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Abstract The cyanobacteria are the most important prokaryotic primary producers on

Earth, inhabiting a great diversity of aquatic and terrestrial environments exposed to light.

However, the evolutionary forces leading to their divergence and speciation remain largely

enigmatic compared to macroorganisms due to their prokaryotic nature, including vast

population sizes, and largely asexual reproduction. The advent of modern molecular

techniques has facilitated an understanding of the important factors shaping cyanobacterial

evolution, including horizontal gene transfer and homologous recombination. We review

the forces shaping the evolution of cyanobacteria and discuss the role of cohesive forces on

speciation. Further, while myriad species concepts and definitions are currently used, only

a limited subset might be applied to cyanobacteria due to their asexual reproduction.

Additionally, concepts based solely on phenotypes provide insufficient resolution. A

monophyletic species concept which is universal may be ideal for cyanobacteria. Actual

identification of the cyanobacteria is difficult due to cryptic diversity, lack of morpho-

logical variability, and frequent convergent evolutionary events. Thus, applied molecular

techniques such as DNA barcoding will be useful for identifications of environmental

samples. Lastly, we show that the real biodiversity of the cyanobacteria is widely under-

estimated, due in part to low sampling efforts, sensitivity to the molecular markers
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employed, and the species definitions employed by researchers. In conclusion, we an-

ticipate a rapid increase in cyanobacterial taxa described and large revisions of the system

in the future as scientists adopt a common approach to cyanobacterial systematics.

Keywords Cyanobacteria � Species concept � Evolution � Speciation � Biodiversity

Introduction

The Cyanobacteria (also known as the Cyanophyceae, Cyanophyta, cyanoprokaryota, blue-

green algae or blue-green bacteria) are prokaryotes possessing oxygenic photosynthesis,

while sharing similar habitats to eukaryotic algae (Kauff and Büdel 2011). Moreover,

cyanobacteria can live in some of the most extreme habitats on earth (Seckbach 2007). On

the basis of fossil records, Schopf (2000) estimated that cyanobacteria may have evolved

3.5 BYA, making them the oldest oxygen producing photosynthetic microbes, and sig-

nificant contributors to the sudden increase in atmospheric oxygen during the Great

Oxidation Event (Bekker et al. 2004; Kauff and Büdel 2011).

The cyanobacteria exhibit remarkable variability in morphology and ultrastructure,

from unicellular to filamentous forms (Figs. 1, 2). They may also possess intercellular

connections or microplasmodesmata, considered a sign of multicellularity (Nürnberg et al.

2014). Moreover, some genera exhibit morphological and functional cell differentiation

such as heterocytes (adapted to nitrogen fixation) and akinetes (resting stage cells)

(Whitton and Potts 2000).

The purpose of this paper is three-fold. First, we will review the most recent literature

relating to the evolutionary processes forming bacterial (and cyanobacterial in particular)

species. Second, we will evaluate their application in cyanobacterial taxonomy, distribu-

tion, species concepts and species definitions. Third, we will discuss some practical aspects

of cyanobacterial taxonomy and systematics.

Species concept in (cyano)bacteria

Some authors postulate that all prokaryotes are species-less or fuzzy (e.g. Hanage et al.

2005; Konstantinidis and Tiedje 2005; Hanage 2013), because they lack ecologically or

genetically coherent groups. Such ‘‘fuzziness’’ might be apparent in ambiguous ecological

boundaries among species, which was suggested by Cohan and Perry (2007) and Kopac

et al. (2014). For cyanobacteria, the most obvious phenotypic features (i.e. cell mor-

phology) may at times be phylogenetically uninformative when compared to phylogenies

generated by 16S rRNA gene data, which is the currently accepted ‘‘Gold-standard’’ in

bacterial systematics (e.g. Honda et al. 1999; Robertson et al. 2001; Kim et al. 2014).

Moreover, species identifications might be complicated by the analyses used, with some

traditional methods lacking species-level resolution. For example, Hanage et al. (2005)

showed that multilocus sequence analysis is required to distinguish highly recombinant

species of the human inhabiting bacterium Neisseria spp. Similarly, marine picoplanktic

Synechococcus is composed of several ecological and geographical lineages, which may be

recognized only based upon multilocus sequence analysis (Mazard et al. 2012).
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On the other hand, since the frequency of horizontal gene transfer (HGT) and ho-

mologous recombination (HR) decreases with the genetic distance suggests coherence

within evolutionary lineages and thus the existence of prokaryotic species. However, this

assertion might be complicated by the methods used or by the stage of speciation. Models

of speciation presented by Polz et al. (2013) and Dvořák et al. (2014b) showed mixed

phylogenetic signals based on different loci at the beginning of speciation caused by HGT

and HR. A stronger phylogenetic signal comes later during speciation and is balanced until

coherent species units are evident (Shapiro et al. 2012). Conversely, Cohan (2011) argues

that cohesion is not maintained by barriers of recombination, but rather concerned with

ecological diversification, which precedes barriers of recombination (Wiedenbeck and

Cohan 2011).

