assemble most likely due to the length of
the reads and/or due to their expectation for quality
scores or other input parameters not available for nano-
pore reads. It is important to note that most of the as-
semblers were developed in view of short read
sequencing data whose read lengths range from 500-
3000 bp [5] whereas the read length of Nanopore reads
range from 5000-50,000 bp. All the assemblers in this
study were run on UNIX command line with default pa-
rameters (to evaluate true potential of each tool), and
the obtained results were analyzed for reliability, quality
and accuracy of assemblies.

To evaluate and compare the efficiency of various assem-
bly algorithms the following metrics were employed [33]:

Calculation of assembly metrics

The contig files which were generated as a result of suc-
cessful assembly by each assembler were used for statis-
tical analysis of an assembly. The assembly metrics i.e.
N50 value,which represents 50 % content of the assem-
bly and all the contig metrics including the mean, total
length of all generated contigs as well as the number of
contigs obtained, were calculated using a perl script.

Calculation of performance metrics

Running times and memory consumed by each assem-
bler was captured during the assembly process using
UNIX utilities. While limiting the memory usage of each
assembler was accomplished using the Ulimit program.

Calculation of accuracy metrics

To assess the accuracy and quality of the generated assem-
blies, genome coverage i.e. defined as the percentage of the
genome covered when the generated contigs are mapped
onto reference genome and the percentage of alignment
i.e. the number of contigs mapped to the genome out of
the total generated contigs, were computed using shell
scripts while mapping to the reference genome was per-
formed using a fast gapped aligner tool Bowtie [24].

Results and discussion

Pipeline implemented for the analysis

Our analysis pipeline shown in Fig. 1, illustrates the step
wise protocol followed for benchmarking the various as-
sembler algorithms for Nanopore sequencing data (see Ma-
terials and Methods). Initially, we have retrieved the non-
error corrected and Ncorr-error corrected [24] datasets to
perform preliminary analysis with all the available assem-
blers, which helped us to identify few assemblers that can
potentially assemble Nanopore sequenced reads. After this
initial analysis to identify potential assemblers, we analyzed
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the efficiency of these assemblers as well as the accuracy
and quality of the generated assemblies using various met-
rics on the error-corrected reads. Our benchmarking ana-
lysis enabled us to unveil the ideal algorithmic frameworks
for addressing the various needs in the assembly of Nano-
pore sequencing data.

Comparison of the assembly metrics generated by
various assemblers reveals Celera as an optimal
assembler

The main features that can best explain the quality of an
assembly from sequencing reads include the N50 value,
number of contigs, mean length of contigs and the total
sum of the lengths of all the contigs identified in an as-
sembly. Hence, we have calculated all of these metrics
for the Nanopore sequencing reads for the E. coli and
Yeast genomes to understand the relative performance
of the assemblers (see Materials and Methods). In the
following sections, we summarize these comparisons.

1) N50 value: Upon analyzing the 2D reads from E.coli
dataset (see Fig. 2a) we observed consistent increase in
the N50 values of the assemblies generated by various
assemblers with an increase in the dataset size measured
as the percentage of the total number of reads employed
in the analysis. In particular, assembly generated by
Celera had the highest N50 value ranging from
20,000 bp to 80,000 bp (as we move from 25 % to
100 % of the total reads) while, the assemblies gener-
ated by Velvet, ABySS and SSAKE consisted of an
average N50 value of 10,000 bp (approximately),
which is eight times lower than N50 value of Celera
generated assembly for E. coli (Fig. 2a). The differ-
ences were found to be even more striking when the
results were compared between the assemblers for the
yeast genome (Fig. 2b). Since, N50 value represents
the 50 % content of the assembly, higher the N50
value better would be the quality of an assembly.
Hence, from the above observations based on N50
values, it can be concluded that Celera assembler is
likely to generate better assembly compared to the
other assemblers studied here. It is possible to specu-
late that since OLC-based algorithms like the Celera
assembler have traditionally been used for longer read
technologies like sanger sequencing and probably due
to recent modifications made to this specific imple-
mentation to make it compatible with even longer
reads like PacBio reads of length 3000-15000 bp, they
are likely to outperform in terms of assembly quality,
most short-read assembler implementations for nano-
pore sequencing data. This is especially likely to be
true if the number of allowed mis-matches for build-
ing the contigs can be increased - due to high error
rates in the ends of the nanopore reads. While,
SSAKE generated assembly is of poor quality with an
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Fig. 1 lllustrates the pipeline implemented in this study for benchmarking various assembler algorithms on Nanopore sequenced datasets

