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Application of GOCE data for regional gravity field modeling
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In principle, every component of a disturbing gravity gradient tensor measured in a satellite orbit can be used
to obtain gravity anomalies on the Earth’s surface. Consequently, these can be used in combination with ground
or marine data for further gravity field modeling or for verification of satellite data. Theoretical relations can be
derived both in spectral and spatial forms. In this paper, we focus on the derivation of a spatial integral form in
the geocentric spherical coordinates that seems to be the most convenient one for regional gravity field modeling.
All of the second partial derivatives of the generalized Stokes’s kernel are derived, and six surface Fredholm
integral equations are formulated and discretized. The inverse problems formulated for particular components
clearly reveal different behaviors in terms of numerical stability of the solution. Simulated GOCE data disturbed
with Gaussian noise are used to study the performance of two regularization methods: truncated singular value
decomposition and ridge regression. The optimal ridge regression method shows slightly better results in terms
of the root mean squared deviation of the differences from the exact solution.
Key words: Gradiometry, Pizzetti integral formula, inverse problem, regularization.

1. Introduction
The entire geo-scientific community is restlessly await-

ing the launch of the GOCE (Gravity Field and Steady-State
Ocean Circulation Explorer) satellite mission. This satellite
will globally cover the whole Earth, except for small po-
lar gaps, with highly accurate measurements of the second
derivatives of the Earth gravitational potential. These mea-
surements will be taken at an approximate altitude of 250–
260 km, depending on the orbit scenario selected (see, for
example, Drinkwater et al., 2007 for details).
In order to use the GOCE SGG (Satellite Gravity Gra-

diometry) data for regional gravity field modeling, such as
for precise geoid computation, it would be useful to con-
tinue these data downward to the surface of the Earth or to
a geoid. Moreover, if the downward continuation is suc-
cessful and accurate enough, it will be possible to use it for
external validation of the GOCE data with accurate ground
data. The approach derived and proposed in this paper is
able to use all six different components of the disturbing
gravity gradient tensor at the flight level by converting them
into a free-air gravity anomaly at different levels outside the
real or regularized Earth. However, we do realize that sev-
eral important practical obstacles are not treated here, as
they are beyond the scope of this paper: (1) only four of
the six components of the gravity gradient tensor will be
measured with a high degree of accuracy, while the other
two components will be degraded (European Space Agency,
2006); (2) the data will be measured along an orbit track
and not on a regular grid; (3) the data will be measured in a
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gradiometer reference frame, which deviates from an ideal
horizontal reference frame; (4) the noise of the data will be
coloured, leading to strong along-track correlations. Never-
theless, we believe the results published in this paper show
the possible general performance obtainable with the real
GOCE data.
The paper is organized as follows. First, the theoretical

background and mathematical derivation are given; this is
followed by an investigation of the properties of the derived
integration kernels and, finally, by the numerical simulation.
The last section focuses primarily on the quality of the
solution as in Xu (1992, 1998), since we have to deal here
with the inverse problem of downward continuation.

2. Theoretical Background
Let us begin with the Pizzetti integral formula (Pizzetti,

1911; Heiskanen and Moritz, 1967)

T (r, �) = R

4π

∫
�′

�g(�′)S(r, ψ, R) d�′, (1)

where T is the disturbing gravity potential, �g is the free-
air gravity anomaly (the magnitude of the gravity anomaly
vector), and S stands for the generalized Stokes’s function
given by

S(r, ψ, R) = 2R

�
+ R

r
− 3R�

r2
− R2

r2
cosψ

·
(
5 + 3 ln

r − R cosψ + �

2r

)
. (2)

We use a geocentric spherical coordinate system, where �

represents the horizontal position, given by a pair of the
geocentric angular coordinates of the latitude and longitude
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(ϕ, λ), and the vertical position is given by the geocentric
radial distance r . As usual, R is the radius of the reference
sphere, � is the spatial Euclidean distance, and ψ is the an-
gular spherical distance between the point of computation
and the particular integration element at the horizontal po-
sition �′, i.e. (ϕ′, λ′), see Appendix A for details.