Cohesion might not necessarily be the key factor for the existence of species de-

limitations, and Kopac et al. (2014) proposed ecological differences among ecotypes as

key features. They suggest that ecotypes exist indefinitely, but lineages within ecotypes are

changing. In conclusion, regardless mechanisms of coherence, there seem to be coherent

evolutionary lineages in cyanobacteria, which might be called species.

Fig. 1 Illustration of morphological diversity in cyanobacteria. Groups (orders) follow Rippka et al. (1979).
I. Chroococcales: a Chroococcus subnudus, b Ch. limneticus, c Cyanothece aeruginosa, d Snowella
litoralis, e Microcystis aeruginosa. II. Pleurocapsales: f Pleurocapsa minor. III. Oscillatoriales:
g Planktothrix agardhii, h Limnothrix redekei, i Arthrospira jenneri, j Johanseninema constricum,
k Phormidium sp., l, m Oscillatoria sp., n Schizothrix sp., o Tolypothrix sp., p Katagnymene accurata., IV.
Nostocales: q Dolichospermum planctonicum, r Dolichospermum sp., s Nostoc sp., t Nodularia moravica.
V. Stigonematales: u, v Stigonema sp. Scale bar a–u = 10 lm, v = 20 lm. (Color figure online)
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Fig. 2 Transmission electron images of cyanobacteria––illustration of diversity in ultrastructure; a–e,
g Hormoscilla pringsheimii; f Neosynechococcus sphagnicola; h, i Spirulina; j, k Arthrospira; a The cell
wall depressions (wall pores, black arrows) are the passages through which mucilage crosses the wall. A
large part of the cytoplasm is occupied by thylakoids often coiled to form roundish structures formed by
circular thylakoids (asterisk) b detail of a. The black arrows indicate the cell wall depressions (mucilage
pores). Abundant sheath fibrillar mucilage (???) is evident along the wall. Some wavy thylakoids (**) run
along the cytoplasmic membrane as single lamellae, while more internally they coil to form roundish bodies
(single asterisk). Roundish electron dense bodies (****) represent polyphosphate granules. c Grey spherical
bodies (white arrow) in the cytoplasm represent cyanophycin bodies. d Junction pores (?) through the cell
wall appear as channels orthogonal to the cytoplasmic membrane surface. e Detail of a polyphosphate
granule (****). Many ribosomes can be observed in the cytoplasm, particularly close to the thylakoids. f In
unicellular species, thylakoids are typically arranged parietally (***), along the cytoplasmic membrane.
Polyhydroxybutyrate bodies (PHB, ??) are visible. g Detail of the cell wall depressions (black arrow) and
their relationships with the fibrillar component of mucilage. h Image of the spirally arranged filament of
Spirulina, whence the frequent observation of double flanked cells. The wavy thylakoids are clustered in
bundles of lamellae. i Detail of h. A large part of the cytoplasm is occupied by wavy thylakoids, while the
‘‘free’’ cytoplasm appears lectron dense and containing many different bodies at very variable level of
electron density. j In a filament of Arthrospira the apical cell appears to have a different shape with respect
to the other cells. Many heterogeneous cytoplasmic structures are visible, among which polyphosphate
bodies (****) and gas vesicles (aerotopes, #). k Detail of j. Apparently even spaces possibly enclosed by
membranes ### and containing electron dense bodies and fibrillar material can be observed, such bodies are
interpreted as assembling carboxysomes. Cylindrical bodies (x) can be observed in the cytoplasm. Material
can pass through cell wall pores (microplasmodesmata) from one cell to another in filamentous genera
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Before we begin a discussion of species concepts in bacteria, we would like to em-

phasize the differences between a species concept and species definition, which is often

confused. A species concept is a theoretical demarcation of the species, which would be

ideally applicable to all organisms. Conversely, species definitions are a set of rules used

for practical identification of species (Hanage 2013). For instance, most bacteriologist use

distance among genes or genomes (DNA–DNA hybridization, average nucleotide identity;

Richter and Rosselló-Móra 2009) as a species definition while not considering an actual

species concept. It does not take into account a phase of speciation or phylogenetic po-

sition, and thus it does not show the true evolutionary history of the species.

A possible concept of a bacterial species may be a ‘‘genomically and phenomically

cohesive cluster’’ to which a possible concept of species may be applied (Doolittle and

Zhaxybayeva 2009). However, the same authors pointed out that there would be ‘‘no

principled way in which questions about prokaryotic species, such as how many there are,

how large their populations are, or how globally they are distributed, can be answered’’.

Thus, the question remains: how to evaluate biodiversity among prokaryotes?