N50 value of approximately 100 for the yeast genome,
which is 100 times less than N50 value of Celera gen-
erated assembly (Fig. 2b). A similar trend was ob-
served when template (see Additional file 1) and
complement reads (see Additional file 2) of the E. coli
dataset were analyzed, confirming the reproducibility
of the results. Notably, when 2D reads of Yeast data-
set were analyzed, we observed that the N50 value of
an assembly generated by Celera for 50 % of the
reads is much higher than for the whole dataset. Even
though the binning of the reads was performed by
randomly generating the bins of reads ten times, it is
possible to associate this variation due to selection
bias or genome-specific variations as this trend was
seen only for yeast and not E. coli. However, it is still
evident that the N50 value of Celera generated assem-
bly is much higher than the N50 values of the assem-
blies generated by any other assembler (see Fig. 2b).
We found very similar trends for 1D reads namely tem-
plate and complement reads, further confirming the re-
producibility of the results (see Additional files 1 and 2).

2) Number of contigs: We observed, that the number
of contigs and mean contig length of an assembly are in-
versely proportional (Fig. 2c—f). Ideally, a good assem-
bler should generate less number of contigs with a high
mean and N50 values. We found this generally held true
for assemblies generated by Celera compared to the

other assemblers studied here. For instance, Velvet
followed by ABySS were found to consistently show high
number of contigs compared to other assemblers at dif-
ferent percentage of reads employed in the assembly.
This was in contrast to the assemblies generated from
Celera and SSAKE, which were found to show low num-
ber of contigs indicating the possibility of low but more
comprehensive assemblies from the latter two (Fig. 2e
and f). These results suggest that Velvet and ABySS are
likely to produce very fragmented assemblies. We found
similar trends for all the three types of reads in both the
datasets (see Fig. 2(c, d), Additional files 1 and 2). Since
Celera assembler initially constructs overlay graph among
reads and reports the best overlaps, which are further used
to build untigs, which are joined to generate contigs, it is
possible that data from error-corrected long read sequen-
cing technologies like nanopore are likely better assem-
bled using OLC-based methods as the read error-
correction methods further improve. Indeed, less number
of contigs with longer lengths identified in our analysis by
Celera’s assembler further supports this trend.

3) Mean length of the contigs: It is similar to N50
value but the weightage is not given to contigs with
longer length while calculating the mean. We found
that it followed similar trend in both the E. coli and
yeast datasets i.e. Celera assembler generating contigs
with high mean values followed by Velvet, ABySS and
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SSAKE respectively (see Fig. 2e and f)). The analysis
of 1D reads revealed the same overall trend but the
increasing trend of mean values were not found to be
proportional with data size unlike that seen for 2D
read data (see Additional files 1 and 2).

4) Total sum of lengths of all contigs: While this
metric does not play a specific role in assessing the qual-
ity of an assembly mainly when the genomes have sev-
eral duplicated regions, nevertheless it can provide
information which can be useful for downstream ana-
lysis and prioritization in the assembly framework. So
we compared the total length of the contigs obtained, at
varying percentages of sequence data employed, using
various assemblers (Fig. 2g and h). Not surprisingly, this
analysis revealed that the assemblers which showed high

number of contigs also exhibited a high total contig
length suggesting that these assemblers are likely to pro-
duce too many fragmented and/or repetitive contigs
thereby causing erroneous assemblies.

Upon analyzing the assembly metrics of the generated
assemblies we observe that, irrespective of the data size
and its complexity across genomes, OLC based Celera
assembler generates better quality assembly than other
assemblers.

