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1 Introduction and summary

The study of defect operators in quantum field theories has a long history and has received

closer attention in recent years. Apart from exposing deep connections to representation

theory, such studies turn out to be useful in the understanding of various non-perturbative

dualities. A particular six dimensional (0, 2) SCFT has played a special in some of the

recent developments along this theme. This SCFT is sometimes called theory X[j] to

signify the fact that there is such a theory for every lie algebra j ∈ A,D,E. The theory

lacks an intrinsic description in terms of classical fields, Lagrangians and action principles

and thus precludes much direct investigation. Yet, under various dimensional reductions,

this theory can be better understood. The specific objects that would be the focus of this

paper are certain 1/2 BPS codimension two defects of theory X[j]. The focus of this paper

is on four dimensional N = 2 SCFTs (and their massive deformations) that can be built

out of the codimension two defects.1 For a large class of regular (twisted or untwisted)

codimension two defect of X[j], we have (following [1] and the general lesson from [2]),

1Henceforth, any invocation of the term ‘codimension two defect’ should be taken to mean ‘codimension

two defects of theory X[j]’.
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• An associated nilpotent orbit in g called the Nahm orbit (ON ). This arises as a Nahm

type boundary condition in 4d N = 4 SYM with gauge group G,2 on a half space (or

equivalently a boundary condition for 5d SYM with gauge group G on a half space

times a circle S),

• An associated nilpotent orbit in Langlands/GNO dual g∨ called the Hitchin orbit

(OH) with some further discrete data that can be captured by specifying a subgroup of

A(OH), where A(OH) is Lusztig’s quotient of the component group of the centralizer

of the corresponding nilpotent element (identified upto g∨- conjugacy). This arises

as a codimension two defect for 5d SYM with gauge group G∨ on a half space times

a circle S̃,

• A semi-degenerate primary of the Toda[g] theory that is given by the specification of

a set of null vectors in the corresponding W-algebra Verma module.

Here, g is an arbitrary simple lie algebra. For the untwisted defects, the lie algebra g

isomorphic to j and thus simply laced. For the twisted sector defects, g is a subalgebra of

j.3 In particular, the twisted sector defects require the cases where g is non-simply laced.

This set of regular defects will be called the CDT class of defects in the rest of the paper.

The availability of these multiple descriptions is convenient since different aspects of

the defects become manifest when expressed in each of these terms. However, one would

expect that each one of these constitute a partial description of a given codimension two

defect. This paper concerns the relationship between these three descriptions. A dictionary

between the Hitchin data and the Nahm data has already been provided in [1] for arbitrary

g and the discussion here hopes to complement the one provided in [1]. Further, the

relationship of this data to that of a Toda semi-degenerate primary is explained for a

particular subset of defects that correspond to the Nahm data being a nilpotent orbit of

principal Levi type. The relevant set of Toda operators were obtained in the work of [2] for

type A. In type A, all non-zero nilpotent orbits are principal Levi type. So, the setup here

covers all of them. Outside of type A, there are nontrivial orbits that occur as non-principal

orbits in Levi subalgebras. Extending the Toda part of the dictionary to such Nahm orbits

would be an interesting problem.

The task that is accomplished here is modest if viewed in the larger scheme of things

and the results only point to a need for more detailed investigations into the connections

between geometric representation theory and the construction of class S theories. It should

be mentioned here that almost all of the mathematical considerations in this paper arise

from well known results and can be found in the existing literature. The one exception

is a certain property that is discussed in section 7 that places the ‘Higgs branch Springer

invariant ’ on a different footing from what one may call a ‘Coulomb branch Springer invari-

ant ’. Further, it is hoped that the presentation of the known mathematical results is in a

2The gauge group G is compact. But it turns out that the defects of concern are classified by nilpotent

orbits in the complexified lie algebra gC, which will still denote by g to simplify notation.
3The naming of lie algebras j and g in the current version of the paper is consistent with how they appear

in [1].
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language that is friendly to physicists. The placing of these results in a physical framework

yields some new insights into the physics and is also likely to motivate future investigations.

The plan of the paper is as follows. Section 2 offers a review of some dimensional

reduction schemes used in the study of codimension two defects. Section 3 reviews the

set of boundary conditions studied by Gaiotto-Witten and action of S-duality on certain

classes of these boundary conditions. Section 4 collects results from the mathematical

literature on order reversing duality maps and the closely related representation theory of

Weyl groups. In section 5, a way to relate the Hitchin and Nahm descriptions is provided

using properties of the Higgs branch associated to the defect. This reproduces the setup

of [1] and provides a physical framework for some defining properties of the order reversing

duality used in [1]. Equivalently, this provides the S-duality map for the subset of boundary

conditions in N = 4 SYM that correspond to the CDT class of codimension two defects.

In section 6, a map is constructed between the set of codimension two defects and the set

of semi-degenerate primary operators in Toda theory for the cases where the Nahm orbit

is of principal Levi type.

In section 7, the results in section 5 and section 6 are combined and the complete setup

relating Toda, Nahm and Hitchin data is presented. Numerous realizations of this setup

are collected in the tables in section 8. Sections 5, 6, 7, 8 form the core of the paper. It

is worth emphasizing that much of the tight representation theoretic structures become

obvious only with the compiling of detailed tables for various cases. The arguments in

sections 5–7 apply for all simple g. So, the tables include data for the non-simply laced

g as well. These are relevant for local properties of the twisted defects of the theory X[j],

j ∈ A,D,E and for S-duality of boundary conditions between N = 4 SYM with non-simply

laced gauge groups G and G∨, where g is the subalgebra of j that is invariant under the

twist [1]. However, there is a feature of the setup in the non-simply laced cases that raises

some puzzles about the case for arbitrary g. This is discussed in section 7.

Displaying information in the tables in a succinct way requires the introduction of some

notation for nilpotent orbits and irreducible representations of Weyl groups. This is intro-

duced in appendices A, B. Also included are two appendices that provide a short summary

of the Borel-de Seibenthal method (appendix C) to find all possible centralizers of semi-

simple elements and the Macdonald-Lusztig-Spaltenstein induction method (appendix D).

A variation of the setup presented in section 7 appeared in [3] for case of type A theories.

The discussion here is more detailed and is provided in a language that generalizes directly

to the case of arbitrary j ∈ A,D,E.

2 Codimension two defects under dimensional reductions

Let us take the theory X[j] on various six manifolds M6 with the required partial twists

to preserve some of the supersymmetries. For the current purposes, it is helpful to recall

a small subset of the various reduction schemes that are helpful while studying the super-

symmetric defect operators in this theory. Each scheme will be summarized by a dot (·)

and dash (↔) table. Unless specified otherwise, the co-ordinate labels in such tables are

in the obvious order implied by the notation for the manifold M6.
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2.1 R3,1 × Cg,n

Consider the theory X[j] formulated on R3,1 × Cg,n where Cg,n is a Riemann surface of

genus g in the presence of n codimension two defects Oi. When the area of the Riemann

surface tends to zero, an effectively four dimensional N = 2 field theory is obtained [4, 5].

1 2 3 4 5 6

Oi ↔ ↔ ↔ ↔ · ·

The coupling constant moduli space of such theories is the moduli space of the Rie-

mann surface with punctures. The low energy effective action of N = 2 theories in four

dimensions is captured by the Seiberg-Witten solution. For these theories obtained from

six dimensions, the SW solution is identified with an algebraic complex integrable system

associated to the Riemann surface Cg,n called the Hitchin system. In particular, the SW

curve is identified with the spectral curve of the Hitchin system and the SW differentials

are the conserved “Hamiltonians” of the same.

2.2 R2,1 × S1 × Cg,n

Following [6], one can seek a description of the codimension two defect in terms of a Hitchin

system using a compactification on R2,1×S1×Cg,n, with a codimension two defect wrapping

the circle S1.

1 2 3 4 5 6

O1 ↔ ↔ ↔ ↔ · ·

The nature of the defect is captured by the singularity structure of the Higgs fields near

the location of the defect on C. When the Higgs field has a simple pole,

φ(z) =
ρ

z
+ . . . , (2.1)

it corresponds to the tamely ramified case and corresponding defects are called regular

defects. For regular defects with no mass deformations, the residue at the simple pole

(ρ) is a nilpotent element of the lie algebra j. The nature of the defect depends only

the nilpotent orbit to which element ρ belongs. While prescribing the behaviour in (2.1)

is sufficient to identify a defect (upto perhaps some additional discrete data), we will

momentarily see that pairs of nilpotent orbits are in some ways a more efficient description

of a given codimension two defect. When the poles for the Higgs field occur at higher

orders, it corresponds to the case of wild ramification and the corresponding defects are

called irregular defects [6, 7].

2.3 R2,1 ×H × S1

To see that a pair of nilpotent orbits are relevant for the description of a single codimension

two defect, follow [1] and formulate X[j] on R2,1 ×H × S1. Here, H is a half-cigar which

can be thought of as a circle (S̃1) fibered over a semi-infinite line. Here again, consider the

reduction with a single defect O1 (along with, maybe, a twist that allows for non-simple

laced gauge groups to appear in five and four dimensions). The fifth co-ordinate refers to

the co-ordinate along S̃1.

– 4 –
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1 2 3 4 5 6

O1 ↔ ↔ ↔ · ↔ ·

Upon dimensional reduction in the fifth and six dimensions, this setup reduces to the one

considered by Gaiotto-Witten [8] in their analysis of supersymmetric boundary conditions

in N = 4 SYM on a half-space. Performing a reduction first on S1 gives us 5d SYM

with gauge group G and a codimension one defect. Further reducing on S̃1 gives 4d SYM

with gauge group G on a half-space and 1/2 BPS boundary condition that is labeled by a

triple (O, H,B), where O is a nilpotent orbit, H is a subgroup of the centralizer of the sl2

triple associated to the nilpotent orbit O and B is a three dimensional boundary SCFT.

Interchanging the order of dimensional reductions, one gets 4d SYM with gauge group G∨

on a half space with a dual boundary condition (O′, H ′,B′). In the case of g = AN−1,

nilpotent orbits have a convenient characterization in terms of partitions of N . An order

reversing duality on nilpotent orbits plays an important role in the description of the S-

duality of boundary conditions. This duality acts as an involution only in the case of An−1

and fails to be an involution in the other cases. This failure to be an involution leads to

a much richer and complex structure than the case for type A. This more general order

reversing duality will hover around much of the considerations in the rest of the paper and

will be discussed in greater detail in subsequent sections.

2.4 R1,1 × R2 × T2

1 2 3 4 5 6

O1 · · ↔ ↔ ↔ ↔

Here, let us consider the reduction with a single defect O1 on R1,1×R2×T2 such that

the defect wraps the T2 [1] (again, possibly with a twist). The theory in four dimensions

is now N = 4 SYM with gauge group G and a surface operator inserted along a surface

R2 ⊂ R1,3. This is the kind of setup considered in [9]. The S-dual configuration is then a

surface operator in N = 4 SYM with gauge group G∨.

2.5 Associating invariants to a defect

Under various duality operations, it may turn out that the most obvious description of a

given codimension two defect is quite different. So, it is helpful to associate certain invari-

ants to a given defect which can be calculated independently in the various descriptions. If

the defect comes associated with non-trivial moduli spaces of vacua, then a basic invariant

is the dimension of these moduli spaces. For the codimension two defects in question, one

can associate, in general, a Higgs branch dimension and a graded Coulomb branch dimen-

sion. These will correspond to the local contributions to the Higgs and Coulomb branch

dimensions of a general class S theory built out of these defects.

In the work of [1], the graded coulomb branch dimension played an important role

in the interpretation of the role played by an order reversing duality that related the two

descriptions of these four dimensional defects in their realizations as boundary conditions

for N=4 SYM. In this paper, a complementary discussion that relies crucially on properties

– 5 –
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of the Higgs branch will be provided. To this end, associate an invariant to the defect that

will be called the Higgs branch Springer invariant. This will be an irreducible representation

of the Weyl group W [g](≃ W [g∨]) and can be calculated on both sides of the S-duality

for boundary conditions in N = 4 SYM. This will turn out to be a more refined invariant

than just the dimension of the Higgs branch. The discussion will also have the added

advantage that it provides a physical setting for certain defining properties of the order

reversing duality map as formulated in [10] (and used in [1]). Associated to this invariant

is a number that will be called the Sommers invariant b̃ highlighting the fact it plays a

crucial role in [10]. Its numerical value equals the quaternionic Higgs branch dimension.

2.5.1 An invariant via the Springer correspondence

This invariant is attached to the defect by considering the Springer resolution of either

the nilpotent cone N∨ or N (depending on which side of the duality the invariant is being

calculated). The discussion in this section will be somewhat generic and is meant to give an

introduction to the Springer correspondence. The calculation of the invariant is deferred

to a later section. For some expositions of the theory behind the Springer resolution,

see [11–13]. The explicit description of what is known as the Springer correspondence can

be found in [14].

Now, consider the nilpotent variety N and how the closures of other nilpotent orbits

sit inside the nilpotent variety N . This leads to a pattern of intricate singularities. For

example, in the case of closure of the subregular orbitO
sr

insideN [g] for g ∈ A,D,E, we get

the Kleinien singularities C2/Γ where Γ is a finite subgroup of SU(2). Such finite subgroups

also have a similar A,D,E classification. A well known fact is that these singularities

admit canonical resolutions. For types Bn, Cn, G2, F4, one can still obtain a very explicit

description of these singularities by considering the A2n−1, Dn+1, D4, E6 singularities with

some additional twist data [15]. The deeper singularities of the nilpotent variety, however,

do not have such a direct presentation. There is however a general construction due

to Springer which is a simultaneous resolution of all the singularities of the Nilpotent

variety. It enjoys many interesting properties and plays a crucial role in the study of the

representation theory of GC. It is constructed in the following way. Consider pairs (e, b)

where e is a nilpotent element and b is a Borel subalgebra containing e. This space of pairs

is called the Springer variety Ñ . It is also canonically isomorphic to T ∗B, the co-tangent

bundle to the Borel variety. The Borel variety B is the space of all Borel subalgebras in g and

is also called the flag manifold since elements of the Borel variety stabilize certain sequences

of vector spaces of increasing dimension (‘flags’). The condition that a non-zero nilpotent

element e should belong to b leads to a smaller set of Borel subalgebras that will be denoted

by Be. This is a subvariety of the full Borel variety. The subvariety so obtained depends

only on the orbit to which e belong. So, a more convenient notation is BO, where O is a

nilpotent orbit containing e. Now, consider the map that just projects to one of the factors

in the pair µ : (e, b) → e. When e to allowed take values in arbitrary nilpotent orbits, the

map µ : Ñ → N provides a simultaneous resolution of the singularities of N . For e being

the zero element, the fiber over e, µ−1(0) is the full Borel variety. And, dim(B) = 1
2dim(N ).