Is there a quantitative threshold of genetic difference sufficient to describe a prokaryotic

species in order that eukaryotes-centered biological species concept might work (sensu

Mayr 1942, 1946)?

The recognition of the prokaryotic species problem eventually led to a partial consensus

about species delimitations (Gevers et al. 2005, 2006; Staley 2006). According to these

authors, a prokaryotic species should be recognized primarily on the basis of genotypic

similarity and hence mainly on genetic distances. Stakebrandt et al. (2002) proposed that

two isolates may be assigned to the same species in case of a value higher than 70 % in a

standardized DNA–DNA hybridization experiment. Other distances based on the small

subunit (SSU, or 16S) rRNA, could be used to exclude the belonging to the same species in

case of a [ 97.5 % similarity (Fox et al. 1992; Stackebrandt and Goebel 1994). Another

threshold range 98.7–99 % has been proposed by Strackerbrandt and Ebers (2006). Goris

et al. (2007), and Richter and Roselló-Móra (2009) proposed 95–96 % average nucleotide

identity (ANI) of homologous genomic regions as a gold standard for species delimitation

and also as an alternative to DNA–DNA hybridization. Most recently, Kim et al. (2014)

combined previously mentioned approaches and proposed 98.65 % similarity in 16S rRNA

as a threshold for species delimitation. Unfortunately, these are all similarity based criteria,

and not in line with modern systematics approaches which emphasize broader tools of

reconstruction of evolutionary relationships (Castenholz and Norris 2005; Johansen and

Casamatta 2005; Komárek 2010 and many others).

The main problem with bacterial species concepts is that they do not fit well into the

requirements of the classical species concept used for eukaryotes. Staley (2006) proposed

the genomic-phylogenetic species concept, while Achtman and Wagner (2008) adapted the

de Queiroz (2005, 2007) general lineage concept to a prokaryote-limited metapopulation

lineages concept, requiring only that ‘‘members’’ of a species (lineage) evolve separately

from other lineages. Such separation would provide the cohesive force that eventually

forms a species. However, they observed that such a concept does not provide sufficient

detection and quantification of cohesive forces.

One of the main issues in bacterial systematics is whether or not lineages necessarily

represent a genetic continuum (Konstantinidis et al. 2006). For example, a simple com-

putational model of randomly replicating lineages will produce groups of genetically

related individuals separated by genetic gaps (Zhaxybayeva and Gogarten 2004; Mes 2008;

Doolittle and Zhaxybayeva 2009). Hence a ‘‘good’’ species should have deeper gaps with

respect to what happens with a random model. The possibility of a failed recognition of
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intermediate forms may also arise due to sampling or difficult cultivability of many bac-

terial strains, because most bacterial species are unculturable (reviewed in Stewart 2012).

Recent papers have employed multi-locus DNA sequences analyses (MLSA) for species

definition, which often yield results that fit with traditionally delimited species (Gevers

et al. 2005; Hanage et al. 2005, 2006). MLSA has been developed originally for identi-

fication of pathogenic strains of bacteria due to lack of resolution of traditional genetic

markers, mainly the 16S rRNA gene (Maiden et al. 1998). For example, Melendrez et al.

(2011) used three protein coding genes and found 4–14 times more ecotypes in the ther-

mophilic Synechococcus sp. inhabiting Mushroom Spring in Yellowstone National Park

than based solely on 16S rRNA and 16S-23S ITS sequence. Thus MLSA provides sig-

nificantly higher resolution. Similar considerations may be obtained from the investiga-

tions on the marine planktic genera Synechococcus and Prochlorococcus (Johnson et al.

2006) or fine-scale distribution of marine Vibrionaceae (Preheim et al. 2011). On the other

hand, Kopac et al. (2014) analyzed all orthologous genes within Bacillus subtilis and

showed that MLSA was insufficient to distinguish ecotypes, which are considered as

species in this paper.

Recently, DNA barcoding has been proposed as a possibility for cyanobacteria. Eckert

et al. (2015) tested barcoding gaps in cyanobacteria and found that barcoding gaps among

species were identified in a half of investigated cases. Thus, this approach has to be further

investigated before it takes place in practical identification of species.

Speciation factors in (cyano)bacteria

Bacteria and Archaea are evolutionarily intriguing as they are asexual, and possess ex-

tensive populations with relatively short generation times (for review see Cohan 2001,

2002). Cohesive or disruptive forces shaping bacterial species have remained enigmatic for

a long time. However, the development of modern molecular methods has shown sig-

nificant differences between prokaryotic and eukaryotic evolutionary trajectories. For

example, some of the non-consistent phylogenetic signals of different gene families within

the same bacterial species have been explained by HGT and HR (e.g. Hanage et al. 2005;

Lodders et al. 2005; David and Alm 2011). It has been suggested that a part of the bacterial

genome usually referred to as the core genome is more stable with less evolutionary

changes. The core genome is usually defined as a portion of genes shared by some group of

bacteria coding for essential metabolic pathways (Daubin et al. 2002; Shi and Falkowski