Let us rewrite Eq. (2) using the substitutions

t = R

r
, (3)

D = �

r
= (

1 + t2 − 2t cosψ
)1/2

, (4)

in a numerically stable form (see, for example, Xu, 1992)

S(t, ψ) = t

[
2

D
+ 1 − 3D

−t cosψ

(
5 + 3 ln

1 − t cosψ + D

2

)]
. (5)

We will follow a concept based on using the derivatives of
the Pizzetti formula (Eq. (1)) to obtain the relation between
the components of the disturbing gravity gradient tensor in a
mass-free space expressed in spherical coordinates (Novák
and Grafarend, 2006)

T(r, ϕ, λ) = grad · (gradT ) = ∇ ⊗ ∇T (r, ϕ, λ)

=
⎛
⎝ Tϕϕ Tϕλ Tϕr

Tλϕ Tλλ Tλr

Trϕ Trλ Trr

⎞
⎠ (6)

and the free-air gravity anomaly on the reference sphere
(e.g. Reed, 1973). The symbol ∇ stands for the opera-
tor gradient in the spherical coordinates defined as follows
(Bronshtein et al., 2004),

∇ =
(

∂

∂r
,

∂

r∂ϕ
,

∂

r cosϕ∂λ

)T

. (7)

For this purpose we have to express the second deriva-
tives of S(t (r, R), ψ(ϕ, λ, ϕ′, λ′)) according to the vari-
ables (r, ϕ, λ). As the disturbing gravity gradient tensor
is symmetrical, there are only six different components,
of which only five are linearly independent in a mass-free
space. Let us note that Kern and Haagmans (2005) de-
rived the closed expressions for the second derivatives of
S(t (r, R), ψ(ϕ, λ, ϕ′, λ′)) according to the variables r and
ψ . A valuable contribution to the solution of gradiomet-
ric boundary-value problems has also been given by van
Gelderen and Rummel (2001, 2002) and Martinec (2003).

3. Mathematical Derivation
Let us introduce the following notation:

C = ∂ cosψ

∂ϕ
, (8)

E = ∂ cosψ

∂λ
, (9)

F = ∂2 cosψ

∂λ2
, (10)

G = ∂2 cosψ

∂ϕ∂λ
= ∂2 cosψ

∂λ∂ϕ
. (11)

The full formulae for symbols C , E , F , and G, described as
functions of the geocentric latitude ϕ, angular distance ψ ,
and spherical azimuth of integration element α are shown
in Appendix A.
Now, the second derivatives of function

S(t (r, R), ψ(ϕ, λ, ϕ′, λ′)) according to the variables
(r, ϕ, λ) have been performed, resulting in a tensor-valued
kernel function defined as

S(r, ψ, R) = grad · (gradS) = ∇ ⊗ ∇S(r, ψ, R)

=
⎛
⎝ Sϕϕ Sϕλ Sϕr

Sλϕ Sλλ Sλr

Srϕ Srλ Srr

⎞
⎠ . (12)

The particular entries of S are given in Appendix A. The
units of these entries are meter−2. Assuming Eqs. (1) and
(6), we obtain the tensor-valued equation

T(r, �) = R

4π

∫∫
�′

�g(R, �′) S(r, ψ, R) d�′. (13)

As we can see from the particular entries of S in Ap-
pendix A, only the second radial derivative of the function S
remains homogenous and isotropic; the other second deriva-
tives are no longer isotropic but azimuth-dependent. More-
over, the derivatives according to λ are latitude dependent,
i.e., not homogenous. In the case when ψ = 0, the azimuth
dependency vanishes, C = E = G = 0 and F = − cos2 ϕ.

4. Properties of the Derived Integration Kernels
For the purpose of visualization, it is useful to intro-

duce the normalized dimensionless integration kernels as
S̃ = r2S. Although many particular properties can easily
be seen from the figures of the six normalized integration
kernels (see Fig. 1(a–f)), let us provide a brief description
here. All of the kernel figures have been produced using
the following parameters: ϕ = 35.5◦, λ = 136.5◦ (coordi-
nates of the computation point), R = 6371 km (radius of
the reference sphere), h = 250 km (height of the point of
computation above the reference sphere), ϕ′ ∈ (28◦, 43◦),
and λ′ ∈ (127◦, 146◦) (variable coordinates of the integra-
tion element).
Provided that r �= R, the integration kernels do not

possess any singularity. For the mixed second deriva-
tives, the value at ψ = 0◦ becomes zero, and for the
double derivatives according to the same variable, the
value at ψ = 0◦ is the finite real number dependent
only on parameter t . The integration kernel S̃rr (t, ψ) is
homogeneous and isotropic, S̃ϕϕ(t, ψ, α) and S̃ϕr (t, ψ, α)