– 6 –
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For more general nilpotent elements, this dimension formula is modified to (see [14, 16])

dim(BO) =
1

2
(dim(N )− dim(O)). (2.2)

Resolutions in which the fibers obey the above relationship belong to a class of maps

called semi-small resolutions. In other words, the Springer resolution of the nilpotent

cone is a semi-small resolution [17]. Apart from constructing the resolution, Springer also

showed that the Weyl group acts on the cohomology ring of the fiber BO. This action

commutes with the action of the component group A(O) which acts just by permuting the

irreducible components of BO. In particular, the top dimensional cohomology H2k(BO,C)
(with k = dimC(BO)) decomposes in the following way as a W [g]×A(O) module,

H2k(BO,C) =
⊕

χ∈Irr(A(O))

VO,χ ⊗ χ (2.3)

where χ is an irreducible representation of the A(O) and VO,χ is an irreducible represen-

tation of the Weyl group. The component group A(O) is defined as CG(e)/CG(e)
0, where

CG(e) is the centralizer of the e in group GC and CG(e)
0 is its connected component. The

groups A(O) are known for any nilpotent orbit O and can be obtained from the mathe-

matical literature [18, 19]. When the decomposition in (2.3) involves nontrivial χ, there

are non-trivial local systems associated to the nilpotent orbit and VO,χ corresponds to one

of these local systems. In the classical cases, A(O) is either trivial or the abelian group

(S2)
n for some n. In type A, the component group is always trivial. In the exceptional

cases, A(O) belongs to the list S2, S3, S4, S5. While S2, S3 occur as component groups

for numerous orbits in the exceptional cases, the groups S4 and S5 correspond to unique

nilpotent orbits in F4 and E8 respectively.

In most cases, all irreducible representations of A(O) appear in the above direct

sum (2.3). In cases where this does not occur, the number of missing representations

is always one and the pair (O, χ) is called a cuspidal pair. Such cuspidal pairs are classified

and a generalization due to Lusztig incorporates these pairs as well into what is called the

generalized Springer correspondence (see [20] for a review). One can further show that all

irreps ofW [g] occur as part of the summands like (2.3) for some unique pair (O, χ). The ir-

reps ofW [g] which occur with the trivial representation of A(O) (in other words, those that

correspond to some pair (O, 1)) are sometimes called the Orbit representations of W [g].4

Let Irr(W ) be the set of all irreducible representation of W [g] and let [O] be the set

of all nilpotent orbits in g and [Õ] be the set of all pairs (O, χ), where χ is an irreducible

representation of A(O). The nature of the decomposition in (2.3) defines an injective map,

Sp[g] : Irr(W ) → [Õ]. (2.4)

This injective map is called the Springer correspondence. A specific instance of this map

will be denoted by Sp[g, r] : r 7→ (O, χ) for a unique pair (O, χ) ∈ [Õ].

4This terminology however is not uniformly adopted. The name Springer representation is also used

sometimes as an alternative.
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When the inverse exists, it will be denoted by Sp−1[g, (O, χ)] or (when χ = 1)

Sp−1[g,O]. The following two instances of the Springer map hold for all g. Let Opr

and O0 denote the principal orbit and the zero orbit respectively. Then,

Sp−1[g,Opr] = Id (2.5)

Sp−1[g,O0] = ǫ, (2.6)

where Id, ǫ refer (respectively) to the trivial and the sign representations ofW [g]. This is the

Springer correspondence in Lusztig’s normalization. In [14], the Springer correspondence is

described in this normalization. Many geometric notions that one may associate with the

theory of nilpotent orbits like partial orders, induction methods, duality transformations,

special orbits, special pieces etc. have algebraic analogues in the world of Weyl group

representations. The two worlds interact via the Springer correspondence.

In the context of understanding properties of codimension two defects, an interest in

the Springer correspondence can be justified in the following way. For the class of defects

under discussion, there is an associated Higgs branch moduli space which admits at least

two different descriptions. One of them is as the space of solutions to Nahm equations with

a certain boundary condition. This involves a nilpotent orbit in g that will be called the

Nahm orbit ON . The second realization is obtained as the Higgs branch of theory T ρ[G].

In either case, an invariant to the defect can be assigned using the Springer correspondence.

In the former case, the association is somewhat direct once the Nahm orbit ON is known.

In the latter case, this invariant will satisfy a non-trivial compatibility condition with

properties of the Springer fiber over another nilpotent orbit OH (the Hitchin orbit in

g∨) that goes into the description of the Coulomb branch of T ρ[G]. Requiring that this

consistency condition hold for all defects will turn out to determine the pairs (ON ,OH) that

can occur in the description of the defect. The ability to do so is completely independent

of the availability of brane constructions and this allows one to understand the exceptional

cases as well. Explaining how this can be done would be the main burden of the following

two sections. It is also useful at this point to note that the bridge to representation theory

of Weyl groups will also turn out be helpful in understanding the relationship to the Toda

picture of codimension two defects which we will turn to in section 6.

2.5.2 An invariant via the Kazhdan-Lusztig Map

An alternative to using the Springer correspondence to define an invariant for a co-

dimension two defect would be to consider the Kazhdan-Lusztig map which provides an

injection from the set of nilpotent orbits in g to the set of conjugacy classes in W [g]. This

is, in a sense, a dual invariant to the one provided by considering the Springer correspon-

dence. In the context of the four dimensional defects of the theory X[j], one could consider

the compactification scheme of (2.4). The resulting four dimensional picture would involve

N = 4 SYM with a surface operator, similar to the setup considered in [21]. There, it was

necessary to match the local behaviour of polar polynomials formed out of the Higgs field

in an associated Hitchin system on the G & G∨ sides for the determination of the S-duality

map. It was argued in [21] that the KL map offered a compact way to implement this

– 8 –
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check. In this paper, this invariant will not play a central role. But, it will feature in a

discussion of a possible extension of the setup provided in section 7.

3 S-duality of Gaiotto-Witten boundary conditions

Recall that Gaiotto-Witten constructed a vast set of 1/2 BPS boundary conditions for

N = 4 SYM on a half space [8]. The most general boundary condition in this set can be

described by a triple (O, H,B). Here, O is a nilpotent orbit. By the Jacobson-Morozov

theorem, to every nilpotent orbit O is an associated sl2 embedding ρO : sl2 → g. H is a

subgroup of the centralizer of sl2 triple associated to O and B is a three dimensional SCFT

living on the boundary that has a H symmetry. This data is translated to a boundary

condition as below,

• Impose a Nahm pole boundary condition that is of type ρO,

• At the boundary, impose Neumann boundary conditions for gauge fields valued in

the subalgebra h of g,

• Gauge the H symmetry of three dimensional boundary B and couple it to the corre-

sponding four dimensional vector multiplets.

In talking about these boundary conditions, it is very helpful to always think of some

special cases. Take {O0,Om,Osr,Opr} to refer respectively to {the zero orbit, the minimal

orbit, the sub-regular orbit,the principal orbit }. The principal orbit is sometimes called the

regular orbit in the literature but in the discussions here, only the former name will appear.

For the subgroup H, take {Id} to denote the case where the gauge group is completely

Higgsed at the boundary and {G} to be case where it is not Higgsed. For the boundary

field theory B, the value ∅ corresponds to the case where there is no boundary field theory

that is coupled to the bulk vector multiplets. A class of boundary theories named T ρ[G]

played an important role in the discussion of S-dualities in [22] and cases where B = T ρ[G]

will turn out to be important in the current discussion as well.

The Higgs and Coulomb branches of these theories are certain sub-spaces5 inside the

Nilpotent cones N and N∨. For much of what follows, various notions associated with the

structure theory of nilpotent orbits in complex semi-simple Lie algebras will be routinely

invoked. Accessible introductions to these aspects can be found in [18, 23].

With these preliminaries established, one can now look at how S-dualities act on some

of the simplest boundary conditions. For example, consider the triple (O0, Id,∅) that

corresponds to the Dirichlet boundary conditions for the gauge fields and (O0, G,∅) cor-

responds to Neumann boundary conditions for the gauge fields. One of the important

features of the GW set of boundary conditions is that it is closed under S-duality. But, the

simple minded boundary conditions recounted above get mapped to non-trivial boundary

conditions. The S-dual of (O0, Id,∅) in a theory with gauge group G is the boundary

condition (O0, G∨, T [G]) in a theory with gauge group G∨. On the other hand, the dual

5strata would, technically, be a more accurate term.
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N =4 SYM with gauge group G N =4 SYM with gauge group G∨ Associated moduli space

(O0, G,∅) (Opr, Id,∅) ·

(O0, Id,∅) (O0, G∨, T [G]) N

(Oρ, Id,∅) (O0, G∨, T ρ[G]) Sρ ∩ N

Table 1. S-duality of boundary conditions in N = 4 SYM.

of (O0, G,∅) is (Opr, Id,∅). One strong evidence in favor of the identification of S-duality

between these boundary conditions is the fact that dimensions of the vacuum moduli space

of N = 4 SYM with these boundary conditions happen to match on both sides. In the two

cases considered above, the moduli space is the nilpotent cone N in the first case and a

point in the second case. These occurrences of the S-duality map6 are listed in table 1.

We will not be needing the constructions of Gaiotto-Witten in their full generality. The

cases that will be of direct relevance to discussions here correspond to the ones with a pure

Nahm pole boundary condition and its S-dual case of a Neumann boundary condition along

with a coupling to a three dimensional theory T ρ[G] and certain deformations thereof. In

the rest of the section, we will look closely at duality between (Oρ, Id,∅) in the theory with

gauge group G and (O0, G∨, T ρ[G]) in the theory with gauge group G∨. An important point

to note here is that the specification of the boundary condition on the G∨ is incomplete

without a description of how the theory T ρ[G] is coupled to boundary multiplets. In the

adopted conventions, the Higgs branch of T [G] will have a G global symmetry, while the

Coulomb branch has a G∨ global symmetry. So, the natural way to couple T ρ[G] would

be to gauge the global symmetry on the Coulomb branch7 and couple it to the boundary

vector multiplets of the G∨ theory. The Higgs branch of T ρ[G] is now understood to be

the vacuum moduli space of the full four dimensional theory with this boundary condition.

As one may guess, understanding this instance of the duality map requires a careful study

of the moduli spaces of Nahm equations under different pole boundary conditions and the

theories T ρ[G] and their vacuum moduli spaces. Some of the main elements of such a study

are outlined in the rest of the section.

3.1 Moduli spaces of Nahm equations

Various aspects of Nahm equations and their moduli space of solutions are reviewed in [8].

For some other useful works which elucidate Nahm equation from different points of view,

see [24, 25].

In the setting of boundary conditions of N = 4 SYM [8], Nahm boundary conditions

arise as a generalization of the usual Dirichlet boundary conditions. Recall that there are

six real scalar fields in this theory. Let
−→
X be the triplet for which Nahm type boundary

6We are concerned here just with the Z2 subgroup of the full S-duality group that acts on the coupling

constant as τ∨ = −1/nrτ , where nr is the ratio of lengths of the longest root to the shortest root.
7The symmetries on the Coulomb branch are not obvious in any Lagrangian description of T ρ[G]. So, a

more practical way to describe this coupling is to use the description of this branch as the Higgs branch of

the mirror theory Tρ∨ [G]. But, to simplify things, all statements in this paper are made with the theories

T ρ[G].

– 10 –



J
H
E
P
0
7
(
2
0
1
4
)
0
9
5

conditions conditions are imposed. Formulate the theory on R3 × R+ and let y be a co-

ordinate along R+ with y = 0 being the boundary. Let ρ be a sl2 embedding, ρ : sl2 → g.

Then, the boundary conditions are of the form

dXi

dy
= ǫijk[X

i, Xj ] (3.1)

Xi =
ti

y
, y → 0 (i = 1, 2, 3). (3.2)

with ti being a sl2 triple associated to ρ(e, f, h), (e, f, h) being the standard triple. The first

part is the usual Nahm equation while the second part of the boundary condition modifies

it to a Nahm pole boundary condition. When ρ is the zero embedding, this reduces to the

case of a pure Dirichlet boundary condition. Following the works of Kronheimer [26], it is

known that solutions to (3.2) is a hyper-kahler manifold. Denote this by Mρ(
−→
X∞), where

−→
X∞ are the values of

−→
X at y → ∞. When

−→
X∞ = 0, Mρ(

−→
X∞) is a singular space. Some

special cases are

• ρ is the zero embedding. Here, Mρ(0) is the nilpotent variety N of G.

• ρ is the sub-regular embedding. In this case, Mρ(0) is a singularity of the form C2/Γ.

• For ρ being the principal embedding, Mρ(0) is just a point.

In the more general cases,
−→
X∞ is a non-zero semi-simple element and one obtains

a resolution/deformation of the singular space. In this more general case,
−→
X∞ ∈ t3/W ,

where W is the Weyl group. Specializing to
−→
X∞ = (iτ, 0, 0), one gets a resolution of the

moduli space of solutions in one of the complex structures. It turns out that many of the

ideas in the setup just reviewed play an important role in geometric representation theory.

From a purely complex point of view, these moduli spaces have been studied in the works

of Grothendieck-Brieskorn-Slodowy [15, 27]. The general solution to Nahm pole boundary

conditions is in fact best described as the intersection Sρ ∩ N where Sρ is the Slodowy

slice that is transverse (in g) to the nilpotent orbit ρ. The realization of these spaces as

solutions to Nahm equations gives a new hyper-kahler perspective.

3.1.1 Springer resolution of Slodowy slices

Consider the Springer resolution µ discussed in section 2.5.1. As already noted, this resolu-

tion is semi-small. Now, consider the preimage of S = Sρ∩N under µ, given by S̃ = µ−1(S).

It can be shown that dim(S̃) = dim(N ) − dim(ON ) (all dimensions are complex dimen-

sions unless stated otherwise). The Springer fiber BN = µ−1(e), where e is a representative

of ON is a space of dimension dim(BN ) = 1
2(dim(N ) − dim(ON )). Further, BN is a La-

grangian sub-manifold of S̃ and can be obtained as a homotopy retract of S̃ [12, 28]. In

particular, H∗(S̃) = H∗(BN ). Slodowy’s construction naturally endows an action of the

Weyl group on H∗(S̃) as the monodromy representation. This then endows a Weyl group

action on H∗(BN ). It is known that this action matches with the one from Springer’s

construction [27] (in Lusztig’s normalization). In particular, Htop(BN ) is a W [g]×A(ON )
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Figure 1. Brane realization of T [SU(3)]. The D5 linking numbers are li = (2, 2, 2) and the NS5

linking numbers are l̃i = (1, 1, 1).

module. In light of the fact that the moduli space of solutions is actually a hyper-Kahler

manifold, it is natural to associate to it a quaternionic dimension. Let dimH(S
ρ ∩ N ) be

the quaternionic dimension. Then, the dimension formulas immediately imply

dimH(S
ρ ∩N ) = dimC(BN ). (3.3)

It is convenient to note the above relation since dimC(BN ) is often readily available in the

mathematical literature on Springer resolutions.

3.2 Vacuum moduli spaces of T ρ[G]

The T ρ[G] theories are certain 3d N = 4 SCFTs that play an important role in the

description of S-duality of boundary conditions for N = 4 SYM. For G classical, Gaiotto-

Witten provide brane constructions in type IIB string theory (following the setup of [29]) to

describe the boundary conditions. In particular, their setup provides a brane construction

of many of the three dimensional theories T ρ[G]. An example of such a brane construction

for G = SU(N) is given in figure 1. For G exceptional, the theories T ρ[G] exist although

brane constructions are no longer available. There are however some general features that

are expected to be shared by all T ρ[G]. Most notable among this is the fact that the

vacuum moduli spaces of these theories arise as certain subspaces of N × N∨, where N

is the nilpotent cone for the lie algebra g while N∨ is the nilpotent cone associated to

the dual lie algebra g∨. More concretely [1, 22] let (ON ,OH) denote a pair of nilpotent

orbits in g, g∨. The Higgs branch of T ρ[G] is a hyper-kahler manifold of complex dimension

dim(N ) − dim(ON ) and the Coulomb branch of T ρ[G] is another hyper-kahler manifold

of dimension dim(OH). It follows that for the corresponding four dimensional theory8 on

the co-dimension two defect, the dimensions of the Higgs branch and the Coulomb branch

dimension are dim(N )− dim(ON ) and 1
2(dim(OH)) respectively.