2008; Polz et al. 2013). The shell or flexible genome refers to a less stable part of bacterial

genome which undergoes substantial evolutionary changes including HGT (Hess 2011). It

often contains genes specific to some environment with a large portion of unannotated gene

families without any known function (e.g. Shi and Falkowski 2008), which putatively plays

an important role in rapidly changing environments (Rodriguez-Valera et al. 2009) and

niche partitioning among close relatives (Kopac et al. 2014). The shell genome genes do

not seem to be randomly dispersed over the chromosome, but rather concentrated within

genomic islands with frequent HGT and HR events (Hacker and Carniel 2001; Rodriguez-

Valera et al. 2009). However, Narechania et al. (2012) showed that many core genes have

an identical phylogenetic signal as shell genes, which denotes their common evolutionary

history. Narechania et al. (2012) defined core genome as orthologs with the same phylo-

genetic tree topology and the shell genome as composed of the rest of orthologs. Core

genes may also exhibit evidence of HGT events, which might be identified by comparing

scenarios of gene phylogenies with individual species trees (David and Alm 2011; Nakhleh
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2013). The question remains, though, do these changes provide enough force to diverge

evolutionary lineages with subsequent cohesion to form an analogue of the eukaryotic

‘‘sexual’’ species?

The most extensively studied HGT events are concerned with the human microbiome

(e.g. Smillie et al. 2011) and marine picoplankton, mostly of the genera Synechococcus and

Prochlorococcus (e.g. Marston et al. 2012). In terms of cyanobacteria, it has been further

suggested that most HGT are mediated by phages (cyanophages) (e.g. Sullivan et al. 2010;

Sabehi et al. 2012). These phages often contain genes important in photosynthesis (Zheng

et al. 2014). While HGT events may occur between phylogenetically divergent lineages,

they are most frequent among individual species within the same environment and de-

crease with the overall genetic distance of genomes (Popa et al. 2011). A very similar

phenomenon has been observed in HR (Smillie et al. 2011). Fraser et al. (2007) modeled

HR within bacteria, showing that if HR exceeds mutation rate, a species evolves in a

similar manner as sexually reproducing eukaryotes, and with low HR the populations are

clonal. Polz et al. (2013) suggested in their synthesis that rather than genetic isolation of

emerging lineages, there exist local genetic innovative gene pools (i.e. local metagen-

omes), which are constantly changing by HGT within a pool and by input of incoming

genotypes.

Besides genetic isolation resulting from genome differentiation, which takes place in

population without geographical isolation (sympatric speciation) often observed in bacteria

(e.g. Friedman et al. 2013; Koeppel et al. 2013), there are geographical and ecological

factors affecting bacterial speciation. The speciation of macroorganisms is often driven by

geographical isolation (allopatry) due to their limited dispersal capabilities. This has also

been in, e.g., asexual rotifers, but on a larger geographical scale (Fontaneto et al. 2008).

However, how these processes relate to microorganisms is still subject to broad debate (see

Martiny et al. 2006; Ramette and Tiedje 2007 for review). Baas Becking (1934) postulated

that all microbes can spread everywhere and only the specific local environmental con-

ditions would select actual species composition. However, recent analyses of different

molecular markers reveal an ambiguous signal. For example, thermophilic cyanobacteria

Mastigocladus laminosus and Synechococcus spp. showed geographical difference based

on 16S rRNA analysis (Papke et al. 2003; Miller et al. 2007). However, it should be noted

that in the case of Synechococcus (Papke et al. 2003), the clusters were genetically very

distant, which might be because they belong to different taxa (even genera) and there is not

sufficient variation within a species to elucidate meaningful patterns. Dvořák et al. (2012)

showed that episodic genetic isolation of the mat-forming cyanobacterium Microcoleus

vaginatus may have led to the speciation events. On the other hand, 16S-23S ITS phy-

logenies of the freshwater, planktic cyanobacterium Microcystis aeruginosa revealed no

connection between geographic position and a placement in phylogeny (van Gremberghe

et al. 2011). Further, no geographical patterning has been observed in polar cyanobacteria

based on 16S rRNA (Jungblut et al. 2010). Taken together, the role of geographical

isolation as it relates to the speciation of microbes should be further investigated using

whole genome data or using more variable genome regions (Ramette and Tiedje 2007). A

whole genome approach has been used in thermophilic archeon Sulfolobus islandicus,

which has shown clear geographical patterning (Reno et al. 2009). This may reveal very

recent events of genetic exchange leading to speciation as in case of marine picoplanktic

Synechococcus (e.g. Mazard et al. 2012) because the geographical isolation may be im-

portant in a very short time frame (Ramette and Tiedje 2007; Dvořák et al. 2012) rather

than in relatively long times as observed in macroorganisms.
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Cohan (2001) advocates a bacterial speciation model by ecological diversification.