are homogeneous but not isotropic, and S̃ϕλ(t, ψ, α, ϕ),
S̃λλ(t, ψ, α, ϕ), S̃λr (t, ψ, α, ϕ) are neither homogeneous
nor isotropic. The function S̃ϕλ(t, ψ, α, ϕ) is always zero
for α = {0◦, 90◦, 180◦, 270◦} and reaches its maximum and
minimum for α = {45◦, 135◦, 225◦, 315◦} at the approxi-
mate spherical distance ψ ≈ 1.5◦ (for h = 250 km). The
function S̃ϕr (t, ψ, α) is zero for α = {90◦, 270◦} and has
its maximum for α = 0◦ and minimum for α = 180◦

at the ψ ≈ 1.2◦. The function S̃λr (t, ψ, α, ϕ) is zero for
α = {0◦, 180◦}, decreases to a minimum for α = 90◦,
and increases to a maximum for α = 270◦ at ψ ≈ 1.2◦.
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Fig. 1. (a) Normalized integration kernel S̃ϕϕ(t, ψ, α). (b) Normalized integration kernel S̃ϕλ(t, ψ, α, ϕ). (c) Normalized integration kernel S̃ϕr (t, ψ, α).
(d) Normalized integration kernel S̃λλ(t, ψ, α, ϕ). (e) Normalized integration kernel S̃λr (t, ψ, α, ϕ). (f) Normalized integration kernel S̃rr (t, ψ).

The functions S̃ϕϕ(t, ψ, α) and S̃λλ(t, ψ, α, ϕ) are nega-
tive at the vicinity of the computation point and reach
zero on the hyperbolic curves. For α ∈ (−45◦, 45◦) and
α ∈ (135◦, 225◦), S̃ϕϕ(t, ψ, α) can also reach positive val-
ues (not in the exact vicinity of the computation point),
while the maximum values are reached for α = {0◦, 180◦}
at ψ ≈ 2.5◦. Conversely, S̃λλ(t, ψ, α, ϕ) can reach posi-
tive values for α ∈ (45◦, 135◦) and α ∈ (225◦, 315◦), with
maximum values for α = {90◦, 270◦} at ψ ≈ 2.5◦.
The function S̃rr (t, ψ) reaches its maximum for the ψ ≈

0◦ and then simply decreases with the growing spherical
distance, reaches zero on a circular curve at the ψ ≈ 3.7◦,
then goes down to a small negative minimum at the ψ ≈ 5◦,
then slowly approaches zero, and at the ψ ≈ 117◦ again
becomes slightly positive.

5. Numerical Simulation
Let us rewrite Eq. (13) into a discrete form, supposing

that the gravity anomalies are given as block-mean values
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�gi (Xu, 1992)

T(r, �) = R

4π

k∑
i=1

�g(αi , ψi ) S(ti , αi , ψi )�s(αi , ψi ).

(14)

Let us note that if the gravity anomalies are given in mGal
units (mGal = 10−5 m.s−2), radius R in kilometers, and
entries of T in EU (EU = 1 Eötvös unit = 10−9 s−2), the
left-hand side of Eq. (14) should be divided by a factor of
10.
Suppose we have n observations of every component

of the disturbing gravity gradient tensor given in a known
horizontal position � at the altitude of the satellite orbit and
k unknown mean free-air gravity anomalies in a region of
interest on the reference sphere and assume k ≤ n. Let
εεε be the error vector of the observations and let ��� be the
covariance matrix of the observations and P = ���−1 be the
weight matrix. We can then create from Eq. (14) six matrix
equations, corresponding to particular components of tensor
T, in the following form:

l = Ax + εεε (15)

As the matrix A is not necessarily the square matrix and
the dimension is (n, k), it is convenient to multiply Eq. (15)
by A′ P from the left, so we can get the least squares (LS)
estimate of x

A′ P l = A′ PAx ⇒ b = Bx. (16)

The matrix B has the dimension of (k, k). Equation (16)
represents a system of k linear equations with k unknown
parameters, and B is the matrix of the normal equation
coefficients. To solve this system for x, one possibility is
to use the LU decomposition of B. Assuming the uniform
accuracy of the input data, the LS estimate of x is obtained
from the well-known formula:

x̂LS = (A′ A)−1A′ l. (17)