3.2.1 Resolution of the Higgs branch

Recall that under the conventions adopted, the theory T ρ[G] appears on the side of the

duality with 4d SYM for gauge group G∨ and its Coulomb branch is a nilpotent orbit in g∨.

Upon coupling to the boundary gauge fields, the Higgs branch of the theory is identified as

the vacuum moduli space of the 4d theory with a boundary. The equivalence between this

8Recall T ρ[G] is obtained by compactifying the four dimensional N = 2 codimension two defect theory

on a circle and hence has a Higgs branch of the same dimension and a Coulomb branch that is twice the

dimension of the 4d Coulomb branch.
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Higgs branch and the presentation of the space as Sρ ∩N is a highly non trivial assertion

but one that can not be checked directly since an independent prescription for the Higgs

branch does not exist for arbitrary T ρ[G]. In this paper, it will be taken for granted that

the S-dual boundary condition for a Nahm pole boundary condition should indeed involve

one of the theories T ρ[G]. Under this assumption, it will be possible to determine which

of the T ρ[G] arise as part of the dual boundary condition to a particular Nahm boundary

condition. Now, associated to the theory T ρ[G] are certain Fayet-Iliopoulos (FI) parameters
−→
ζ . The Springer resolution of the Higgs branch of T ρ[G] can be understood to arise from

giving particular non-zero values to some of the FI parameters [22]. Although an explicit

description of this geometry is not available, one expects this to match the g description

where the resolution parameters entered the Nahm description as
−→
X∞. The upshot of the

argument here is that it makes sense to attach a Springer invariant to the resolved Higgs

branch of T ρ[G]. In section 5, it will be seen that requiring that the Springer invariant

obtained from the g and g∨ descriptions match is a strong constraint on the relationship

betweenOH andON . The next section sets the ground by introducing several mathematical

notions that are critical for section 5.

4 Duality maps and representations of Weyl groups

4.1 Various duality maps

Order reversing duality maps turn out to play an important role in understanding the

physics of T ρ[G] theories and hence of the associated co-dimension two defects. But, there

are different order reversing duality maps in the mathematical literature and it is helpful

to know certain defining features of these maps to understand the nature of their relevance

to the physical questions. To this end, here is a quick review of the available duality maps.

Let us define the following. The set of all nilpotent orbits in g will be denoted by [O]. The

set of all nilpotent orbits in g∨ will be denoted by [O∨]. The special orbits within these

two sets will be denoted by [Osp], [O∨
sp]. The notation [O] refers to all pairs (O, C) where

O ∈ [O] and C is an conjugacy class of the group Ā(O). This group Ā(O) is a quotient

(defined by Lusztig) of the component group A(O) of the nilpotent orbit O. The following

order reversing duality maps have been constructed in the mathematical literature.

The duality map Its action

Lusztig-

Spaltenstein

dLS : [O] → [Osp]

Barbasch-Vogan dBV : [O] → [O∨
sp]

Sommers dS : [O] → [O∨
sp]

Achar dA : [O] → [O∨]

Each of these maps invert the partial order on the set of nilpotent orbits. For example,

the principal orbit is always mapped to the zero orbit and the zero orbit is always mapped

to the principal orbit. The name ‘order-reversing duality’ is meant to highlight this fact.

The Lusztig-Spaltenstein map is explicitly detailed in [16] and is the only order-reversing

duality map that strictly stays within g and does not pass to the dual lie algebra. In
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[7, 1]

[5, 3]

[5, 13][42]′ [42]′′

[32, 12]

[24]′ [24]′′[3, 15]

[22, 14]

[18]

Figure 2. Hasse diagram describing the closure ordering for special nilpotent orbits in so8.

this sense, it occupies a different position from the other three maps. The order reversing

map of Sommers [10] (further elaborated upon in [30] and extended by Achar in [31])

is defined9 by combining the duality construction due to Lusztig-Spaltenstein [16] and

a map constructed by Lusztig in [32]. The duality map of Barbasch-Vogan [33] arises

from the study of primitive ideals in universal enveloping algebras (equivalently of Harish-

Chandra modules) and can be thought of as a special case of the duality maps due to

Sommers and Achar.

Everytime an order reversing duality map is used in this paper, it will be explicitly one

of the maps summarized in the table above. The order reversing duality that is used in [1]

is the Sommers duality map dS . If one forgets the additional discrete data associated to the

special orbit that arises on the g∨ side, this reduces to the duality map of Barbasch-Vogan,

dBV . In [1], the name Spaltenstein dual is used for describing a duality map that passes to

the dual lie algebra. This terminology is potentially confusing if one wants to compare with

the mathematical literature and will not be adopted here. All of these maps are easiest

to describe when their domain is restricted to just the special orbits. It is an important

property of the maps that they act as involutions on the special orbits. Considering the

case of special orbits in g = so8, g∨ = so8. In this case, all the above maps coincide

and their action is best seen as the unique order reversing involution acting on the closure

diagram for special orbits.

As one further remark, let us note here a particular subtlety. Even in scenarios where

dLS and dBV have identical domain and image, they could disagree. For example, in the

case of g = F4, g
∨ = F4. So, the domain and the image for dLS are identical to that for

dBV . But, dLS and dBV disagree for certain nilpotent orbits (see the Hasse diagram for

F4 in [1]).

9One could equivalently view the Sommers map as being defined in the opposite direction, dS : [O∨
sp] →

[O]. The way it is written here is the direction in which it is invoked in [1].
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An important feature of all the duality maps is their close interaction with the Springer

correspondence and consequently with the representation theory of Weyl groups. In fact,

some of the maps are defined using the Springer correspondence. So, any attempt to gain

a deeper understanding of how the duality maps work is aided greatly by a study of the

representation theory of Weyl groups. In the rest of the section, some of the elements of

this theory are recounted.

4.2 Families, special representations and special orbits

Let Irr(W ) denote the set of irreducible representation of the Weyl group W . There is a

distinguished subset of Irr(W ) called special representations that are well behaved under

a procedure known as truncated induction (or j induction, see appendix D) and duality.

To explain this, denote the set of special representations by SW . Now, let sp be a special

representation of a parabolic subgroup Wp. Requiring that the identity representation be

special and considering all parabolic subgroups of a Weyl group and proceeding inductively,

define s to be special if s = jWWp
(sp) for some parabolic subgroup Wp and additionally

s′ = i(s) is also special. Here, i(s) refers to Lusztig’s duality which in almost all cases

acts as tensoring by the sign representation. The exceptions are certain cases in E7 and

E8 which will be discussed at a later point (see section 8.1.6). Proceeding in this fashion,

Lusztig determined the set of all special representations in an arbitrary Weyl group in [34].

Another important notion that is defined inductively is that of a cell module.10 This is

a not-necessarily irreducible module of W that, again, has some very nice properties under

induction and duality. The trivial representation Id is defined to be a cell module by itself.

One arrives at the other cell modules in the following way. Let c be a cell module of Irr(W )

and cp be a cell module of a parabolic subgroup Wp of W . Consider their behaviour under

two operations for arbitrary subgroups Wp,

c′ = ǫ⊗ c, (4.1)

c′′ = IndWWp
(cp), (4.2)

where Ind is the usual induction (in the sense of Frobenius) from a parabolic subgroup.

Requiring that the above two operations always yield another cell module determines all

the cell modules in W [g] for every g. The structure of these cell modules has what may

seem like a surprising property. Each cell module has a unique special representation as

one of its irreducible summands. Additionally, the representations that occur as part of

a cell module that contains a special representation s occur only in the cell modules that

contain s as the special representation. This structure suggests a certain partitioning of

Irr(W ) [35]. It is of the following form,11

Irr(W ) =
∐

s

fs (4.3)

10An equivalent term is that of a ‘constructible representation’ but the term cell module will be preferred

in this paper.
11There is an equivalent partitioning of Weyl group representations using the idea of a two-cell of the

finite Weyl group. In this paper, the term family will be used uniformly.
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where s is a special representation. An irrep r occurs in the family fs if and only if it occurs

in a cell module along with the special representation s. In type A, all representations are

special and hence the above partitioning reduces to the statement that each irreducible

representation of W (An) belongs to a separate family in which it is the only constituent.

This simple structure however does not hold for Weyl groups outside of type A. The

general case includes non-special representations which occur as constituents of some of

the families fs. So, a typical family contains a unique special representation (which can

be used to index the family as in (4.3)) and a few non-special representations. Associated

to each family are the cell modules in which the representation s occurs as the special

summand. As an example of a family with more than one constituent, consider the unique

non-trivial family in D4 (see appendix B.3 for the notation adopted),

f([2,1],[1]) = {([2, 1], [1]), ([22],−), ([2], [12])}. (4.4)

The special representation in this family is given by ([2, 1], [1]) and the cell modules that

belong to this family are

c1 = ([2, 1], [1])⊕ ([22],−), (4.5)

c2 = ([2, 1], [1])⊕ ([2], [12]). (4.6)

To every irreducible representation of a Weyl group, Lusztig assigns a certain invariant such

that it is constant within a family and unique to it. Its value is equal to the dimension

of the Springer fiber associated to the special element in a given family. For the family in

the example discussed above, the a value is 3 and it is the unique family in W (D4) that

has a = 3. Here, it is appropriate to also note that one of the earliest characterizations

of special orbits was via the Springer correspondence. A nilpotent orbit O in g is special

if and only if Sp−1[g,O] is a special representation of the Weyl group. Alternatively, a

non-special orbit O is the one for which Sp−1[g,O] yields a non-special irrep of W . Note

that some irreps correspond under the Springer correspondence to non-trivial local systems

on O. So, not every non-special representation is associated to a non-special orbit. For

example, in D4,

Sp[D4, ([2
2],−)] = ([3, 22, 1], 1) (4.7)

Sp[D4, ([2], [1
2])] = ([32, 12], ψ2), (4.8)

where ψ2 is the sign representation of S2, the component group of [32, 12]. In the first case

above, the Springer correspondence assigns a non-special representation to a non-special

orbit while in the second case, it assigns a non-special representation a non-trivial local

system on a special orbit. The structure of the cell modules can now be seen as

c1 = special orbit rep⊕ non-special orbit rep (4.9)

c2 = special orbit rep⊕ non-orbit rep.

For all families with three irreducible representations, the cell structure follows an identical

pattern to the one just discussed. The special orbit together with all the non-special orbits
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to which the Springer correspondence assigns (when the orbits are taken with the trivial

representation of the component groups) Weyl group irreps that are in the same family

as that of the special representation (assigned to the special orbit by Sp−1) form what is

called a special piece [36]. Geometrically, it is the set of all orbits which are contained in the

closure of the special orbit O but are not contained in the closure of any other special orbit

O′ that obeys O′ < O in the closure ordering on special orbits. Note that in the example

above, there is a cell module which contains all the Orbit representations corresponding

to the special piece. The tables in the paper show, explicitly, that this pattern persists

for every special piece in low rank classical cases and all the exceptional cases. That this

pattern actually persists for every special piece can be shown using certain results in [32]

(the summary of results at the end of pg. xiii and the beginning of pg. xv are most

pertinent here).12 Further, the relevant results in [32] also imply that the number of orbits

in the special piece is equal to the number of irreducible representations of the finite group

Ā(O∨) for some special orbit O∨ in the dual lie algebra. A weaker statement that the

Orbit representations of a special piece belong to the same family is available in [36].

For larger families, the overall structure of cell modules is a lot more complicated

than (4.10). For example, consider the family in W (E8) that contains the special repre-

sentation φ4480,16 [14],

fφ4480,16
= {φ4480,16, φ7168,17, φ3150,18, φ4200,18, φ4536,18, φ5670,18,

φ1344,19, φ2016,19, φ5600,19, φ2688,20, φ420,20, φ1134,20,

φ1400,20, φ1680,22, φ168,24, φ448,25, φ70,32}.

This family has a = 16 and has a total of 17 irreps which organize themselves into the
following seven cell modules,

c1 = φ4480,16⊕φ7168,17⊕φ3150,18⊕φ4200,18⊕φ1344,19⊕φ2016,19⊕φ420,20 (4.10)

c2 = φ4480,16⊕φ7168,17⊕φ3150,18⊕φ4200,18⊕φ5670,18⊕φ1344,19⊕φ5600,19⊕φ1134,20

c3 = φ4480,16⊕φ7168,17⊕2φ4200,18⊕φ4536,18⊕φ5670,18⊕φ1344,19⊕φ5600,19⊕φ1400,20⊕φ168,24

c4 = φ4480,16⊕φ7168,17⊕φ3150,18⊕φ4536,18⊕2φ5670,18⊕2φ5600,19⊕φ1134,20⊕φ1680,22⊕φ448,25

c5 = φ4480,16⊕φ7168,17⊕3φ4536,18⊕3φ5670,18⊕2φ5600,19⊕2φ1400,20⊕3φ1680,22⊕φ448,25⊕φ70,32

c6 = φ4480,16⊕2φ7168,17⊕φ3150,18⊕φ4200,18⊕φ4536,18⊕φ5670,18⊕φ2016,19⊕φ5600,19⊕φ2688,20

c7 = φ4480,16⊕2φ7168,17⊕φ4200,18⊕2φ4536,18⊕2φ5670,18⊕2φ5600,19⊕φ2688,20⊕φ1400,20⊕φ1680,22.

Here again, c1 is the collection of all Orbit representations in the family and the corre-

sponding orbits form a special piece (see the table for E8 in table 10). The patterns in the

other cell modules for this family are not very obvious.

In the following sections, the various notions introduced in this section will play an

important role. For a more detailed exposition of the theory of Weyl group representations,

see [14, 32].

12I thank G. Lusztig for correspondence on these matters.
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5 Physical implications of duality maps

5.1 CDT class of defects via matching of the Springer invariant

Recall from the discussion of S-duality of 1/2 BPS boundary conditions in N = 4 SYM that

the vacuum moduli space of the theory on a half space has two different realizations. One is

its realization in the G description and the other is its realization in the G∨ description. For

the examples considered, the former was as a solution to Nahm equations with certain pole

boundary conditions. The solution is in general of the form Sρ ∩N , where ρ is a nilpotent

orbit in g. On the G∨ side, this space is realized as the Higgs branch of theory T ρ[G].

Recall that the Higgs branch is a (singular) hyper-kahler space. So, the above statement

in particular means that the metric on the moduli space is the same in both realizations.

There is, at present, no known way to check this equality for arbitrary cases. However,

there is strong evidence that the above identification holds for all Oρ in any simple g.

The S-duality map however would be incomplete if one could not say something about

what the Coulomb branch of T ρ[G] should be. It is the Coulomb branch of T ρ[G] that is

gauged and coupled to the boundary gauge fields on the G∨ side. In [22], in the case of

type An, it is shown that the Coulomb branch of T ρ[G] is given by a nilpotent orbit in

g∨ = An whose partition type is P T , the transpose of the partition type P of the orbit ρ.

Geometrically, transposition on the partition type acts as an order reversing duality on the

set of nilpotent orbits taken with the partial order provided by their closure ordering [18].