When a new niche is introduced the stable ecotype is periodically overgrown by new,

‘‘fitter’’ ecotypes, which are able to effectively exploit the new niche. Periodic selection

events decrease the overall genetic diversity and after some time a new ecotype can be

sufficiently diversified to form a new stable ecotype, which may be non-competing with the

parental genotype. This also results with the coherence within evolutionary linages.

The ecotype model of prokaryotic speciation proposed by Cohan (2001, 2002, 2006)

and Cohan and Perry (2007) treat bacteria as asexual clones, where homologous recom-

bination rates are low. Thus, many crucial questions still remain as unanswered concerning

the mechanism of bacterial speciation.

Particular problems of species definitions and concepts in cyanobacteria

The previously mentioned concepts and definitions of species are also applicable to

cyanobacteria, but in the following paragraphs, we will emphasize some important con-

siderations pertaining to cyanobacteria.

A classic, phenetic species concept using only morphological or ecological data has

been shown to be insufficient to describe the real biodiversity within cyanobacteria.

Morphology alone in cyanobacteria often lacks resolution on the species level, while

completely ignoring cryptic species (e.g. Johansen and Casamatta 2005; Hašler et al. 2012,

and many others, see further). Cyanobacterial species have traditionally been distinguished

based on the similarity of morphological markers, which might be very subjective.

Moreover, some morphological characters, such as sheath formation or presence of hete-

rocytes, may be lost in cultures and environmentally plastic. For example, Microcoleus

vaginatus, which is usually found in soil crusts, puddles and other aerophytic habitats, has

multiple filaments enclosed in common sheath. However, strains isolated from epipelon

(fine lake sediment) produce no sheath in nature or culture. An analysis of morphology,

16S rRNA-based phylogeny and 16S-23S ITS secondary structure revealed very close

relations with soil crust M. vaginatus strains (Hašler et al. 2012). 16S rRNA of all strains

also contained an 11 bp insert typical for this species (Boyer et al. 2002). Phenotypic

characters (i.e. cell dimension, division type, color) provided insufficient resolution for

discerning these lineages. The employment of new characters (mostly 16S-23S ITS region)

have allowed researchers to recognize finer differences among taxa with coherent mor-

phology, leading to the idea of cryptic speciation (Boyer et al. 2001; Siegesmund et al.

2008; Komárek 2010, 2011; Hašler et al. 2012). Cryptic taxa are unrecognizable using

solely morphological characters. Cryptic species have been identified or suggested in

almost all traditional genera (Komárek 2010) such as with the mat-forming cyanobacteria

Microcoleus (Siegesmund et al. 2008), Oculatella (Osorio-Santos et al. 2014), Tri-

chocoleus (Mühlsteinová et al. 2014) and Phormidium (Casamatta et al. 2003; Hašler et al.

2012). This topic is discussed in great extent elsewhere (e.g. Johansen and Casamatta 2005;

Komárek 2010). It should be noted that genus Oculatella consists of 7 cryptic species

(Osorio-Santos et al. 2014), which were able to be resolved based on 16S-23S ITS se-

quence, which has higher resolution under the genus level.

A majority of recent taxonomic revisions and descriptions use a combination of mor-

phological, ecological, and genetic observations, referred to as a polyphasic approach

(Castenholz 1992; Castenholz and Norris 2005; Komárek 2003, 2010; Komárek et al.

2014). It has already been employed to recognize separate evolutionary lineages and for

description of new species. A polyphasic approach is commonly used in taxonomic works
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in combination with a monophyletic species concept sensu Johansen and Casamatta

(2005), if phylogenetic analyses of 16S rRNA or other genes are used.

16S rRNA sequencing and progress in phylogenetic reconstruction have allowed re-

searchers to employ the evolutionary species concept sensu Simpson (1953). This has fa-

cilitated further derived species concepts like the monophyletic species concept. Johansen

and Casamatta (2005) used this to define a species as the smallest monophyletic group with

recognizable autapomorphy (a trait unique only for particular taxon). They also designed a

concrete species definition based on the mentioned concept, which is suitable for

cyanobacteria and may be used under the International Code of Botanical Nomenclature. It is

probably the most widely accepted concept with cyanobacteria (according to the number of

taxonomic papers using the concept under the Botanical Code), although sometimes not

precisely followed (Siegesmund et al. 2008; Perkerson et al. 2011; Dvořák et al. 2014a; Hašler

et al. 2012, 2014a, b; Osorio-Santos et al. 2014 and many others). The most important

advantage of the monophyletic species concept is the general applicability to asexual or-

ganisms. However, it might be problematic when a monophyletic lineage lacks sufficient

morphological, ecological or physiological differentiation. Moreover, monophyletic species

concept is not accepted in the International Code for Nomenclature of Bacteria, which uses

species concepts mentioned above.