Evaluation of the memory and run time requirements of
various assemblers reveals Celera to be the fastest when
sufficient memory is provided

Major parameters that can be measured to assess the
performance of any computational tool or algorithm are
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memory (virtual and RAM) and time consumed by the
tool to complete the assigned task. In this study, we ob-
served that irrespective of size of the dataset, the RAM
and virtual memory required for each tool to perform
the task is ~26.5 KB and ~1.2 KB respectively. While the
time required by each tool to complete the task signifi-
cantly varies with the size of the dataset and complexity
of the genome. For 2D reads of the E. coli dataset, the
wall time as well the CPU time consumed by Velvet is
the lowest with ~15-30 sec of wall time and 15-30 sec
of CPU time followed by Celera with ~90 sec each of
wall time and CPU time, ABySS with ~50-100 sec of
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wall time and ~60-100 sec of CPU time and SSAKE
with ~1000-1500 sec of wall time and ~1500 sec of
CPU time (see Fig. 3a and ¢, Additional file 3). Values
for run times are log transformed in the plots to facili-
tate easy comparison across tools and datasets. Across
the assemblers, the time taken to run by each tool in-
creased with the increase in the data size. For yeast data-
set, the trend was found to be same but the time
consumed by each tool was approximately 3 times
higher than the time consumed to assemble the E. coli
genome, likely due to the differences in the complexity
of the genomes and size of the datasets (see Fig. 3b and d,
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Additional file 4). In addition, we analyzed the per-
formance of the assemblers, by restricting the mem-
ory allotment wusing Ulimit utility on UNIX
environment, to study how the run times vary across
them when memory allotted is altered between differ-
ent runs. We observed that the time taken by each
tool remains same when more amount of memory is
provided except for Celera, for which we found that
the run times significantly decreased when more
memory is provided and this resulted in a trend with
Celera consuming the lowest time followed by Velvet,
ABySS and SSAKE (see Fig. 3e—h, Additional files 3
and 4). The analysis of 1D reads further confirmed
the reproducibility of these results (see Additional
files 5 and 6).

Overall, our performance metric analysis revealed that
the time taken by the de Bruijn graph and OLC-based
algorithms to generate assembly is low, while the time
consumed by greedy-extension algorithms to generate
the assembly are likely to be relatively higher for nano-
pore data. This might be due to the extensive search
made by the greedy-extension algorithms to find the
end-to-end overlap of the reads while assembling. It is
possible that indexing in greedy extension methods
might reduce the run times to some extent. On other
hand, de Bruijin graph based assemblers take less time
as they implement bubble search which narrow down
the candidate bubbles and help in speeding up the as-
sembly process. While, Celera implements OLC algo-
rithm which looks for overlap among the reads to join
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them together. Since, nanopore reads are longer but
fewer, it is not only easy to find overlaps but are also
likely to exhibit longer overlaps among the reads, which
facilitates more accurate construction of the Contigs.
Thus, it is possible that OLC-based approaches like Cel-
era will take lesser run time to generate more accurate
assemblies with nanopore data. However, in order to im-
prove performance of these methods, it is important to
note that error rates in nanopore reads need to be de-
creased while allowing increased mismatches in the as-
sembly process.

Evaluation of the quality of the generated assemblies
reveals OLC-based algorithms to be ideal for nanopore
data

Two specific metrics which can help in assessing the ac-
curacy of an assembly are genome coverage and align-
ment percentage (see Materials and Methods).
Surprisingly, the genome coverage of all the generated
assemblies was very low, but comparatively the assembly
generated by Celera for the E. coli 2D read data exhib-
ited better genome coverage (12—13 % versus 2 % for all
other assemblies) (see Fig. 4a). For the yeast dataset, the
percentage of genome coverage for the assemblies gener-
ated by ABySS, Celera and Velvet were found to be
80 %, 70 % and 50 % respectively. In contrast, it was
found to be only 2 % for the assembly generated by
SSAKE (see Fig. 4b). When the percentage of alignment
was compared between the assemblers, the contigs gen-
erated by Celera and ABySS for the E. coli 2D read data
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showed 100 % alignment to the reference genome while
the alignment percentage of the contigs generated by
Velvet and SSAKE was found to be 80 % and 0 % re-
spectively (see Fig. 4c). For Yeast 2D read data the align-
ment percentage ranged between 60 %-90 %, with
contigs generated by ABySS having highest alignment
percentage when aligned to the reference genome
followed by Celera, Velvet and SSAKE (see Fig 4d). Fur-
ther evaluation of 1D reads for coverage and alignment
showed a similar trend, confirming the reproducibility of
these results (see Additional files 7 and 8).