So, in the more general cases, one can guess that something similar to the case of An

prevails and description of the Coulomb branch of T ρ[G] will involve an order reversing

duality between the data on the g and the g∨ sides. Before the more general case is

discussed, consider the case of g = su(N) and a hypothetical scenario where one did not

know that the right S-duality map between boundary conditions picks out the T ρ[SU(N)]

that has a Coulomb branch given by a dual nilpotent orbit as the correct theory to couple

at the boundary in the description of the S-dual of Nahm pole boundary condition of type

partition type P . If, however, one is convinced that the boundary condition on the G∨ side

should involve one of the T ρ[G] theories, then there is a unique theory whose Higgs branch

matches the dimension of Sρ ∩ N . This theory would be the obvious candidate for the

boundary theory on the G∨ side. And this theory has as its Coulomb branch the nilpotent

orbit P T . One could call this argument dimension matching, for merely requiring that the

dimensions of the moduli space in its two realizations match turns out to completely specify

the duality map. Outside of type A, the above argument can’t be carried out directly for

there are different T ρ[G] that have Higgs branches of the same dimension.

Additionally, for certain G in the classical types, the quivers that describe T ρ[G] turn

out to be ‘bad’ in the sense of [22]. This complicates the description of the IR limit of

the associated brane configurations. Moreover, when G is of exceptional type, a quiver

description of the three dimensional theory is no longer available. In this context, it is

convenient to use a more refined invariant which will be called the Higgs branch Springer

invariant. It has the advantage of being calculable for all G and can distinguish T ρ[G] that

have Higgs branches of the same dimension. The point of view pursued here is that once

the interaction between the representation theory and the vacuum moduli spaces of T ρ[G]
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is understood for G classical (where brane constructions are available), then the available

results from representation theory can be used to understand cases for which there is no

brane construction available. Such a point of view is additionally supported by the fact

that the corresponding representation theoretic results are highly constrained and enjoy a

degree of uniqueness. This is also the point of view adopted in [1] whose setup is what we

are seeking to arrive at, albeit by a different route.

Let us now proceed to associate a Higgs branch Springer invariant on both sides of

the S-duality map and require that they match. The irrep that occurs in this matching

will be called r̄. It seems suitable to call this check for the S-duality map as Higgs branch

Springer invariant matching, or r̄-matching for short. This invariant r̄ is calculated on the

g in a straightforward manner,

r̄ = Sp−1[slN ,ON ]. (5.1)

From the brane constructions, we know that nilpotent orbits that enter the description of

the Higgs and Coulomb branches of T ρ[SU(N)] are related by an order reversing duality

between the nilpotent orbits. The analogue of an order reversing duality at the level of

Weyl group representations is tensoring by the sign representation ǫ. And, indeed, one sees

that the r̄ obtained as in (5.1) above obeys

r̄ = ǫ⊗ Sp−1[slN ,OH ]. (5.2)

Alternatively, one can require that

Sp−1[slN ,ON ] = ǫ⊗ Sp−1[slN ,OH ] (5.3)

and this, in turn, determines ON for a given OH .

Now, it is natural to try and generalize this for other g. For arbitrary g, the Springer

correspondences in g∨ and g would give irreps ofW [g∨] andW [g]. Since there is a canonical

isomorphism between the two, it is natural to parameterize the irreps of the two Weyl

groups in a common fashion (see appendix B and [14]). This would also allow one to

formulate a ‘matching’ argument along the lines of (5.3). This does turn out to be hugely

helpful as this simple-minded generalization specifies the duality map in numerous cases.

Let us for a moment consider case where Hitchin data is (OH , 1). Merely requiring that

Sp−1[g,ON ] = ǫ⊗ Sp−1[g∨,OH ], (5.4)

one can obtain the order reversing duality map for all ON special except for the cases

discussed in section 8.1.6. One can handle all the cases uniformly by replacing the r.h.s.

in (5.4) with the unique special representation in the family of ǫ ⊗ Sp−1[g∨,OH ]. This

version of the duality operation that implements a fix for the ‘exceptional’ (in the sense of

section 8.1.6) cases is due to Lusztig. In the discussion below, the duality operation will

continue to the represented as tensoring by sign with the understanding that, if needed,

the above fix can always be applied to the definition.

Now, consider the following equivalent formulation of eq. (5.4),

Sp−1[g,ON ] = Sp−1[g, dLS(OH)], (5.5)
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where dLS is the Lusztig-Spaltenstein order reversing duality map that stays within the lie

algebra g. The equivalence of the above formulation to eq. (5.4) follows from a property of

the map dLS when acting on special orbits,

Sp−1[g, dLS(O)] = ǫ⊗ Sp−1[g,O]. (5.6)

From (5.5), we get the order reversing duality for the cases where ON is special. For

the other cases, one has to formulate a more sophisticated argument. Before we get to

that, let us try to understand how the Springer invariant can be calculated when we allow

for a particular symmetry breaking deformation in the bulk on the g∨ side.

The boundary condition on the g∨ side involves N = 4 SYM on a half space with a

coupling to a three dimensional theory T ρ[G] that lives on the boundary. Now, deform

this boundary condition by giving a vev to the adjoint scalars of the bulk theory. Let this

vev be some semi-simple element m ∈ T∨. Now, in the m → ∞ limit, the bulk symmetry

is broken from G∨ to L∨, where l∨ is a subalgebra that arises as the centralizer Zg∨(m).

Pick m such that a representative e∨ of the Coulomb branch orbit OH is a distinguished

nilpotent element in l∨. Taking the m → ∞ limit gives a boundary condition in N = 4

SYM with gauge group L∨ with the theory at the boundary being T ρ̃[L]. Let us call such a

deformation of the boundary condition on the G∨ side a distinguished symmetry breaking,

(O0, G∨, T ρ[G]) −→d.s.b (O
0, L∨, T ρ̃[L]). (5.7)

The above deformation can be done for any boundary condition of the form (O0, G∨, T ρ[G])

in N = 4 SYM. When l∨ is a Levi subalgebra, this procedure, in a sense, reproduces the

Bala-Carter classification of nilpotent orbits in g∨ (see appendix A and [14]). Let us briefly

restrict to the case where l∨ is indeed a Levi subalgebra. In what follow, it is helpful

to note that every distinguished orbit is special and dLS always acts as an involution on

special orbits. Now, associate an irrep of W [l∨] to the Coulomb branch of T ρ̃[L] in the

following way,

s = Sp−1[l∨, dLS(O
l∨

H )], (5.8)

where dLS is the duality map that stays within l∨. Now, it turns out that the following is

always true,

r̄ = j
W [g∨]
W [l∨] (s), (5.9)

where r̄ is Higgs branch Springer invariant defined earlier and the operation j
W [g∨]
W [l∨] refers to

Macdonald-Lusztig-Spaltenstein induction from irreps of the Weyl subgroup W [l∨] to the

parent Weyl group W [g∨] (see appendix D). The j induction procedure is sometimes also

called truncated induction. It plays a critical role in the interaction of Springer theory with

induction within the Weyl group and especially in isolating how theW [g∨] module structure

of Htop(B) can be induced from aW [l∨] module structure. More generally, the cohomology

in lower degrees also obey certain induction theorems (see, for example [37, 38]). For the

current purposes (associating a Springer invariant to the defect), only the structure of

Htop(B) is relevant and hence (5.9) is sufficient.
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Now, (5.9) allows us to rewrite the matching condition (5.5) as

s = Sp−1[l∨, dLS(O
l∨

H )] (5.10a)

Sp−1[g,ON ] = j
W [g∨]
W [l∨] (s) (5.10b)

The above matching condition determines the pairs ON ,OH for ON being a special

orbit. Different ON arise on the g side when the various non-conjugate Levi subalgebras

l∨ are considered on the g∨ side.

Apart from this highly constraining structure, the matching condition (5.10) addition-

ally enjoys the following beautiful feature. In order to extend the domain of the duality

map to include cases where ON is non-special, all that one has to do is to allow for l∨ to

be an arbitrary centralizer and not just a Levi subalgebra. These more general centralizers

are what are called pseudo-Levi subalgebras in [10]. So, by allowing l∨ to a pseudo-Levi

subalgebra in which a representative e∨ of the Hitchin orbit OH is distinguished, one ob-

tains an order reversing duality map that recovers the entire CDT class of defects. By

Sommers’ extension of the Bala-Carter theorem [19], this more refined data on the Hitchin

side is actually equivalent to specifying (OH , C) where C is a conjugacy class in Ā(OH).

Ā(OH) is always a Coxeter group. Within this Coxeter group, there is a well defined way

to translate data of the form (OH , C) to something of the form (OH , C) [30], where C is

the Sommers-Achar subgroup of Ā(OH) (in the notation and terminology of [1]). For non-

special Nahm orbits, this subgroup C enters the description of the Coulomb branch data

in a crucial way as explained in [1]. One also observes that the map between Hitchin and

Nahm data offers the following distinction between special and non-special Nahm orbits

in the language of boundary conditions for N = 4 SYM. When ON is special, the distin-

guished symmetry breaking deformation on the G∨ side produces a theory on the boundary

whose Coulomb branch is a distinguished orbit in a Levi subalgebra l∨. On the other hand,

when ON is non-special, the distinguished symmetry breaking deformation on the G∨ side

produces a theory on the boundary whose Coulomb branch is a distinguished orbit in a

pseudo-Levi subalgebra l∨ that is not a Levi subalgebra. The description given here is the

exact definition of the map in [10].13 Here, the definition is placed in a physical context.

5.2 Implications for four dimensional constructions

Once the dictionary between the Nahm/Hitchin data is established, one has the following

immediate consequences for some of the local properties of the codimension two defects [1],

dimH(Higgs branch ) =
1

2

(

dim(N )− dim(ON )
)

, (5.11)

dimC(Coulomb branch) =
1

2
dim(OH). (5.12)

Further, the contributions to the trace anomalies a, c and the flavor central charge k can

also be determined as outlined nicely in [1]. Before turning to the Toda description, here

are some further comments which future work can presumably clarify.

13To avoid confusion, it is useful to note that in the notation adopted here, nontrivial local systems

appear on the g∨ side, while they appear on the g side in Sommers’ notation.
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In the discussion in the early part of this section, a particular symmetry breaking

deformation is applied to the four dimensional theory that was called distinguished sym-

metry breaking. One is able to retrieve the Springer invariant for the undeformed theory

by an induction procedure from the Springer invariant for the deformed theory. In fact,

outside of type A, this was a crucial part of the matching constraint on the duality map

that enabled one to completely specify it. But, it would be useful understand the physi-

cal underpinnings of the induction procedure and its potential applicability outside of the

setup considered here.

In particular, it would be interesting to explore the relationship between other calcula-

ble observables of these theories. In this direction, it is notable that there have been recent

advances in the understanding of the Hilbert Series and S3 partition functions of 3d N = 4

theories (see, for example [39–43]).

6 The part about Toda

In light of the observations of AGT-W [44, 45], it is expected that the sphere partition

function of a theory of class S (built using codimension two defects of X[j] as in (2.1)) can

be expressed as a correlator in a two dimensional Toda CFT of type g. Let us briefly recall

some facts about Toda CFTs. They are described by the following Lagrangian on a disc

with a curvature insertion at infinity,

ST =
1

2π

∫

√

ĝd2z

(

1

2
ĝab∂aφ∂bφ+

rank(g)
∑

i=1

2πΛe2b(ei,φ)
)

+
1

π

∫

(Q,φ)dθ + (. . .), (6.1)

where ei ∈ h∗ are the simple roots of the root system associated to g, φ ∈ h is the Toda

field and Q = b + b−1. A special case of Toda[g] is Liouville CFT. It corresponds to the

case g = A1. Recall that the chiral algebra of Liouville CFT is the Virasoro algebra. The

chiral algebra of the more general Toda[g] theories are certain affine W algebras. These

theories have conserved currents Wk(z) of integer spins k. The spectrum of values {k− 1}

in a particular Toda[g] theory is equal to the set of exponents of the lie algebra g. The

unique spin 2 conserved current in this set is the stress tensor W2(z) = T (z).

The W-algebras that arise in such theories have the additional property that they can

be obtained by a Hamiltonian reduction procedure from affine Lie algebras which arise as

the chiral algebras of non-compact WZW models. This procedure admits a generalization

for every σ : sl2 → g and this allows one construct other W algebras. When σ is taken to

be principal, then one obtains the usual Toda[g] theories. It is only the Toda[g] theories

that will concern us in what follows since this is the setting for the direct generalizations

of [44, 45] to arbitrary theories of class S. While Toda theories exist for both simply

laced and non-simply laced g, the discussion that follows will be confined to the case

g(∼= j) ∈ A,D,E. If one were to consider the twisted defects and seek a Toda interpretation

for them, an adaptation of much of the arguments below for g ∈ B,C, F4, G2 would likely

be relevant.

When trying to build an understanding of the AGT conjecture for an arbitrary theory

of class S, a good starting point is to have the following local-global setup in mind,
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• Local aspects of the AGT conjecture: this is the claim that the regular codimension

two defects of the X[g] admit a description in terms of certain primary operators of

the principal Toda theory of type g. Let us call this part of the AGT dictionary the

primary map ℘. This map is a bijection from the set of defects to the set of semi-

degenerate states (borrowing terminology from [2]) in the Toda theory and concerns

data that is local to the codimension two defect insertion on the Riemann surface

Cg,n and does not involve the Riemann surface in any way.

• Global aspects of the AGT conjecture: if the description of the four dimensional theory

involves compactification of X[g] on Cg,n, then the sphere partition function (includ-

ing non-perturbative contributions) of this theory is obtained by a Toda correlator

on Cg,n with insertions of the corresponding primary operators of Toda theory at the

n punctures. The identification of the corresponding Toda primary is done according

to the map ℘. The identification of the conformal block with the instanton partition

function is a crucial ingredient in the global AGT conjecture. Checks of the conjec-

ture for the sphere partition function in cases of arbitrary g are available in specific

corners of the coupling constant moduli space where Lagrangian descriptions become

available for the four dimensional theories [44, 45].

In the discussion above, a choice was made to restrict to four dimensional SCFTs ob-

tained by the compactification from six dimensions involving just the regular defects. But,

it is interesting to note that the formalism associated to the AGT conjecture can also be

extended to the cases where SCFTs are built out of irregular defects14 as in [46–48] and

certain aspects extend to the case of asymptotically free theories (see, for example [49, 50]).

There exist generalizations which involve partition functions in the presence of supersym-

metric loop and surface operators of the 4d theory (see, for example [51–53] and [54]).

Some of the mathematical implications that follow from the observations of AGT have

been explored in [55–58]. For a more complete review of the literature, consult [59].

The global AGT conjecture suggests that the OPE of codimension two defects of the

six dimensional theory is controlled by the W-algebra symmetry of the Toda theory. While

this is powerful as an organizing idea, it is particularly hard to proceed in practice as the

non-linear nature of W algebras complicates their representation theory. In the discussion

that follows, the goal is only to establish the primary map for as many defects as possible in

arbitrary g. In particular, global aspects of the AGT conjecture or any of its generalizations

are not analyzed (except for a discussion about scale factors).

6.1 The primary map ℘

In the original work of AGT, this map was obtained for the case of A1. There is just a single

nontrivial codimension two defect15 in this case. So, the map is particularly straightforward

to describe. After setting the radius of the four sphere to be unity (see [3] for how the

14The terminology of regular and irregular defects is from [6, 7].
15The trivial defect (the defect corresponding to the principal Nahm pole) is always mapped to the

identity operator on the 2d CFT side.
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radius dependence on the overall partition function can be analyzed), this map can be

described as

℘ : [12]N → e2αφ | α = Q/2 + im, (6.2)

where φ is the Liouville field. In the map above, the Nahm orbit is used to identify the

defect operator. The defect could have alternatively been identified by the Hitchin orbit

associated to it, namely the orbit [2]H . But, it will turn out that the Nahm orbit is the

one that is convenient for obtaining the generalization of this for arbitrary g. So, it is

convenient to use it to tag a particular codimension two defect. Two important aspects of

the above map are

• A precise identification of ℜ(α)

• An identification of ℑ(α) with im where m is a mass deformation parameter.