As the matrix B in our inverse problems is ill-conditioned,
the input data noise can be extremely magnified in the LS
estimate, resulting in a very large standard deviation of the
solution. Therefore, some stabilization procedure needs to
be applied. We decided to compare two stabilization meth-
ods: the quality-based truncated singular value decomposi-
tion (TSVD) and the ridge regression (RR) with the optimal
ridge parameter.
The TSVD estimate is computed using the following

equation (see Xu, 1998)

x̂TSVD =
τ∑

i=1

ui l
λi

vi , (18)

where λi are the eigenvalues of the matrix B arranged in
decreasing order; ui and vi are the corresponding eigenvec-
tors; τ ≤ k is the integer truncation parameter. For more
details on the TSVD method, see, for example, Aster et al.
(2005) and Xu (1998).
Applying the ridge estimator (Hoerl and Kennard, 1970),

the ridge estimate is computed as

x̂R = (A′ A + κI)−1A′ l, (19)

where κ > 0 is the ridge parameter, and I is the unit matrix
of dimension (k, k). For more details about the RR method,
see, for example, Xu (1992) and Xu and Rummel (1994).
The key objective in the TSVD and RR methods is to find

the optimal truncation parameter τopt or the optimal ridge
parameter κopt, respectively. Let us assume this is true when
dealing with simulated observations; we know the errorless
reference output data xREF. In such a case, we are able to
obtain the true error vectors of the estimates (18) and (19)

εεεTSVD = xREF − x̂TSVD,

εεεR = xREF − x̂R,
(20)

and, consequently, to compute the corresponding root mean
squared errors (RMSE)

σTSVD =
(∑k

i=1 εTSVDi εTSVDi

k

) 1
2

,

σR =
(∑k

i=1 εRi εRi

k

) 1
2

.

(21)

The optimal values τopt and κopt are those corresponding to
the smallest RMSE defined by Eq. (21).
For the numerical simulation of regional gravity field

modeling based on satellite gradiometric data, we chose the
Far East Asia region with the center in Japan. Our simula-
tion is based on the EGM-96 geopotential model (Lemoine
et al., 1998).
The area of the simulated input data is bounded by

the parallels ϕ ∈ (24◦, 46◦) and the meridians λ ∈
(126◦, 148◦). The simulated input data are six components
of the disturbing gravity gradient tensor in the spherical
coordinates generated from the EGM-96 up to the degree
and order of 360 at an altitude of 250 km disturbed with
the Gaussian noise with a standard deviation of 0.005 EU.
The value 0.005 EU has been chosen with respect to the
expected GOCE gradiometer noise (see Drinkwater et al.,
2007). The simplified assumption of the same degree of ac-
curacy for every component has been considered. The input
data are generated in a regular grid �ϕ×�λ = 0.2◦ ×0.2◦,
i.e., the number of observations is n = 110×110 = 12100.
The output data region is the same as the input data re-
gion. Let us note that when working with the real mea-
sured data in practice, the output region should be smaller
in order to avoid the edge effect. In our paper, however,
we use the simulated data and do not study the edge effect.
The output data are the free-air gravity anomalies on the
geoid in a spherical approximation, and no masses above
the geoid are assumed. The two different output grid steps
have been chosen as follows: (a) �ϕ × �λ = 2◦ × 2◦ for
the edge part of the region of interest and �ϕ × �λ =
1◦ × 1◦ for the central part of the region of interest; (b)
�ϕ × �λ = 2◦ × 2◦ for the edge part of the region of in-
terest and �ϕ × �λ = 0.5◦ × 0.5◦ for the central part of
the region of interest. The central part of the output data re-
gion is bounded by the parallels ϕ ∈ (30◦, 40◦) and by the
meridians λ ∈ (132◦, 142◦). Using the different output grid
step in the edge part of the output data region is convenient
from a numerical point of view; mainly, we obtain a smaller
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Table 1. RMSE of particular inverse problem solutions for an output data resolution of 1◦ × 1◦ (case a). The number of repetitions for every inverse
problem is 200. Standard deviation of Gaussian input data noise: 0.005 EU. All values are in mGal units. The best mean RMSE for the particular
inverse problem is in bold.

Table 2. RMSE of particular inverse problem solutions for an output data resolution of 0.5◦ × 0.5◦ (case b). The number of repetitions for every inverse
problem is 200. Standard deviation of Gaussian input data noise: 0.005 EU. All values are in mGal units. The best mean RMSE for the particular
inverse problem is in bold.