Conclusion

In this study, we implemented a computational pipeline
for the benchmarking of assembler algorithms which re-
vealed several observations which can aid in the devel-
opment and improvement of frameworks for assembling
genomes using nanopore data. In particular, we found
that OLC-based assembler Celera generates an assembly
with ten times higher N50 value & mean value and five
times lower number of contigs. Our analysis also con-
firmed that OLC-based approaches can result in high
genome coverages with 12 % in E. coli and 70 % in Yeast
along with moderate alignment percentages of approxi-
mately 85 % when compared to other assemblies, indi-
cating a relatively high quality of the assembly compared
to other tools studied here. Moreover, Celera was found
to exhibit lesser run times when increased memory was
provided to perform the task. Thus, Overlap Layout
Consensus (OLC) based algorithms would be ideal
frameworks for building de novo assemblers for nano-
pore reads followed by de Bruijn graph based algorithms
since assemblies generated by ABySS were found to
show high accuracy, moderate quality and reasonable
run times and memory requirements. Our results also
suggest that improvements in greedy-extension algo-
rithms can be implemented by indexing in order to de-
crease the run times. Although this step might reduce
the run times for greedy extension methods, accuracy
and quality of an assembly generated will be potential is-
sues to be addressed for these methods.

There are several challenges that currently exist in
dealing with the Nanopore sequencing data. These in-
clude high error rate of the long reads and lack of auto-
mated computational pipelines for error correction,
assembly/alignment as well as downstream analysis of
the reads. Developing efficient algorithms which can
automate the process of error correction and assembly
of the reads would pose some potential opportunities in
this domain. For instance, an automated pipeline can be
developed by implementing HGAP (Hierarchical Gen-
ome Assembly Process) algorithm for error correction,
which is already proven to be an optimal algorithm for
the error correction in the context to PacBio reads.
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However, the implementation of HGAP algorithm re-
stricts the application of the tool to specific genomes i.e.,
only those for which short read data is already available
in the public domain. Hence, there is a need to develop
methods which can correct the reads from single mol-
ecule sequencing methods without using short read or
reference genome sequences and using such implemen-
tation in the assembly and alignment process for down-
stream analysis. Indeed, we anticipate rapid development
of automated computational pipelines to address various
aspects of nanopore sequencing data analysis as new
datasets spanning multiple species become available to
the scientific community in the coming years. Hence,
some of the opportunities for computational biologists
include:

1. Enhancing the error correcting algorithms which
don’t require short read sequencing data or
reference genomes.

2. Development of OLC based assembler algorithms
which can consider error-rates in the assembly
process, since our results confirm the performance
of these methods to be significantly better than
other algorithms.

3. Developing automated pipelines for pre- processing
of the long reads and downstream analysis.

Additional files

Additional file 1: Each pair of plots give an overview of the comparisons of
the quality of the assemblies across assemblers for nanopore sequenced
template reads from E. coli and yeast datasets. A&B: Histograms with error bars
plotted between % of template reads and N50_value of an assembly show
the variation in N50 value of an assembly among different assembler
algorithms and how it varies with respect to the data size. C&D: Histograms
with error bars plotted between % of template reads and number of contigs
generated from an assembly showing how the number of contigs generated
vary for each respective assembler algorithm across various bins of respective
datasets. E&F: Histograms showing the percentage of template reads
employed on X-axis versus the average length of the contigs represented as
mean of the contigs, obtained using each algorithm. Mean of the Contigs is
the average value of the total sum of lengths of all the contigs. G&H:
Histograms showing the sum of the lengths of all the contigs generated by
an assembler as a function of the percentage of the total reads employed in
the assembly. In each set of plots, left panel corresponds to E. coli dataset
while the plots in the right panel correspond to the Yeast

dataset. In all the plots labeled numeric values on histograms indicate
corresponding values of the metric in respective color representing each
tool. (PDF 670 kb)