An identification similar to the one above for the mass parameter m exists for the

Coulomb branch modulus a. In both of these cases, a distinguished real subspace of the

N = 2 theory’s parameters is picked out in writing the map to the corresponding Liouville

primary.

To extend these argument to higher rank cases, a natural thing to try and obtain is a

generalization of the primary map ℘ that is in the same form. Say,

℘ : ON → e(α,φ) | α = ℜ(α) + ℑ(α), (6.3)

with some prescribed conditions on ℜ(α) and ℑ(α) that depend on ON . Here, φ ∈ h is the

Toda field and it is a r-dimensional vector of scalar fields where r is the rank of g and α ∈ h∗

is the Toda momentum. The relevant primaries for the case of An were identified in [2] (a

precise formulation in terms of the Nahm orbit data can be found in [3] and is explained

in greater detail below). The general picture is that ℘ maps the zero Nahm orbit to the

maximal puncture while the other Nahm orbits are mapped to certain semi-degenerate

primary operators in the corresponding Toda theory. The principal Nahm orbit is mapped

to the identity operator. The semi-degenerate primaries of [2] contain null vectors at level-1

with the exact number and nature of these null vectors depending on the associated Nahm

orbit. Combinatorially, specifying the level-1 null vectors amounts to specifying a certain

subset of the simple roots in the root system associated to An. One gets the relationship

to the Nahm orbit by noticing a very natural connection between subsets of simple roots

and nilpotent orbits in An. This connection is offered by the Bala-Carter classification of

nilpotent orbits in g. For a quick summary of the work of Bala-Carter, see appendix A and

for a more detailed account, see [14, 18, 60]. For the current purposes, the important fact

will be that the Bala-Carter classification amounts to specifying a pair (a, e) where a is a

Levi subalgebra of g and e is a distinguished nilpotent element in that Levi subalgebra.16

Levi subalgebra are naturally classified by non-conjugate subsets of the set of simple

roots. When e is principal nilpotent in a Levi subalgebra, the corresponding orbit is called

16The Levi subalgebra a should not be confused with the Levi subalgebra l∨. The former is a subalgebra

of g and arises as part of the Nahm data while the latter is a subalgebra of g∨ and is part of the Hitchin

data.
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principal Levi type.17 It turns out that all the non-zero orbits in type A are principal

Levi type. In particular, the combinatorial data associated to a Nahm orbit by the Bala-

Carter theory is precisely the subset of simple roots corresponding to the Levi subalgebra

a. Once the combinatorial data is placed in the setting of nilpotent orbits, a reasonable

generalization would be to consider all principal Levi type orbits in arbitrary g. The

combinatorial data assigned to such orbits is always a subset of the simple roots of the

root system associated to g. Additionally, let F denote the reductive part of the connected

component of the centralizer of a nilpotent representative e of the Nahm orbit. This is

the global symmetry associated to the Higgs branch of the codimension two defect, or

equivalently of T ρ[G] [1]. Now, the mass deformation parameters of T ρ[G] (and hence

of the defect) are valued in a Cartan subalgebra of f. In particular, the number of such

linearly independent parameters is equal to rank(f). For any non-zero orbit of principal

Levi type, this quantity is necessarily non-zero. It is a general property that

rank(f) = rank(g)− rank(a). (6.4)

Now, consider a Toda primary with momentum α ∈ Λ+ that obeys

(ℜ(α), ei) = 0, (6.5)

0 ≤ ℜ(α) ≤ Qρ,

ℑ(α) = 0,

where ei is any simple root of the Levi subalgebra a and ρ is the Weyl vector of g and the

relation ≤ is in the partial order on the set of dominant weights Λ+. Imposing the above

conditions would also mean, in particular, that (α, ρa) = 0, where ρa is the Weyl vector of

the subalgebra a. When the Nahm orbit associated to codimension two defect is principal

Levi type, I argue that (6.5) provides the right Toda primary in the massless limit. A

piece of evidence that supports such a statement is the following. Let us write ℜ(α) as a

combination of the fundamental weights of g

ℜ(α) = aiωi, (6.6)

where ai 6= 0 and {ωi} is some subset of the fundamental weights. Now, deform the Toda

momentum such that it acquires an imaginary part given by

ℑ(α) = miωi, (6.7)

so that (α, ei) = 0 holds for all ei being simple roots of a. The mi introduced above are the

mass parameters that one would associate with the codimension two defect. And the total

number of such linearly independent parameters will equal the number of fundamental

weights occurring in (6.6) and this is equal to precisely rank(f), as expected. For type

A, the above procedure reproduces the semi-degenerate primaries considered in [2].18 For

17Interestingly, certain finite W algebras associated to nilpotent orbits of principal Levi type also play

an important role in the mathematical approach to a variant of the original setup of AGT [55], extended

to arbitrary g.
18This point was also made in [3] using the Dynkin weight h of the Nahm orbit.
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g # of Nilpotent orbits # of principal Levi orbits

A4 7 7

B4 13 10

C4 14 10

D4 12 9

E6 21 17

E7 45 32

E8 70 41

F4 16 12

G2 5 4

Table 2. Nilpotent orbits of principal Levi type in certain Lie algebras.

non-zero orbits that are not principal Levi type, one natural guess is that the level-1 null

vectors that are imposed are still given by the set of simple roots that one associates to

the Bala-Carter Levi. In these cases, a nilpotent representative will correspond to a non-

principal distinguished nilpotent orbit in a. This corresponds to picking a further subset

of the simple roots of a. This additional combinatorial data may presumably be translated

to null vector conditions at higher level, but this needs to be made precise. The case of

non-principal Levi type orbits for which rank(f) is zero would be particularly interesting

since the mere existence of such cases challenges the wisdom that ℑ(α) should give rise to

an associated mass deformation. In g = E8, for example, all orbits that are distinguished

in a = E8 have rank(f) = 0. To give some idea about how many of the nilpotent orbits in

g tend to be of principal Levi type, the data for certain low rank g is displayed in table 2.

It should be mentioned here that one can device some local checks of the map ℘ that

are sensitive to the Coulomb branch data. In [2], it was checked that the behaviour of

the Seiberg-Witten curve near the punctures is reproduced in a ‘semi-classical’ limit of the

Toda correlators together with insertions of the currents Wk(z). This is really a direct

check on the local contribution to the Coulomb branch from a Toda perspective. Here,

the map between the Nahm and Hitchin data obtained in the previous section already

provides a candidate for the local contribution to the Coulomb branch from a Toda primary

whose Nahm orbit is principal Levi type. But, a direct check of this assertion would be

more pleasing.

6.2 Local contributions to Higgs and Coulomb branch dimensions

As just discussed, once the relation between the Nahm data and the Toda primary is known,

one can use the dictionary between the Nahm/Hitchin data to associate a Hitchin orbit to

a Toda primary. With this, the effective contribution to the local Higgs branch and the

local Coulomb branch from a particular Toda primary can be inferred. From the tinkertoy

constructions [1], the following expressions are known for nh − nv (the total quaternionic

Higgs branch dimension) and d (the total Coulomb branch dimension) in terms of the
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Nahm and Hitchin orbit data for each defect (Oi
H ,O

i
N ),

(nh − nv) =
∑

(nh − nv)
i + (nh − nv)

global (6.8)

d =
∑

i

di + dglobal (6.9)

with

(nh − nv)
i =

1

2

(

dim(N )− dim(Oi
N )

)

= dim(Bi
N ) (6.10)

di =
1

2
dim(Oi

H) (6.11)

and

(nh − nv)
global = (1− g)rank(g) (6.12)

dglobal = (g − 1)dim(g) (6.13)

6.3 Scale factors in Toda theories

As a simple illustration of the local-global interplay, one can consider how the scale factor

in the sphere partition function that captures the Euler anomaly of the four dimensional

theory is calculated. From a purely four dimensional perspective, the Euler anomaly is

very well understood in the tinkertoy constructions. In [3], the radius dependent factor in

the sphere partition function that encodes the Euler anomaly was made explicit and the

relation to a corresponding scale factor in the two dimensional CFT was pointed out. The

scale factor in question should be calculated for a (canonically defined) stripped version of

the Toda correlator. In certain simple cases like correlators corresponding to free theories,

this scale factor directly encodes the number of polar divisors. In the more complicated

cases, it provides an interesting constraint on the analytical structure of the correlator

and its factorizing limits. For Toda correlators corresponding to a subset of the class S

theories, this scale factor can be directly calculated starting from a purely 2d perspective.

For other cases, one still expects the scale factor for the stripped correlators to be such

that it reproduces the Euler anomaly accurately. A conjecture to this effect was formulated

in [3]. The work in this paper provides an extension of the framework for the conjecture

outside of type A for cases where the Nahm orbit is principal Levi type.

7 The setup

Notation. All the relevant notation for the subsequent sections of the paper are collected

here for convenience.
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{ON} Set of nilpotent orbits in g.

{OH} Set of special nilpotent orbits in g∨.

l∨ A pseudo-Levi subalgebra of g∨

l Langlands dual of l∨. May not be a subalgebra of g.

a Levi subalgebra of g that arises from Bala-Carter label for ON .

A(OH) Component group of the Hitchin nilpotent orbit.

Ā(OH) Lusztig’s quotient of the component group.

ψH Irrep of Ā(OH).

CH Sommers-Achar subgroup of Ā(OH). It is such that j
Ā(OH)
CH

(sign) = ψH .

Irr(W ) Set of irreducible representations of the Weyl group W of g.

Irr(W∨) Set of irreducible representations of the Weyl group W∨ of g∨.

r̄ An irreducible representation of the Weyl group W [g].

r The irrep r̄ tensored with the sign representation.

fr The family to which the irrep r belongs.

Sp[g] Springer’s injection from Irr(W ) to pairs (O, ψ),

where O is a nilpotent orbit in g and ψ is a representation

of its component group A(O).

Sp−1[g] Inverse of Springer’s injection. Acts only on the subset of (O, ψ)

which occurs in the image of Sp[g].

jWW ′(rW ′) The truncated induction procedure of Macdonald-Lusztig-Spaltenstein.

nh Contribution to effective number of hypermultiplets.

nv Contribution to effective number of vector multiplets.

d Contribution to the total Coulomb branch dimension.

BN Springer fiber associated to the Nahm orbit.

BH Springer fiber associated to the Hitchin orbit.

a(fr) Lusztig’s invariant. Its value is the same for any irrep in a given family.

This equals dimC(BH) for the special orbit OH .

b̃(r̄) Sommers’ invariant. This equals dimC(BN ).

As a useful summary, the constructions of sections 5 and 6 have been summarized in

the figure 3. Some of the interesting physical quantities can be obtained from the above

figure in the following way,

simple roots for a, {ei} =⇒ {level 1 null vectors for a Toda primary}, (7.1)

(nh − nv) =
1

2

(

dim(N )− dim(ON )
)

= b̃(r̄), (7.2)

d =
1

2
dim(OH) =| Λ+ | −a(fr). (7.3)

The identification of the Toda primary in (7.1) is taken to be for just the cases where

ON is principal Levi type. The other two sets of relations in (7.2), (7.3) that give the

local contributions to the Higgs and Coulomb branch dimensions hold for all ON . These

quantities enter the description of the four dimensional theory (obtained via the class S

constructions) and its partition function on a four sphere.
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r̄ ∈ Irr(W ) ↔ Irr(W∨){ON} s

Simple roots of a, {ei} {Ol∨

H}

jW
∨

W
l∨
(s)Sp[g, r̄]

Bala-Carter Levi a Sp−1[l∨, dLS(O
l∨

H )]

Figure 3. The setup.

Note the asymmetric nature of the setup. The asymmetry arises from the fact that

in the CDT description of these defects, in cases outside type A, the Hitchin side involves

only special orbits in g∨ with an additional datum involving subgroups of their component

groups while the Nahm side involves all possible nilpotent orbits in g along with the trivial

representation of their component groups.19

Also included in the tables is the representation r obtained by tensoring r̄ with the

sign representation and the value of Lusztig’s invariant a(fr) for the family containing

the irrep r. For the defects whose Nahm data is a special orbit, the irrep r is the Orbit

representation associated to the corresponding Hitchin orbit. For defects with non-special

orbits as Nahm data, the irrep Sp−1[(OH , ψH ] (when it exists) turns out to be a different

non-special irrep belonging to the same family as r. It is notable that in these cases, the

irrep r is not one of the Springer reps associated to non-trivial local systems on the Hitchin

orbit. The general pattern for a non-special ON (observed by calculations in classical lie

algebras of low rank and all exceptional cases) is that there exists a cell module c′1(= ǫ⊗c1)

belonging to the family that contains r and the unique special representation in the family

together with other such r (= ǫ × r̄) arising from all the non-special orbits in the same

special piece.20 Further, the representations associated to the non-trivial local systems

on OH occur as summands in cell modules that are strictly different from c′1. This does

not seem to have been recorded in the mathematical literature. It would be interesting

to know if there is a proof of such a statement for arbitrary g. In any case, the physical

consequence is the following. A matching argument for what one may call the Coulomb

branch Springer invariant (r) is out of reach except for the cases where ON is special.

However, intuitively, one expects that the Coulomb branch considerations in [1] and the

Higgs branch r̄ matching argument provided here should be part of one unified setup. In

this context, associating certain other invariants like the conjugacy class of the Weyl group

19An expanded set of regular defects might allow one to think about the g and g∨ descriptions of the

defect in a more symmetric way. However, that possibility is not explored in this paper.
20It is interesting that in recent work [61], finite W-algebra methods are used to study certain properties

of cell modules in a given family/two-cell.
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to the Coulomb branch data might be helpful. Achieving this would also seem relevant to

developing a direct Coulomb branch check for the Toda primary for arbitrary g.

Every step in Toda-Nahm-Hitchin dictionary outlined in figure 3 remains perfectly ap-

plicable when g and g∨ are non simply laced and thus one expects the dictionary to extend,

as stated, to these cases as well. As discussed earlier, these are the cases with relevance for

the twisted defects of the six dimensional theory and for S-duality of boundary conditions

in N = 4 SYM with non-simply laced gauge groups. But, there is a new feature in these

cases that is worth pointing out. When g∨ is non-simply laced, the Langlands dual of the

pseudo-Levi subalgebra l∨ which is denoted by l is no longer guaranteed to be a subalgebra

of g. The general procedure to find all possible centralizers of semi-simple elements in a

complex lie algebra is to follow the Borel-de Seibenthal algorithm. Following this algorithm,

one immediately recognizes the inevitability of the situation where l * g (See appendix C).

When such l occur, the scenario is sometimes termed ‘elliptic-endoscopic’. More concretely,

the corresponding group LC would be an elliptic endoscopic group for GC. Such scenarios

play an important role in the framework of geometric endoscopy explored in [62].

The occurrence of such data in the framework of figure 3 suggests the following ques-

tion for g arbitrary. Let dBV (O
l∨

H ) be the Barbasch-Vogan dual orbit in l. Is there a

relationship between dBV (O
l∨

H ) and the orbit ON (in g) that can be described in terms of

the physics of Nahm boundary conditions in N = 4 SYM and/or the 3d T ρ[G] theories in

a g intrinsic way?

8 Tables

These detailed tables are included so that the reader can get some appreciation for the

details of how the order reversing duality map works. The reader is especially encouraged

to check these tables by following the map from one side to the other for a few scattered

examples from the simply laced and non-simply laced cases.