Synechococcus sensu lato is a group of cyanobacteria with cosmopolitan distribution

inhabiting almost all environments (Komárek and Anagnostidis 1998), including thermal

and aerophytic habitats (Honda et al. 1999; Robertson et al. 2001). Although some

cyanobacteria, such as Synechococcus sensu lato, lack phenotypic variability, great eco-

logical and genetic diversity suggest that polyphyletic complexes of cryptic taxa might

exist (Honda et al. 1999; Robertson et al. 2001; Dvořák et al. 2014a, b). Many traditional

cyanobacterial genera (Geitler 1932) are polyphyletic (Komárek 2010; Engene et al. 2011;

Hašler et al. 2012; Engene et al. 2013; Dvořák et al. 2014a, b; Hašler et al. 2014a) and need

extensive revisions, which will be very difficult particularly in the case of Synehococcus

sensu lato due to extreme polyphyly within this genus. We suggest that this extreme

polyphyly (cryptogenera sensu Komárek et al. 2014) should be distinguished from poly-

phyly in the original sense, since in extreme polyphyly a large number of lineages derived

over very long time period (over 3 billion years), as shown in Dvořák et al. (2014b).

Such extreme polyphyletic groups with little morphological distinction, in which similar

morphotypes may belong to polyphyletic lineages and hence different genera, suggest that

taxonomic revisions based solely on morphological data must be performed with great

caution. Thus, stable molecular markers such as 16S rRNA should be used for taxonomic

revisions (see Komárek 2010 for a review). However, even revisions of genera without

molecular support for all studied species have been recently proposed. For instance, after

recent revisions of polyphyletic genera with molecular markers, some authors have added

new species based on morphological similarity as new combinations (Strunecký et al.

2014). However, these species might be polyphyletic taxa in a manner similar to Syne-

chococcus. Therefore, we recommend the use of molecular data in all cases to increase the

certainty of taxonomic revisions.

A growing number of polyphyletic genera recently identified might be connected with

frequent convergent evolutionary events in cyanobacteria. Convergent evolution is a

phenomenon that occurs when similar features have evolved in independent lineages. It

seems to be very frequent in cyanobacteria and is evidenced by several phenotypic traits

(e.g. Shishido et al. 2013; Dvořák et al. 2014b). We have chosen the example of the

prochlorophytes to show another case of convergence in cyanobacteria.
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Prochlorococcus, Prochlorothrix, and Prochloron are cyanobacteria that additionally pro-

duce chlorophyll b (the typical pigment of green algae and land plants) and lack phycobilisomes

(Giddings et al. 1980; Burger-Wiersma et al. 1986; Miller et al. 1988; Chisholm et al. 1992; Hess

et al. 1996; Pinevich et al. 1997; Kauff and Büdel 2011). On this basis and due to a psbA gene

based phylogenetic analysis, they were considered strictly associated with the chloroplast of

green algae and terrestrial plants (Morden and Golden 1989). Successive analyses (e.g., Litvaitis

2002) showed that prochlorophytes actually nested within cyanobacteria, and are polyphyletic.

The conclusion is that the appearance of chlorophyll b and the loss of phycobilisomes evolved

multiple times in different lineages, and hence these characters are subjected to convergent

evolution and reversals, probably in connection to environmental pressures.

We note that Prochlorococcus marinus appears to cluster quite clearly apart from the other

cyanobacteria on the basis of the analysis of all the tRNA sequences, considering the

isoacceptor variation for each codon and the number of copies for each type of tRNA (Fig. 3).

This suggests convergent or parallel evolutionary events leading to similar phenotypic traits,

because it contradicts phylogenomic analyses in Shih et al. (2013). Such convergent events

might be explained by HGT within the environment and therefore environmental pressures

(Litvaitis 2002). It is also likely that it represents a frequent trend in cyanobacterial evolution,

since other morphological traits, such as multicellularity, have evolved repeatedly (Honda

et al. 1999; Robertson et al. 2001; Schirrmeister et al. 2013; Dvořák et al. 2014a, b). Dvořák

et al. (2014b, Fig. 4) also suggested a model of serial convergence in cyanobacteria, where

frequent convergent events might be explained by constant genetic changes via HGT and HR

within local habitat gene pools as proposed by Polz et al. (2013).