Table 3. Mean percentage of the truncated part of the eigenvalues for the TSVD method and the mean ridge parameter for the RR method computed
from 200 repetitions.

Inverse problem For Tϕϕ For Tϕλ For Tϕr For Tλλ For Tλr For Trr

χmean (%) 7.5 6.1 4.3 4.3 2.2 1.5 Case (a)

κmean 1.14 1.91 2.05 2.41 2.82 3.38

χmean (%) 59.8 61.9 58.0 61.0 59.8 56.8 Case (b)

κmean 0.56 0.86 0.96 1.31 1.76 2.13

amount of equations and better numerical stability. Eventu-
ally, this edge part can be cut off when working with the real
data in the future. In case (b), the number of unknowns is
k = 96+ 100 = 196, and the number of elements in matrix
A is n× k = 2371600. In case (b) k = 96+400 = 496 and
the number of elements in matrix A is n × k = 6001600.
All six inverse problems (Eq. (14)) have been solved

200 times using the LS, TSVD, and RR methods. For every
computation, a new Gaussian noise has been generated and
added to the simulated measurements. The advantage of
repeated computations is the possibility of obtaining a more
reliable comparison when comparing the mean values of
RMSE and also the possibility of estimating the second
order parameters for every mean RMSE. Moreover, all of
the computations have been performed for two different

configurations of the output data; see the above cases (a)
and (b). The mean RMSE σmean computed as the average of
200 values obtained from (Eq. (21)) and extreme RMSEs
σmin, σmax are given in Table 1 for case (a) and in Table 2
for case (b).
Table 3 shows the average percentage of the truncated

eigenvalues χmean, computed from 200 repetitions, and the
mean values of the optimal ridge parameter κmean for cases
(a) and (b). The values χmean have been computed from the
following expression:

χmean = 1

200

200∑
i=1

k − τi

k
. (22)

The condition numbers of the original matrix B for the par-
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Table 4. Condition numbers of normal matrices for particular inverse problems.

Inverse problem For Tϕϕ For Tϕλ For Tϕr For Tλλ For Tλr For Trr

Condition 1.1e+08 1.2e+06 4.7e+06 5.8e+06 2.1e+06 1.8e+06 Case (a)

Condition 1.4e+16 1.6e+11 3.2e+12 3.4e+14 4.7e+15 4.1e+15 Case (b)
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Fig. 2. Graphs of the eigenvalues of the normal equation matrices B for the selected inverse problems. The behavior of the other eigenvalues is similar.

ticular inverse problems, computed as the ratio of the largest
and smallest eigenvalues, are shown in Table 4. The graphs
of the eigenvalues of matrices B sorted in decreasing order
for the selected inverse problems are shown in Fig. 2. The
selected results in terms of the grids of the gravity anomaly
differences between the processing results and the true ref-
erence are shown in Figs. 3(a) and (b). In analyzing these
figures and similar figures corresponding to other compo-
nents of tensor T (not shown in this paper), we can observe
a number of features. In case (a), the gravity anomaly differ-
ences corresponding to the Tϕϕ component reveal the visi-
ble systematic north-south stripping, especially in the LS
estimate. Also in case (a), the systematic east-west strip-
ping can be found in the differences corresponding to the
Tλλ component. In case (b), this stripping is not so appar-

ent, probably because the random error magnified by the
larger numerical instability overlays the systematic effect.
No correlation can be seen when the differences with the
input signal itself are compared.
Looking at Tables 1–4, we can see that the stability of

the solutions in case (b) is much worse than that in case
(a). This phenomenon was expected, and it is related to the
discretization step, i.e., the smaller the step, the higher the
degree of instability. From this point of view, the discretiza-
tion on its own also represents the regularization of the so-
lution. In case (b), the instability of the solutions is so high
that the LS estimate is useless. It is interesting to note that
the RR estimate provides slightly better results on average
than the TSVD estimate for all the particular solutions.
In Table 4, we can compare the condition numbers for
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(a)

(b)

Fig. 3. (a) Example of gravity anomaly differences between the processing results and the true reference in the central part of the region of interest:
inverse problem for element Tϕϕ (case a). (b) Example of gravity anomaly differences between the processing results and the true reference in the
central part of the region of interest: Inverse problem for element Tϕϕ (case b).

the particular inverse problems. In both cases (a) and (b),
the smallest condition number corresponds to the element
Tϕλ. Despite this, the RMSE in Tables 1 and 2 for the Tϕλ

element is not the best. The biggest condition number in
Table 4 corresponds to the element Tϕϕ . In agreement with
this, the RMSE in Tables 1 and 2 for the Tϕϕ are the worst.