Some of the calculations involved in compiling the tables were done using the CHEVIE

package for the GAP system [63, 64]. Consulting the standard tables in Carter’s book is

also essential. The partitioning of the Weyl group representations into families is provided

in Carter [14]. The Cartan type of the pseudo-Levi subalgebra l∨ that arises on the g∨ side

is included as part of the tables for some simple cases. For the exceptional cases, it can

be obtained from [10]. The data collected in the tables is available in the mathematical

literature often very explicitly or perhaps implicitly. It is hoped that the details help those

who are not familiar with this literature. What is new is the physical interpretation of

some defining features of the order reversing duality map.

In the tables for F4, E6, E7, E8, the duality map for special orbits is detailed first and

then separate tables are devoted for the non-trivial special pieces. The special orbits that

are part of non-trivial special pieces thus occur in both tables.

In the non-simply laced cases, the number d corresponds to a part of the local contri-

bution to the Coulomb branch dimension. There is an additional contribution that comes

from the fact that the nilpotent orbits for G non-simply laced arise actually from the

twisted defects of the six dimensional theory [1].
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The tables themselves were generated in the following way. The data for the columns

ON , b̃, r̄, (OH , CH) follows directly from the data that is used in the description of the r̄-

matching. The irrep r is obtained by tensoring r̄ by the sign representation. The column

a(fr) is Lusztig’s invariant attached to the family to which the representation r belongs.

It is equal to the dimension of the Springer fiber associated to the Hitchin orbit.

The notation used in the tables is reviewed in the various appendices. Appendix A re-

views the notation used for nilpotent orbits. This is relevant for the columns ON , (OH , CH).

Appendix B reviews the notation used for irreducible representations of Weyl groups and

is relevant for columns r̄, r.

8.1 Simply laced cases

8.1.1 A3

| Λ+ |= 6

(ON ) b̃ r̄ r a(fr) d (OH , CH) l∨

[14] 6 [14] [4] 0 6 [4] A3

[2, 12] 3 [2, 12] [3, 1] 1 5 [3, 1] A2

[2, 2] 2 [2, 2] [2, 2] 2 4 [2, 2] A1 +A1

[3, 1] 1 [3, 1] [2, 12] 3 3 [2, 12] A1

[4] 0 [4] [14] 6 0 [14] ∅

Table 3. Order reversing duality for A3 = su(4).

Families with multiple irreps. None

8.1.2 D4

| Λ+ |= 12

(ON ) b̃ r̄ r a(fr) d (OH , CH) l∨

[18] 12 [14].− [4].− 0 12 [7, 1] D4

[22, 14] 7 [13].[1] [3].[1] 1 11 [5, 3] D4

[24]I 6 ([12].[12])′ ([2].[2])′ 2 10 [42]I A3

[24]II 6 ([12].[12])′′ ([2].[2])′′ 2 10 [42]II A3

[3, 15] 6 [2, 12].− ([3, 1].−) 2 10 [5, 13] A3

[3, 22, 1] 4 [22].− [22].− 3 9 [32, 12], S2 4A1

[32, 12] 3 [2, 1].[1] [2, 1].[1] 3 9 [32, 12] A2

[5, 13] 2 [3, 1].− [2, 12].− 6 6 [3, 15] 2A1

[42]I 2 ([2].[2])′ ([12].[12])′ 6 6 [24]I 2A1

[42]II 2 ([2].[2])′′ ([12].[12])′′ 6 6 [24]II 2A1

[5, 3] 1 [3].[1] [13].[1] 7 5 [22, 14] A1

[7, 1] 0 [4].− [14].− 12 0 [18] ∅

Table 4. Order reversing duality for D4 = so8.
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The Nahm orbits [3, 22, 1] and [32, 12] are part of the only non-trivial special piece

for D4.

Families with multiple irreps.

Family f a(f)

{([2, 1], [1]), ([22],−), ([2], [12])} 3

8.1.3 E6

| Λ+ |= 36

(ON ) b̃ r̄ r a(fr) d (OH)

0 36 φ1,36 φ1,0 0 36 E6

A1 25 φ6,25 φ6,1 1 35 E6(a1)

2A1 20 φ20,20 φ20,2 2 34 D5

A2 15 φ30,15 φ30,3 3 33 E6(a3)

A2 +A1 13 φ64,13 φ64,4 4 32 D5(a1)

A2 + 2A1 11 φ60,11 φ60,5 5 31 A4 +A1

2A2 12 φ24,12 φ24,6 6 30 D4

A3 10 φ81,10 φ81,6 6 30 A4

D4(a1) 7 φ80,7 φ80,7 7 29 D4(a1)

A4 6 φ81,6 φ81,10 10 24 A3

D4 6 φ24,6 φ24,12 12 26 2A2

A4 +A1 5 φ60,5 φ60,11 11 25 A2 + 2A1

D5(a1) 4 φ64,4 φ64,13 13 23 A2 +A1

E6(a3) 3 φ30,3 φ30,15 15 21 A2

D5 2 φ20,2 φ20,20 20 16 2A1

E6(a1) 1 φ6,1 φ6,25 25 11 A1

E6 0 φ1,0 φ1,36 36 0 0

Table 5. Order reversing duality for special orbits in E6.

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

3A1 16 φ15,16 φ15,4 3 33 E6(a3), S2

A2 15 φ30,15 φ13,3 3 33 E6(a3)

2A2 +A1 9 φ10,9 φ10,9 7 29 D4(a1), S3

A3 +A1 8 φ60,8 φ60,8 7 29 D4(a1), S2

D4(a1) 7 φ80,7 φ80,7 7 29 D4(a1)

A5 4 φ15,4 φ15,16 15 21 A2, S2

E6(a3) 3 φ30,3 φ30,15 15 21 A2

Table 6. Order reversing duality for nontrivial special pieces in E6.

Families with multiple irreps.

Family f a(f)

{φ30,3, φ15,4, φ15,5} 15

{φ80,7, φ60,8, φ90,8, φ10,9, φ20,10} 7

{φ30,15, φ15,16, φ15,17} 3
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8.1.4 E7

| Λ+ |= 63

(ON ) b̃ r̄ r a(fr) d (OH)

0 63 φ1,63 φ1,0 0 63 E7

A1 46 φ7,46 φ7,1 1 62 E7(a1)

2A1 37 φ27,37 φ27,2 2 61 E7(a2)

A2 30 φ56,30 φ56,3 3 60 E7(a3)

(3A1)
′′ 36 φ21,36 φ21,3 3 60 E6

A2 +A1 25 φ120,25 φ120,4 4 59 E6(a1)

A2 + 2A1 22 φ189,22 φ189,5 5 58 E7(a4)

A2 + 3A1 21 φ105,21 φ105,6 6 57 A6

A3 21 φ210,21 φ210,6 6 57 D6(a1)

2A2 21 φ168,21 φ168,6 6 57 D5 +A1

D4(a1) 16 φ315,16 φ315,7 7 56 E7(a5)

(A3 +A1)
′′ 20 φ189,20 φ189,7 7 56 D5

D4(a1) +A1 15 φ405,15 φ405,8 8 51 E6(a3)

A3 +A2 14 φ378,14 φ378,9 9 54 D5(a1) +A1

D4 15 φ105,15 φ105,12 12 51 A′′
5

A3 +A2 +A1 13 φ210,13 φ210,10 10 53 A4 +A2

A4 13 φ420,13 φ420,10 10 53 D5(a1)
♠ A4 +A1 11 φ510,11 φ510,12 12 51 A4 +A1

D5(a1) 10 φ420,10 φ420,13 13 50 A4

A4 +A2 10 φ210,10 φ210,13 13 50 A3 +A2 +A1

A′′
5

12 φ105,12 φ105,15 15 48 D4

D5(a1) +A1 9 φ378,9 φ378,14 14 49 A3 +A2

E6(a3) 8 φ405,8 φ405,15 15 48 D4(a1) +A1

D5 7 φ189,7 φ189,20 20 43 (A3 +A1)
′′

E7(a5) 7 φ315,7 φ315,16 16 47 D4(a1)

D5 +A1 6 φ168,6 φ168,21 21 42 2A2

D6(a1) 6 φ210,6 φ210,21 21 42 A3

A6 6 φ105,6 φ105,21 21 42 A2 + 3A1

E7(a4) 5 φ189,5 φ189,22 22 41 A2 + 2A1

E6(a1) 4 φ120,4 φ120,25 25 38 A2 +A1

E6 3 φ21,3 φ21,36 36 27 (3A1)
′′

E7(a3) 3 φ56,3 φ56,30 30 33 A2

E7(a2) 2 φ27,2 φ27,37 37 26 2A1

E7(a1) 1 φ7,1 φ7,46 46 17 A1

E7 0 φ1,0 φ1,63 63 0 0

Table 7. Order reversing duality for special orbits in E7.
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(ON ) b̃ r̄ r a(fr) d (OH ,CH)

3A′
1

31 φ35,31 φ35,4 3 60 E7(a3), S2

A2 30 φ56,30 φ56,3 3 60 E7(a3)

4A1 28 φ15,28 φ15,7 4 59 E6(a1), S2

A2 +A1 25 φ120,25 φ120,4 4 59 E6(a1)

A3 + 2A1 16 φ216,16 φ216,9 8 55 E6(a3), S2

D4(a1) +A1 15 φ405,15 φ405,8 8 55 E6(a3)

D4 +A1 12 φ84,12 φ84,15 13 50 A4, S2

D5(a1) 10 φ420,10 φ420,13 13 50 A4

(A5)
′ 9 φ216,9 φ216,19 15 48 D4(a1) +A1, S2

E6(a3) 8 φ405,8 φ405,15 15 48 D4(a1) +A1

D6 4 φ35,4 φ35,31 30 33 A2, S2

E7(a3) 3 φ56,3 φ56,30 30 33 A2

2A2 +A1 18 φ70,18 φ70,9 7 56 E7(a5), S3

(A3 +A1)
′ 17 φ280,17 φ280,8 7 56 E7(a5), S2

D4(a1) 16 φ315,16 φ315,7 7 56 E7(a5)

A5 +A1 9 φ70,9 φ70,18 16 47 D4(a1), S3

D6(a2) 8 φ280,8 φ280,17 16 47 D4(a1), S2

E7(a5) 7 φ315,7 φ315,16 16 47 D4(a1)

Table 8. Order reversing duality for nontrivial special pieces in E7.

Families with multiple irreps.

Family f a(f)

{φ56,3, φ35,4, φ21,6} 3

{φ120,4, φ105,5, φ15,7} 4

{φ405,8, φ216,9, φ189,10} 8

{φ420,10, φ336,11, φ84,12} 10
♠{φ512,11, φ512,12} 11

{φ420,13, φ336,14, φ84,15} 13

{φ405,15, φ216,16, φ189,17} 15

{φ120,25, φ105,26, φ15,28} 25

{φ56,30, φ35,31, φ21,33} 30

{φ315,7, φ280,8, φ70,9, φ280,9, φ35,13} 7

{φ315,16, φ280,17, φ70,18, φ280,18, φ35,22} 16
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8.1.5 E8

| Λ+ |= 120

ON b̃ r̄ r a(fr) d OH

0 120 φ1,120 φ1,0 0 120 E8

A1 91 φ8,91 φ8,1 1 119 E8(a1)

2A1 74 φ35,74 φ35,2 2 118 E8(a2)

A2 63 φ112,63 φ112,3 3 117 E8(a3)

A2 +A1 52 φ210,52 φ210,4 4 116 E8(a4)

A2 + 2A1 47 φ560,47 φ560,5 5 115 E8(b4)

A3 46 φ567,46 φ567,6 6 114 E7(a1)

2A2 42 φ700,42 φ700,6 6 114 E8(a5)

D4(a1) 37 φ1400,37 φ1400,7 7 113 E8(b5)

D4(a1) +A1 32 φ1400,32 φ1400,8 8 112 E8(a6)

A3 +A2 31 φ3240,31 φ3240,9 9 111 D7(a1)

D4(a1) +A2 28 φ2240,28 φ2240,10 10 110 E8(b6)

A4 30 φ2268,30 φ2268,10 10 110 E7(a3)

D4 36 φ525,36 φ525,12 12 108 E6

♠A4 +A1 26 φ4096,26 φ4096,12 11 109 E6(a1) +A1

A4 + 2A1 24 φ4200,24 φ4200,12 12 108 D7(a2)

A4 +A2 23 φ4536,23 φ4536,13 13 107 D5 +A2

D5(a1) 25 φ2800,25 φ2800,13 13 107 E6(a1)

A4 +A2 +A1 22 φ2835,22 φ2835,14 14 106 A6 +A1

D4 +A2 21 φ4200,21 φ4200,15 15 105 A6

D5(a1) +A1 22 φ6075,22 φ6075,14 14 106 E7(a4)

E6(a3) 21 φ5600,21 φ5600,15 15 105 D6(a1)

D5 20 φ2100,20 φ2100,20 20 100 D5

E8(a7) 16 φ4480,16 φ4480,16 16 104 E8(a7)

D6(a1) 15 φ5600,15 φ5600,21 21 99 E6(a3)

E7(a4) 14 φ6075,14 φ6075,22 22 98 D5(a1) +A1

A6 15 φ4200,15 φ4200,21 21 99 D4 +A2

A6 +A1 14 φ2835,14 φ2835,22 22 98 A4 +A2 +A1

E6(a1) 13 φ2800,13 φ2800,25 25 95 D5(a1)

D5 +A2 13 φ4536,13 φ4536,23 23 97 A4 +A2

D7(a2) 12 φ4200,12 φ4200,24 24 96 A4 + 2A1

♠E6(a1) +A1 11 φ4096,11 φ4096,27 26 94 A4 +A1

E6 12 φ525,12 φ525,36 36 84 D4

E7(a3) 10 φ2268,10 φ2268,30 30 90 A4

E8(b6) 10 φ2240,10 φ2240,28 28 92 D4(a1) +A2

D7(a1) 9 φ3240,9 φ3240,31 31 89 A3 +A2

E8(a6) 8 φ1400,8 φ1400,32 32 88 D4(a1) +A1

E8(b5) 7 φ1400,7 φ1400,37 37 83 D4(a1)

E8(a5) 6 φ700,6 φ700,42 42 78 2A2

E7(a1) 6 φ567,6 φ567,46 46 74 A3

E8(b4) 5 φ560,5 φ560,47 47 73 A2 + 2A1

E8(a4) 4 φ210,4 φ210,52 52 68 A2 +A1

E8(a3) 3 φ112,3 φ112,63 63 57 A2

E8(a2) 2 φ35,2 φ35,74 74 46 2A1

E8(a1) 1 φ8,1 φ8,91 91 29 A1

E8 0 φ1,0 φ1,120 120 0 0

Table 9. Order reversing duality for special orbits in E8.
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(ON ) b̃ r̄ r a(fr) d (OH ,CH)

3A1 64 φ84,64 φ84,4 3 117 E8(a3), S2

A2 63 φ112,63 φ112,3 3 117 E8(a3)

4A1 56 φ50,56 φ50,8 4 116 E8(a4), S2

A2 +A1 52 φ210,52 φ210,4 4 116 E8(a4)

A2 + 3A1 43 φ400,43 φ400,7 6 114 E8(a5), S2

2A2 42 φ700,42 φ700,6 6 114 E8(a5)

D4 +A1 28 φ700,28 φ700,16 13 107 E6(a1), S2

D5(a1) 25 φ2800,25 φ2800,13 13 107 E6(a1)

2A3 26 φ840,26 φ840,14 12 108 D7(a2), S2

A4 + 2A1 24 φ4200,24 φ4200,12 12 108 D7(a2)