Diversity of cyanobacteria and their current classification

Taxonomy is usually defined as an operative version of systematics. Both the taxonomy

and systematics of cyanobacteria have undergone substantial changes in the last two

Fig. 3 Plot derived from MDS analysis representing the diversity of cyanobacterial strains and lineages on
the basis of variation in tRNA isoacceptors (tRNA targeting considering also different tRNAs but with the
same anticodon) for each amino acids types and copy number calculated on the known complete genomes of
cyanobacteria. Only 5 of 9 accessions of prochlorophytes are visible, since 4 accessions are completely
overlapping with the others. (Color figure online)

748 Biodivers Conserv (2015) 24:739–757

123



decades. Previously, the cyanobacteria were placed into three botanical orders, the number

of which has changed with respect to the state of investigation of morphological variability

and ecology of the species. Geitler (1932) revised the systematics of cyanobacteria

established in the nineteenth century and proposed three orders: Chroococcales (coccoidal

species reproducing by binary fission), Chamaesiphonales (a heteropolar type of binary

fission), and Hormogonales (the filamentous species). Other authors of the twentieth

century usually followed Geitleŕs botanical system. However, their systems changed as

additional characters were uncovered and additional taxa included, e.g. Desikachary

(1959) distinguished five orders (Chroococcales, Chamaesiphonales, Pleurocapsales,

Nostocales, and Stigonematales), and Starmach (1966) split the system of cyanobacteria

into four classes (Chroococcophyceae, Chamaesiphonophyceae, Pleuastrophyceae, and

Hormogoniophyceae).

Later, in the 1970s, a bacteriological approach was used in the classification of

cyanobacteria (Stanier et al. 1978). Five subgroups, corresponding to the orders

Chroococcales, Pleurocapsales, Oscillatoriales, Nostocales, and Stigonematales, were

classified with respect to the type of cell reproduction, cell differentiation, and molecular/

biochemical attributes (Rippka et al. 1979; Boone and Castenholz 2001). This classifica-

tion concept facilitated substantial progress in the research on cyanobacteria because of the

new methods advocated.

The most comprehensive studies on the classification of cyanobacteria in the modern era

were made by Anagnostidis and Komárek (1985, 1988, 1990; Komárek and Anagnostidis

1986, 1989). The authors combined both botanical and bacteriological approaches, inte-

grating traditional cyanobacterial morphology, physiology, and ecology in a total evidence

synthesis. They established four orders: Chroococcales (non-filamentous), Oscillatoriales

(filamentous, lacking specialized cells), Nostocales (filamentous, facultative specialized

cells), and Stigonematales (filamentous, obligatory specialized cells, and division in

multiple planes). During the 1990s, analysis of the 16S rDNA gene elucidated and sup-

ported phylogenetic relationships among morphologically similar genera, and, surprisingly,

among genera from different orders as defined by Anagnostidis and Komárek. Hoffmann

et al. (2005) proposed a new system of classification where members of the Chroococcales

and Oscillatoriales formed two subclasses, the Synechococcophycideae and the Oscillar-

iophycidae. Members of the Nostocales and Stigonematales belonged to a separate

monophyletic subclass, the Nostochophycideae. Terminal taxonomic units (genera and

species) represent a crucial element in the world of cyanobacteria. Numerous new genera

are being erected because molecular methods usually show a higher diversity than the

traditional botanical (morphological) approach by providing additional character sets

(cryptic species). This topic is discussed in greater extent above. This system of higher

taxonomic ranks has been recently re-evaluated in a review by Komárek et al. (2014).

These authors proposed a subdivision of cyanobacteria based on phylogeny and mor-

phology in the following orders: Gloeobacterales, Synechococcales, Spirulinales, Pleuro-

capsales, Chroococcales, Chroococcidiopsidales, Oscillatoriales, and Nostocales.

The higher level systematic classification of cyanobacteria needs more investigation

based on revised genera. A complete revision should include morphological description of

natural populations based on light and electron microscopy, habitat characterization,

molecular analysis of 16S rRNA gene and other markers such as ITS region and infor-

mation about stored strains or DNA. Moreover, important consideration should be given to

biochemical/bioorganic data, e.g. fatty acids composition of cyanobacterial cell wall,

which seems to be applicable for species identification (Caudales et al. 2000; Řezanka

et al. 2003; Li and Watanabe 2004).
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Whenever a wide agreement on species concepts in cyanobacteria is reached, some

practical identification of species and other taxa open another ample array of problems. For

instance, cyanobacteria may be described under both the International Code for Algae,

Fungi and Plants (ICN, http://www.iapt-taxon.org/nomen/main.php) and the International

Code for Nomenclature of Prokaryotes (ICNP), although the vast majority of cyanobac-

terial taxa are described under the Botanical Code (Oren 2011). The reason for that are the

strict requirements of the ICNP, i.e. axenic culture and DNA–DNA hybridization etc.

Detailed values, description and discussion may be found on the website of the Interna-

tional Committee on Systematics of Prokaryotes (http://icsp.org/; Starkerbrandt et al. 2002;

Oren and Garrity 2014). Some additional problems in the application of the ICNP to

cyanobacteria are discussed in Oren (2004, 2011), and Oren and Tindall (2005). An at-

tempt to develop a special code valid only for cyanobacteria has been proposed at the

Meeting of the International Association for Cyanophyte Research in Luxembourg in 2004

(http://www.cyanodb.cz/files/CyanoGuide.pdf). However, it is an unofficial document that

has not yet been accepted. Thus, a schism among cyanobacteriologists still continues, but a

number of authors largely favor the Botanical Code, because new taxa might be described

without cultures (e.g. Hašler et al. 2014a).