Additional file 2: Each pair of plots give an overview of the comparisons of
the quality of the assemblies across assembilers for nanopore sequenced
complement reads from E. coli and yeast datasets. A&B: Histograms with error
bars plotted between % of complement reads and N50_value of an assembly
show the variation in N50 value of an assembly among different assembler
algorithms and how it varies with respect to the data size. C&D: Histograms
with error bars plotted between % of complement reads and number of
contigs generated from an assembly showing how the number of contigs
generated vary for each respective assembler algorithm across various bins of
respective datasets. E&F: Histograms showing the percentage of complement
reads employed on X-axis versus the average length of the contigs

represented as mean of the contigs, obtained using each algorithm. Mean of
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the Contigs is the average value of the total sum of lengths of all the contigs.
G&H: Histograms showing the sum of the lengths of all the contigs generated
by an assembler as a function of the percentage of the total reads employed
in the assembly. In each set of plots, left panel corresponds to E. coli dataset
while the plots in the right panel correspond to the Yeast dataset. In all the
plots labeled numeric values on histograms indicate corresponding values of
the metric in respective color representing each tool. (PDF 700 kb)

Additional file 3: Overview of the running times for various assemblers.
(PDF 236 kb)

Additional file 4: Overview of the influence of memory allocation on
the running times for various assemblers. (PDF 155 kb)

Additional file 5: Each pair of plots give an overview of the computational
requirements of each assembler for assembling nanopore sequenced
template reads from E. coli and Yeast datasets. A&B: Histogram with error bars
plotted between % of template reads and log values of wall time which
represents the actual time consumed by each assembler to execute the task
with respect to gradual increase in data size. C&D: Histograms with error bars
plotted between % of template reads and log values of CPU time which
represents amount of time the CPU is actually executing instructions for each
assembler with variation in data size. E&F: Histograms with error bars plotted
between varying amount of allotted memory on X-axis and log values of the
wall time, showing the influence of memory allocation on wall time consump-
tion by various assembler algorithms. G&H: Histograms with error bars plotted
between varying amount of memory and log values of the CPU time,
illustrating the influence of memory allocation on the CPU time consumed by
various assembler algorithms. In each set of these plots, left panel corresponds
to E coli dataset while the plots in the right panel correspond to the Yeast
dataset. (PDF 813 kb)

Additional file 6: Each pair of plots give an overview of the computational
requirements of each assembler for assembling nanopore sequenced
complement reads from E. coli and Yeast datasets. A&B: Histogram with error
bars plotted between % of complement reads and log values of wall time
which represents the actual time consumed by each assembler to execute
the task with respect to gradual increase in data size. C&D: Histograms with
error bars plotted between % of complement reads and log values of CPU
time which represents amount of time the CPU is actually executing
instructions for each assembler with variation in data size. E&F: Histograms
with error bars plotted between varying amount of allotted memory on X-axis
and log values of the wall time, showing the influence of memory allocation
on wall time consumption by various assembler algorithms. G&H: Histograms
with error bars plotted between varying amount of memory and log values of
the CPU time, illustrating the influence of memory allocation on the CPU time
consumed by various assembler algorithms. In each set of these plots, left
panel corresponds to E. coli dataset while the plots in the right panel
correspond to the Yeast dataset. (PDF 838 kb)

Additional file 7: Each pair of plots show the accuracy of the assembly
generated by various assembler algorithms for nanopore sequenced
template reads from E.coli (Panels A and C) and Yeast (Panels B and D)
datasets. A&B: Line graphs plotted between % of template reads and the
% of genome covered, showing the extent of genome assembled by
each assembler algorithm. C&D: Line graphs between the % of template
reads and % of alignment showing the confidence level of the contigs
being assembled by various assembler algorithms. (PDF 584 kb)

Additional file 8 Each pair of plots show the accuracy of the assembly
generated by various assembler algorithms for nanopore sequenced
complement reads from E.coli (Panels A and C) and Yeast (Panels B and D)
datasets. A&B: Line graphs plotted between % of complement reads and
the % of genome covered, showing the extent of genome assembled by
each assembler algorithm. C&D: Line graphs between the % of complement
reads and % of alignment showing the confidence level of the contigs
being assembled by various assembler algorithms. (PDF 798 kb)

Abbreviations
Bp, base pair; kbp - kilobasepair; £. coli, Escherichia coli; MAP, MinlON" early
Access Program; OLC, overlap layout consensus; Yeast, Saccharomyces cerevisiae
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