A5 22 φ3200,22 φ3200,16 15 105 D6(a1), S2

E6(a3) 21 φ5600,21 φ5600,15 15 105 D6(a1)

D5 +A1 16 φ3200,16 φ3200,22 25 95 E6(a3), S2

D6(a1) 15 φ5600,15 φ5600,21 25 95 E6(a3)

D6 12 φ972,12 φ972,32 30 90 A4, S2

E7(a3) 10 φ2268,10 φ2268,30 30 90 A4

A7 11 φ1400,11 φ1400,29 28 92 D4(a1) +A2, S2

E8(b6) 10 φ2240,10 φ2240,28 28 92 D4(a1) +A2

D7 7 φ400,7 φ400,43 42 78 E8(a5), S2

E8(a5) 6 φ700,6 φ700,42 42 78 E8(a5)

E7 4 φ84,4 φ84,64 63 57 A2, S2

E8(a3) 3 φ112,3 φ112,63 63 57 A2

A3 +A2 +A1 29 φ1400,29 φ1400,11 10 110 E8(b6), S2

D4(a1) +A2 28 φ2240,28 φ2240,10 10 100 E8(b6)

2A2 +A1 39 φ448,39 φ448,9 7 113 E8(b5), S3

A3 +A1 38 φ1344,38 φ1344,38 7 113 E8(b5), S2

D4(a1) 37 φ1400,37 φ1400,8 7 113 E8(b5)

2A2 + 2A1 36 φ175,36 φ175,12 8 112 E8(a6), S3

A3 + 2A1 34 φ1050,34 φ1050,10 8 112 E8(a6), S2

D4(a1) +A1 32 φ1400,32 φ1400,8 8 112 E8(a6)

E6 +A1 9 φ448,9 φ448,39 37 83 D4(a1), S3

E7(a2) 8 φ1344,8 φ1344,38 37 83 D4(a1), S2

E8(b5) 7 φ1400,7 φ1400,37 37 83 D4(a1)

A4 +A3 20 φ420,20 φ420,20 16 104 E8(a7), S5

D5(a1) +A2 19 φ1344,19 φ1344,19 16 104 E8(a7), S4

A5 +A1 19 φ2016,19 φ2016,19 16 104 E8(a7), S3 × S2

E6(a3) +A1 18 φ3150,18 φ3150,18 16 104 E8(a7), S3

D6(a2) 18 φ4200,18 φ4200,18 16 104 E8(a7), S2 × S2

E7(a5) 17 φ7168,17 φ7168,17 16 104 E8(a7), S2

E8(a7) 16 φ4480,16 φ4480,16 16 104 E8(a7)

Table 10. Order reversing duality for nontrivial special pieces in E8.
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Families with multiple irreps.

Family f a(f)

{φ112,3, φ84,4, φ28,8} 3

{φ210,4, φ160,7, φ50,8} 4

{φ700,8, φ400,7, φ300,8} 8

{φ2268,10, φ972,12, φ1296,13} 10

{φ2240,10, φ1400,11, φ840,13} 10
♠{φ4096,11, φ4096,12} 11

{φ4200,12, φ3360,13, φ840,14} 13

{φ2800,13, φ700,16, φ2100,16} 16

{φ5600,15, φ3200,16, φ2400,17} 16

{φ5600,21, φ3200,22, φ2400,23} 22

{φ4200,24, φ3360,25, φ840,31} 25

{φ2800,25, φ700,28, φ2100,28} 28
♠{φ4096,26, φ4096,27} 26

{φ2240,28, φ1400,29, φ840,31} 29

{φ2268,30, φ972,32, φ1296,33} 32

{φ700,42, φ400,43, φ300,44} 43

{φ210,52, φ160,55, φ50,56} 55

{φ112,63, φ84,64, φ28,68} 64

{φ1400,7, φ1344,8, φ448,9, φ1008,9, φ56,19} 7

{φ1400,8, φ1050,10, φ1575,10, φ175,12, φ350,14} 8

{φ1400,32, φ1050,34, φ1575,34, φ175,36, φ350,38} 32

{φ1400,37, φ1344,38, φ448,39, φ1008,39, φ56,49} 37

{φ4480,16, φ7168,17, φ3150,18, φ4200,18, φ4536,18, φ5670,18,

φ1344,19, φ2016,19, φ5600,19, φ2688,20, φ420,20, φ1134,20,

φ1400,20, φ1680,22, φ168,24, φ448,25, φ70,32} 16

8.1.6 A comment on exceptional orbits

The families marked with a ♠ are the only families with just two irreps. There is one

such family in E7 and two such families in E8. The orbits for which the associated Orbit

representation is one of these are referred to as exceptional orbits. They are known to

have somewhat peculiar properties among all nilpotent orbits (see Carter [14] Prop 11.3.5

and [65, 66]). The special representations that occur in these families are the only ones

which do not give another special representation when tensored with the sign representa-

tion. They are also known to posses some special properties from the point of view of the

representation theory of Hecke algebras. These are the only cases where ON is a special

orbit and Sp[r] 6= OH . Another way to view this anomalous situation would be to say that

the natural partial ordering on special representations21 of the Weyl group is reversed by

21This can be obtained by transferring the closure ordering on the set of Special orbits to the set of

Special representation.
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a tensoring with sign in all cases except these. There is a version of this inversion map due

to Lusztig (denoted earlier in the paper by i(r)), which remedies these anomalous cases by

assigning the special representation in the family of ǫ⊗ r to be i(r).

In this context, it is important to note that there are subtler partial orders that are

defined by Achar [31] and Sommers [67] which when transferred to Irr(W) may enable the

treatment of these cases on a more equal footing with every other instance of duality. From

a physical standpoint, it would be interesting to know if these subtler partial orders are

related to the partial order implied by the possible Higgsing patterns of the corresponding

three dimensional T [G].

8.2 Non-simply laced cases

8.2.1 g = B3, g∨ = C3 and g = C3, g∨ = B3

| Λ+ |= 9

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

[17] 9 −.[13] [3].− 0 9 [6]

[22, 13] 5 −.[2, 1] [2, 1].− 1 8 [4, 2],S2
[3, 14] 4 [1].[12] [2].[1] 1 8 [4, 2]

[3, 22] 3 [12].[1] [1].[2] 2 6 [32]

[32, 1] 2 −.[3] [13].− 4 5 [22, 12], S2
[5, 12] 1 [2].[1] [1].[12] 4 5 [22, 12]

[7] 0 [3].− −.[13] 9 0 [16]

Table 11. Order reversing duality for g = B3, g
∨ = C3.

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

[16] 9 −.[13] [3].− 0 9 [7]

[2, 14] 6 [13].− −.[3] 1 8 [5, 12], S2
[22, 12] 4 [1].[12] [2].[1] 1 8 [5, 12]

[23] 3 [12].[1] [1].[2] 2 7 [32, 1]

[32] 2 [1].[2] [12].[1] 3 6 [3, 22]

[4, 12] 2 [2, 1].− −.[2, 1] 4 5 [3, 14], S2
[4, 2] 1 [2].[1] [1].[12] 4 5 [3, 14]

[6] 0 [3].− −.[13] 9 0 [17]

Table 12. Order reversing duality for g = C3, g
∨ = B3.

Families with multiple irreps.

Family f a(f)

[2].[1],−.[3], [2, 1].− 1

[1].[12], [13].−,−.[2, 1] 4
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8.2.2 G2

| Λ+ |= 6

(ON ) b̃ r̄ r a(fr) d (OH ,CH)

1 6 φ1,6 φ1,0 0 6 G2

A1 3 φ′′1,3 φ′′1,3 1 5 (G2(a1), S3)

Ã1 2 φ2,2 φ2,2 1 5 (G2(a1), S2)

G2(a1) 1 φ2,1 φ2,1 1 5 (G2(a1), 1)

G2 0 φ1,0 φ1,6 6 0 1

Table 13. Order reversing duality for g2.

Families with multiple irreps.

Family f a(f)

{φ2,1, φ2,2, φ
′
1,3, φ

′′
1,3} 1

8.2.3 F4

| Λ+ |= 24

(ON ) b̃ r̄ r a(fr) d (OH)

0 24 φ1,24 φ1,0 0 24 F4

Ã1 13 φ4,13 φ4,1 1 23 F4(a1)

A1 + Ã1 10 φ9,10 φ′9,2 2 22 F4(a2)
22⋆A2 9 φ′′8,9 φ′′8,3 3 21 B3

⋆Ã2 9 φ′8,9 φ′8,3 3 21 C3

F4(a3) 4 φ12,4 φ12,4 4 20 F4(a3)

⋆B3 3 φ′′8,3 φ′′8,9 9 15 A2

⋆C3 3 φ′8,3 φ′8,9 9 15 Ã2

F4(a2) 2 φ9,2 φ9,10 10 14 A1 + Ã1

F4(a1) 1 φ4,1 φ4,13 13 11 Ã1

F4 0 φ1,0 φ1,24 24 0 0

Table 14. Order reversing duality for special orbits in F4.

Families with multiple irreps.

Family f a(f)

{φ4,1, φ
′
2,4, φ2,4} 1

{φ4,13, φ
′
2,16, φ

′′
2,16} 13

{φ12,4, φ16,5, φ
′
6,6, φ

′′
6,6, φ

′
9,6, φ

′′
9,6, φ

′
4,7, φ

′′
4,7, φ4,8, φ

′
1,12, φ

′′
1,12} 4

22These instances (marked with a ⋆) of the duality map are a bit subtle. Although the Weyl group of the

dual is isomorphic in a canonical way to the original, there is an exchange of the long root and the short

root. The notation for r̄ incorporates this exchange.
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(ON ) b̃ r̄ r a(fr) d (OH ,CH)

A1 16 φ′′2,16 φ′2,4 1 23 (F4(a1), S2)

Ã1 13 φ4,13 φ4,1 1 23 F4(a1)

A2 + Ã1 7 φ′′4,7 φ′′4,7 4 20 (F4(a3), S4)

A1 + Ã2 6 φ′6,6 φ′6,6 4 20 (F4(a3), S3)

B2 6 φ′′9,6 φ′′9,6 4 20 (F4(a3), S2 × S2)

C3(a1) 5 φ16,5 φ16,5 4 20 (F4(a3), S2)

F4(a3) 4 φ12,4 φ12,4 4 20 F4(a3)

Table 15. Order reversing duality for non trivial special pieces in F4.
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A Nilpotent orbits in complex lie algebras

Nilpotent orbits in the classical cases have a convenient parameterization in terms of certain

partitions. For AN , these are just partitions of N + 1. For the other types BN , CN , DN ,

the orbits are classified by B−, C−, D− type partitions. The dimension of such an orbit

can be expressed in terms of the partition type [ni] and its transpose [si]. Let rk be the

number of times the number k appears in the partition [ni]. Such an orbit will be denoted

by Oni
. Its dimension is given by [18],

dim(Oni
) = dim(g)−

(

∑

i

s2i − 1

)

for g = An (A.1)

dim(Oni
) = dim(g)−

1

2

(

∑

i

s2i −
∑

i∈odd

ri

)

for g = Bn, Dn (A.2)

dim(Oni
) = dim(g)−

1

2

(

∑

i

s2i +
∑

i∈odd

ri

)

for g = Cn (A.3)

23http://www.liegroups.org/software/.
24This is available from http://www.math.jussieu.fr/ jmichel/chevie/chevie.html.
25http://mathoverflow.net/.
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In the exceptional cases, the dimensions of the orbits can be obtained from the tables

in [14, 18] (also reproduced in [1]). The closure ordering on the nilpotent orbits plays an

important role in many considerations and this is often described by a Hasse diagram. It is

often instructive to look at the Hasse diagrams for just the special nilpotent orbits for the

order reversing dualities act as an involution on this subset of orbits. In the exceptional

cases, such diagrams are available in the appendices of [1]. There were originally determined

by Spaltenstein in [16].

Bala-Carter theory. An efficient classification system for nilpotent orbits that is in-

dependent of the existence of partition type classifications was provided in the work of

Bala-Carter. Their fundamental insight was to look for distinguished nilpotent orbits in

Levi subalgebra l of a complex lie algebra g. Levi subalgebras themselves are classified

by subsets of the set of simple roots. By providing a classification of all distinguished

nilpotent elements in all Levi subalgebras, Bala-Carter effectively provided a classification

scheme for all nilpotent orbits. This complements the classification by partition labels in

the classical cases and is somewhat indispensable in the exceptional cases for which there

is no partition type classification. When Bala-Carter labels are specified for a nilpotent

orbit, the capitalized part of the label identifies a distinguished parabolic subalgebra p

whose Levi part is Levi subalgebra l. If there is a further Cartan type label enclosed within

parenthesis, this denotes a non-principal nilpotent orbit in that Levi subalgebra. If there

is no further label attached, then it is a principal nilpotent orbit in the Levi subalgebra l.

For example, E6(a1) and D5 are the BC labels for two different nilpotent orbits in E6. The

former is not principal Levi type while the latter is. The BC classification is somewhat

indispensable in the exceptional cases since there is no partition type parameterization of

the nilpotent orbits.

While it is not absolutely necessary, it is also instructive to assign BC labels to nilpotent

orbits in the classical cases. So, it is useful to summarize it here (see [68, 69] for more in

this regard). Let [ni] be the partition describing a classical nilpotent orbit ρ and let l be

the Bala-Carter Levi26

• type A: l is of Cartan type An1−1 +An2−1 + . . .

• type B,D: if ni are all distinct and odd, then ρ is distinguished in l = Bn/Dn. For

every pair of ni that are equal (say to n), add a factor of An−1 to l and form a reduced

partition with the repeating pair removed. Proceed inductively, till the reduced

partition is empty. If the final partition is a [3], then add a factor Ã1. It follows that

the principal Levi type orbits have BC labels of the form Ai1 + Ai1 + . . . + Ã1 or

Ai1 +Ai1 + . . .+Bn/Dn.

• type C: if ni are all distinct and even, then ρ is distinguished in l = Cn. For every pair

of ni that are equal (to n, say), add a factor of Ãn−1 to l and form a reduced partition

26No relationship is implied here to any of the subalgebras in the main body of the paper. There, Bala-

Carter theory is used on both g and g∨ sides and the notation for the corresponding Levi subalgebras is

introduced therein.
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with the repeating pair removed. Proceed inductively, till the reduced partition is

empty. If the final partition is a [2], then add a factor of A1. This implies the principal

Levi type orbits have BC labels Ãi1 + Ãi1 + . . .+A1 or Ãi1 + Ãi2 + . . .+ Cn.

Using the above, one can count the number of principal Levi type nilpotent orbits in

classical lie algebras. In the exceptional cases, the nilpotent orbits that are principal Levi

type are immediately identifiable for they are always written in terms of their BC labels.

B Representations of Weyl groups

Here, the notation that is used in [14] to describe irreducible representations of Weyl groups

is summarized. In the classical cases, there are certain combinatorial criteria for an irrep

to be a special representation and for a set of representation to fall in the same family.

These are also reviewed briefly. A general feature obeyed by all Weyl groups is that the

trivial representation and the sign representation are special and consequently, they fall

into their own families.

B.1 Type An−1

The irreducible representation of W [An] = Sn are given by partitions of n. The con-

vention is that [n] corresponds to the trivial representation while [1n] corresponds to the

sign representation. All irreducible representations are special and they occur in separate

families.

B.2 Type Bn & Cn

The irreducible representations are classified by two partitions [α].[β] where [α] and [β] are

each partitions of p, q such that p+ q = n. To each such pair of partitions [α].[β], associate

a symbol in the following way.