Estimate of the total cyanobacterial biodiversity

Culture-independent estimates of prokaryotic biodiversity fall between millions and bil-

lions of species (e.g., Dykhuizen 1998; Gans et al. 2005). Estimates of the current

cyanobacterial biodiversity range from 2000 (Sant́Anna et al. 2006) to 8000 (Guiry 2012).

Nabout et al. (2013) applied a discovery curve to cyanobacteria utilizing the CyanoDB

database (http://www.cyanodb.cz/) with three asymptotic models, yielding from 3166 to

6280 species, depending on the model of choice. A total of 453 authors have described

cyanobacterial taxa, and two of them (J. Komárek and K. Anagnostidis) have described

30.9 % of the total described species (Nabout et al. 2013). However, the real number of

species can be barely assessed by statistics. It requires extensive observation of the species

diversity and distribution in nature (Foissner 2006) with subsequent quantification. In the

future, genetic and molecular data will be increasingly helpful. For example, the last

decade of polyphasic studies brought tens of newly erected or revised cyanobacterial

genera (e.g. see Komárek 2010 for review of older works, afterwards e.g. Strunecký et al.

2011; Komárek et al. 2013; Komárková et al. 2013; Dvořák et al. 2014a). During the 19th

Symposium of the International Society for Cyanophyte Research in 2013, 16 new genera

were presented (Komárek et al. 2014). Thus, the great atomization of cyanobacterial

systematics is now in progress, which is a result of species definition, concept used, and

introduction of molecular methods into cyanobacterial systematics. Moreover, with higher

resolution abilities, we can expect a further expansion of the number of described taxa. For

example, Oculatella erected with single species (Zammit et al. 2012) now contains seven

species, which have been described by different researchers. Thus, even the most liberal

estimates may be undervalued.

Conclusions and future directions

Great challenges lie ahead in regards to the taxonomy and systematics of cyanobacteria.

Fortunately, molecular techniques have facilitated a renaissance in describing and
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elucidating cyanobacterial biodiversity. In this review, we showed that although

cyanobacteria lack sexual reproduction, we are able to apply, in terms of evolutionary-

lineage coherence, a species concept similar to that one used for eukaryotic macroor-

ganisms, even though it might be considered ‘‘fuzzy’’ due to the molecular markers ap-

plied, homologous recombination or horizontal gene transfer. However, many questions

remain regarding cyanobacterial species definitions and concepts. Caution must be

maintained, though, as morphology is sometimes in conflict with molecular markers, or has

limited resolution. Therefore, cryptic species and extremely polyphyletic genera caused by

serial convergence represent problematic phenomena resulting with uncertainty of proper

morphological identification. We suggest that more attention should be paid to the use of

molecular markers in taxonomy and practical identification of taxa. On the other hand,

ecological and morphological criteria are also important, which should be taken into

consideration. Thus, deposited sequences in GenBank and other databases should also be

completed with such data or they should be made easily accessible by providing the

original papers. These data may be afterwards a source for a barcoding database, which

would provide correct and fast identification workflow, and would resolve cryptic taxa and

polyphyletic genera problems.

The rapidly growing number of described taxa signifies large gaps in our current

knowledge of cyanobacterial biodiversity and distribution. Although the total biodiversity

of any microbial lineage is probably unknown, all estimations suggest a significant increase

of described taxa. Moreover, the selected species definition will impact on how many

species are identified and will be recognized in the future. It also largely influences pos-

sible patterns of distribution. Thus, evidently, we are now in a period of important changes

in taxonomy, and knowledge of cyanobacterial biodiversity is amplified by novel tech-

niques, and increasing sampling effort.

Methods of analysis

Multivariate statistics have been carried out by using the R software 3.0 (R Development

Core Team 2013) and some functions included in Vegan and MASS packages (Venables

and Ripley 2002; Oksanen et al. 2013). Transfer RNA data of all the analyzed organisms

have been imported in R as dataframe. The distance matrix has been computed using the

‘‘vegdist’’ function and selecting ‘‘jaccard’’ as method. The quantitative form of the Jac-

card distance in Vegan actually is the Ruzicka index and has been preferred over the

Euclidean distance for its better performances in presence of species containing missing

tRNA (counts equal to zero). In order to visualize the distances between organisms, data

have been statistically explored through unconstrained ordination by computing a non-

metric multidimensional scaling (NMDS) using the ‘‘metaMDS’’ function included in the

Vegan package. Multidimensional Scaling helps to visualize the distance between samples

through a low-dimensional spatial map. The non-metric scaling methods are able to map

non-Euclidean distances.
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