• For each ordered pair [α].[β], enlarge α or β by adding trailing zeros if necessary such

α has one part more than β.

• Then consider the following array:

(

α1 α2 + 1 . . . αm+1 +m

β1 β2 + 1 . . . βm + (m− 1)

)

• Apply an equivalence relation on such arrays in the following fashion:

(

0 λ1 + 1 . . . λm + 1

0 µ1 + 1 . . . µm + 1

)

∼

(

0 λ1 . . . λm
0 µ1 . . . µm

)

• Each pair [α].[β] then provides a unique equivalence class of arrays. Let a represen-

tative for such an array be
(

0 λ1 . . . λm
0 µ1 . . . µm

)
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• This is the symbol for the corresponding irreducible representation.

Two irreps [α].[β] and [α′].[β′] fall in the same family if and only if their symbols are

such that their symbols contains the same {λi, µi} (treated as unordered sets). Within the

set of all irreps that fall in a family, there is a unique irrep whose for which the associated

symbol satisfies an ordering property:

λ1 ≤ µ1 ≤ λ2 ≤ µ2 . . . µm ≤ λm+1. (B.1)

This unique representation within the family is the special representation.

B.3 Type Dn

The irreducible representations are classified again by pairs of partitions [α].[β], with α, β

being partitions of p, q such that p+ q = n but with one additional caveat. If α = β, then

there are two irreducible representations corresponding to this pair ([α].[α])′ and ([α].[α])′′.

Now, associate a symbol to this irrep by the following steps

• Write α = (α1, α2, . . .), β = (β1, β2, . . .) as non-decreasing strings of integers. Add

a few leading zeros if needed such that α, β have the same number of parts. Now,

consider the array

(

α1 α2 + 1 . . . αm +m− 1

β1 β2 + 1 . . . βm +m− 1

)

• Impose the following equivalence relation on such arrays

(

0 λ1 + 1 λ2 + 1 . . . λm + 1

0 µ1 + 1 µ2 + 1 . . . µm + 1

)

∼

(

λ1 λ2 . . . λm
µ1 µ2 . . . µm

)

• Each [α].[β] now determines a unique equivalence class of such arrays. A representa-

tive of that equivalence class is the symbol of the irrep.

Two irreps [α].[β] and [α′].[β′] (α 6= β, α′ 6= β′) fall in the same family if their symbols

are such that the λi, µi occurring in them are identical (when treated as unordered sets).

Within such a family, there is a unique irrep whose symbol satisfies the following ordering

property,

λ1 ≤ µ1 ≤ λ2 ≤ µ2 . . . λm ≤ µm or µ1 ≤ λ1 ≤ µ2 ≤ λ2 . . . µm ≤ λm. (B.2)

This unique irrep would be the special representations in that family. Irreps corresponding

to labels of type ([α].[α])′ and ([α].[α])′′ are always special and hence occur in their own

families.

As an example of the application of the method of symbols, the irreps of D4 and their

corresponding symbols are noted in table 16.

As can be seen from the symbols, the only non-trivial family in the case of D4 is

{([2, 1], [1]), ([22],−), ([2], [12])}.
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[α].[β] Symbol

[4].[−]

(

4

0

)

[3, 1].[−]

(

1 4

0 1

)

[2, 2].[−]

(

2 3

0 1

)

[2, 12].[−]

(

1 2 4

0 1 2

)

[14].[−]

(

1 2 3 4

0 1 2 3

)

[3].[1]

(

3

1

)

[2, 1].[1]

(

1 3

0 2

)

[13].[1]

(

1 2 3

0 1 3

)

[2].[2]

(

2

2

)

[2].[12]

(

0 3

1 2

)

[12].[12]

(

1 2

1 2

)

Table 16. Symbols for irreducible representations of W (D4).

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

[−].[14] 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1

([11].[11])′ 3 -1 3 -1 1 -1 3 -1 -1 0 0 -1 -1

([11].[11])′′ 3 -1 3 -1 1 -1 -1 3 -1 0 0 1 -1

[1].[13] 4 0 -4 -2 0 2 0 0 0 1 -1 0 0

[12].[2] 6 -2 6 0 0 0 -2 -2 2 0 0 0 0

[1].[21] 8 0 -8 0 0 0 0 0 0 -1 1 0 0

[−].[2, 12] 3 3 3 -1 -1 -1 -1 -1 -1 0 0 1 1

[2].[2] 3 -1 3 1 -1 1 3 -1 -1 0 0 1 -1

[2].[2] 3 -1 3 1 -1 1 -1 3 -1 0 0 -1 -1

[−].[22] 2 2 2 0 0 0 2 2 2 -1 -1 0 0

[1].[3] 4 0 -4 2 0 -2 0 0 0 1 -1 0 0

[−].[1, 3] 3 3 3 1 1 1 -1 -1 -1 0 0 -1 -1

[−].[4] 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 17. Character table for W (D4).
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It is also useful to have the character table of W (D4) which can be used to compute

tensor products with the sign representation. This is done in table 17. In the table, the

following notation is used for conjugacy classes:

c1 = 14.−

c2 = 11.11

c3 = −.14

c4 = 212.−

c5 = 1.21

c6 = 2.12

c7 = (22.−)′

c8 = (22,−)′′

c9 = (−.22)

c10 = 31.−

c11 = −.31

c12 = (4.−)′

c13 = (4.−)′′

B.4 Exceptional cases

The irreps will be denoted by φi,j , where i is the degree and j is what is usually called the

b value of the irreducible representation. In the non-simply laced cases of G2 and F4, there

might be more than one representation with same degree and b value. When this occurs,

the two representations are distinguished by denoting them as φ′i,j and φ′′i,j respectively.

For example, G2 has φ′1,3 and φ′′1,3. Here, note that these two labels will be interchanged if

we were to exchange the long root and the short root of G2. The sign and the trivial rep-

resentation can be identified in this notation as being the ones with the largest b value and

zero b value respectively. To give a flavor for this notation in action, the character table for

W [G2] is reproduced in table 18. The special representation are φ1,0, φ2,1, φ1,6. Every other

representation (together with φ2,1) is a member of the only non-trivial family in W [G2].

1 Ã1 A1 G2 A2 A1 + Ã1

φ1,0 1 1 1 1 1 1

φ1,6 1 -1 -1 1 1 1

φ′1,3 1 1 -1 -1 1 -1

φ′′1,3 1 -1 1 -1 1 -1

φ2,1 2 0 0 1 -1 -2

φ2,2 2 0 0 -1 -1 2

Table 18. Character table for W (G2).

There is an interesting duality operation on the set of irreducible representations of

the Weyl group. For the most part, this acts as tensoring by the sign representation. An
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important property of the special representations of a Weyl group is that they are closed

under this duality operation (see section 8.1.6 for more on this duality operation). This

can be readily seen to be true by looking at the character tables.

C The method of Borel-de Siebenthal

The Borel-de Seibenthal algorithm [70] can be used to obtain all possible subalgebras that

arise as centralizers of semi-simple elements in Lie algebras (see [10, 19] and references

therein). The algorithm comes down to finding non-conjugate subsystems of the set of

extended roots of the Lie algebra. Let π denote the set of simple roots and Π the cor-

responding Dynkin diagram. Now, adjoin the lowest root to π and form π̃, the set of

extended roots. Associated to this is the extended Dynkin diagram Π̃. The extended

Dynkin diagrams formed by this procedure are collected in figure 4. Now, form a sub

diagram (possibly disconnected) by removing a node of Π̃ and all the lines connecting it.

The resulting diagram corresponds to a subalgebra that arises as a centralizer. The Cartan

type of the centralizer can be read off directly from the sub diagram. One can proceed

by removing more nodes and lines to get all possible centralizers. There is a subset of

them whose diagrams can also be obtained by considering just sub diagrams of Π. These

corresponds to the centralizers of semi-simple elements that are also Levi. The more gen-

eral centralizers are called pseudo-Levi in this paper (following [10]). In the body of the

paper, pseudo-Levi subalgebras of g∨ play an important role and these are denoted by

l∨. Among the pseudo-Levi subalgebras l∨ that fail to be Levi subalgebras, a particularly

interesting class are the ones for which their Langlands dual l fails to be a subalgebra of g

(the Langlands dual of g∨). It follows immediately from the Borel-de Seibenthal procedure

that such a scenario can occur only for g being non-simply laced. Some examples of these

more interesting occurrences are collected here.

C.1 Centralizer that is not a Levi

Consider the extended Dynkin diagram for D4 and denote it by Π̃(D4). There is a sub

diagram which is of Cartan type 4A1 that does not arise as a sub diagram of Π(D4). This

is a pseudo-Levi subalgebra that is not a Levi subalgebra.

C.2 Pseudo-Levi l∨ such that Langlands dual l * g

Consider the extended Dynkin diagram for g∨ = Bn+1 given by Π̃(Bn+1). There is a sub

diagram which corresponds to a centralizer l∨ of Cartan type Dn. Taking Langlands duals,

one gets g = Cn+1 and l = Dn. But, Dn is not a subalgebra of Cn+1.

D Macdonald-Lusztig-Spaltenstein (j-) induction

This is a general procedure that can be used to generate irreducible representations of a

Weyl group W [g] from irreducible representations of parabolic subgroups Wp. One can

use this method to generate a large number of the irreducible representations of W [g]. In

types A,B,C, one can actually generate all of them by j-induction. In other types, there
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Ân

B̂n

Ĉn

D̂n

Ê6

Ê7

Ê8

Ĝ2

F̂4

Figure 4. Extended Dynkin diagrams.

is often quite a few irreducible representations that can’t be obtained by j induction. A

special case of this method that involves induction only from the sign representation of the

parabolic subgroup Wp was developed originally by Macdonald [71].

D.1 Macdonald induction

Let Wp be a parabolic subgroup of the Weyl group W [g]. This is equivalent to saying that

Wp is the Weyl group of a Levi subalgebra of g. Then, consider the positive root eα in the

root system corresponding to Wp. The positive roots are linear functionals on h. Form the

following rational polynomial,

P =
∏

eα>0

eα. (D.1)

Let w be an element of the Weyl group W [g]. Consider the algebra formed by all polyno-

mials of the form w(P ). This is a subalgebra of the symmetric algebra and is naturally a

W [g] module. In fact, it furnishes an irreducible representation of the Weyl group W [g].
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By choosing different subgroups Wp, one obtains different irreps of W [g]. This is a special

case of j induction where one uses the sign representation of the smaller Weyl group to

induce from. Within the notation of the more general j-induction, the Macdonald method

would correspond to jWWp
(sign).

D.2 Macdonald-Lusztig-Spaltenstein induction

The generalization of the Macdonald method to what is called j induction was provided

by Lusztig- Spaltenstein in [72]. What follows is a very brief review. See [14, 73] for more

detailed expositions.

Let V be a vector space on whichW [g] acts by reflections. LetWr now be any reflection

subgroup of W [g]. Let V Wr be the subspace of V fixed by reflections in Wr. There is a

decomposition V = V̄ ⊕ V Wr . Consider the space of homogeneous polynomial functions

on V̄ of some degree d and denote it by Pd(V̄ ). Let r′ be any univalent irrep of Wr.

This means that r′ occurs with multiplicity one in Pd(V̄ ) for some d. The W [g] module

generated by r′ is irreducible and univalent and it denoted by jWWr
(r′). When, r′ is the sign

representation and Wr is the Weyl group of Levi subalgebra (= a parabolic subgroup of

the Weyl group), this reduces to the Macdonald method.

The action of j induction is most transparent in type A. For types B,C,D, it can still

be described by suitable combinatorics. However, in practice, it is most convenient to use

packages like CHEVIE to calculate j induction. Below, some sample cases are recorded.

D.2.1 j-induction in type A

In type A, one can get all irreducible representations using j induction of the sign repre-

sentation from various parabolic subgroups. The various Levi subalgebras in type A have

a natural partition type classification and consequently, so do their Weyl group. Let WP

be a parabolic subgroup of partition type P . Let, P T be the transpose partition. Then,

jWWP
= P T , where P T is the partition label for the irreducible representations of Sn.

D.2.2 Example: j-induction in A3

Here is a detailed example of j induction in action for type A. Introduce the following

subgroups of the Weyl group S4 by their Deodhar-Dyer labels (which are used in CHEVIE

to index reflection subgroups). The label is of the form [r1, r2 . . .] and corresponds to a

subset of the set of positive roots (in the ordering used by CHEVIE). By a theorem of

Deodhar & Dyer [74, 75], this is a characterization of non-conjugate reflection subgroups.

Subgroup Deodhar-Dyer label Cartan type of assoc. subalgebra

W[4] [r1, r2, r3] A3

W[3,1] [r1, r2] A2

W[2,2] [r1, r3] A1 +A1

W[2,12] [r1] A1

W[14] [∅] ∅

Denote the irreducible representation of W = S4 by the usual partition labels ([14] is the

sign representation while [4] is the identity representation). Applying j-induction using the
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sign representation in each of the subgroups above, one gets

jWW1,2,3
(sign) = [14]

jWW1,2
(sign) = [2, 12]

jWW1,3
(sign) = [2, 2]

jWW1
(sign) = [3, 1]

jWW∅
(sign) = [4]

D.2.3 Example: j-induction in D4

Introduce the following subgroups of W (D4) using Deodhar-Dyer labels,

Subgroup Deodhar-Dyer label Cartan type

W1,2,3,4 [r1, r2, r3, r4] D4

W2,3,4 [r1, r3, r4] A3

W1,3,4 [r2, r3, r4] A3

W1,2,3 [r1, r2, r3] A3

W1,2,4,12 [r1, r2, r4, r12] 4A1

W1,3 [r1, r3] A2

W3,10 [r3, r10] 2A1

W1,12 [r1, r12] 2A1

W1,2 [r1, r2] 2A1

W1 r1 A1

W∅ [∅] ∅

One obtains the following results useful for j-induction,

jWW1,2,3,4
(sign) = [14].−

jWW1,2,3,4
([13].[1]) = [13].[1]

jWW2,3,4
(sign) = ([12].[12])′

jWW1,3,4
(sign) = ([12].[12])′′

jWW1,2,3
(sign) = ([2].[12])′′

jWW1,2,4,12
(sign) = [22].−

jWW1,3
(sign) = [2, 1].[1]

jWW1,2
(sign) = [3, 1].−

jWW3,10
(sign) = ([2].[2])′

jWW1,4
(sign) = ([2].[2])′′

jWW1
(sign) = [3].[1]

jWW∅
(sign) = [4].−
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The choice of the subgroups and the resulting irreps is no accident. The irreducible

representations obtained here by j induction are precisely the Orbit representations for D4

and they occur as r̄ in table 4.

D.2.4 Example: j-induction in G2

As a final example of j induction, here are some results for G2 that are relevant for the

compiling of table 13. Introduce the following subgroups of W (G2).

Subgroup Deodhar-Dyer label Cartan type

W1,2 [r1, r2] G2

W2,3 [r2, r3] A2

W2,6 [r2, r6] A1 ×A1

W1 [r1] A1

W∅ [∅] ∅

With this, one can note the following instances of j induction,

jWW1,2
(sign) = φ1,6

jWW2,3
(sign) = φ′′1,3

jWW2,6
(sign) = φ2,2

jWW1
(sign) = φ2,1

jWW∅
(sign) = φ1,0

The instances of j induction were again chosen such that the result is an Orbit repre-

sentation of G2. An important observation due to Lusztig is that in any Weyl group, the

Orbit representations can always be obtained by j induction.

Open Access. This article is distributed under the terms of the Creative Commons
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