6. Concluding Remarks
The six inverse problems (Eq. (13)) derived in the first

part of the paper are in the form of Fredholm integral equa-
tions of the first kind. The inverse of the Fredholm integral
equations of the first kind cannot be solved. Therefore, the
mathematical properties of these equations easily lead after
discretization, see Eq. (14), to numerical instability. The
straightforward solutions, such as LS, do not give us sat-
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isfactory results, and some kind of regularization method
needs to be used. Analyzing the results of our numerical
experiments, a number of conclusions can be formulated:

• The best condition number of the normal equations
matrix for both cases (a) and (b) has been obtained us-
ing the Sϕλ integration kernel; the worst was obtained
using the Sϕϕ integration kernel.

• The more convenient regularization method seems to
be the RR method for both cases (a) and (b).

• The best result, in terms of RMSE, for both cases (a)
and (b) has been obtained solving the inverse problem
for the Trr component; the worst was obtained for the
Tϕϕ component.

• The best average RMSE of the output free-air gravity
anomaly has been 3.77 mGal using the RR regulariza-
tion method for case (a) and 13.84 mGal using the RR
regularization method for case (b).

In our numerical study, the Gaussian noise was intro-
duced to the observations as the simplest possibility. How-
ever, if a realistic stochastic model were assumed, the
numerical stability of the system of equations would be
changed.
Finally, the question of the optimal combination of the

particular solutions to obtain the best gravity anomalies
arises. We hope this topic will be the subject of further
research.
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Appendix A. Equation Section 1
Direct and inverse relations between the geocentric

Cartesian and spherical coordinate systems:⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ r cosϕ cos λ

r cosϕ sin λ

r sinϕ

⎞
⎠ ,

⎛
⎝ r

ϕ

λ

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

√
x2 + y2 + z2

arcsin

(
z√

x2 + y2 + z2

)

arctan
( y

x

)

⎞
⎟⎟⎟⎟⎠ .

(A.1)

The Jacobian matrix of transformation between the geocen-
tric Cartesian and spherical coordinate systems (see, for ex-
ample, Andrilli and Hecker, 2003):

J =

⎛
⎜⎜⎜⎜⎜⎝

∂x

∂r

∂x

∂ϕ

∂x

∂λ
∂y

∂r

∂y

∂ϕ

∂y

∂λ
∂z

∂r

∂z

∂ϕ

∂z

∂λ

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎝ cosϕ cos λ r sinϕ cos λ −r cosϕ sin λ

cosϕ sin λ r sinϕ sin λ r cosϕ cos λ

sinϕ −r cosϕ 0

⎞
⎠ . (A.2)

The Euclidean distance and the cosine of the spherical dis-
tance:

� = (
R2 + r2 − 2R r cosψ

)1/2
, (A.3)

cosψ = sinϕ sinϕ′

+ cosϕ cosϕ′ cos(λ′ − λ). (A.4)

First radial derivatives of the Euclidean distance and of the
inverse Euclidean distance:

∂�

∂r
= r − R cosψ

�

= 1 − t cosψ

D
, (A.5)

∂

∂r

(
1

�

)
= −r − R cosψ

�3

= −1 − t cosψ

r2D3
. (A.6)

First and second partial derivatives of function cosψ ac-
cording to the ϕ and λ:

∂ cosψ

∂ϕ
= cosϕ sinϕ′ − sinϕ cosϕ′ cos(λ′ − λ)

= sinψ cosα = C, (A.7)

∂2 cosψ

∂ϕ2
= − sinϕ sinϕ′ − cosϕ cosϕ′ cos(λ′ − λ)

= − cosψ, (A.8)
∂ cosψ

∂λ
= cosϕ cosϕ′ sin(λ′ − λ)

= sinψ sinα cosϕ = E, (A.9)

∂2 cosψ

∂λ2
= − cosϕ cosϕ′ cos(λ′ − λ)

= cosϕ(sinψ sinϕ cosα − cosψ cosϕ)

= F, (A.10)

∂2 cosψ

∂ϕ∂λ
= ∂2 cosψ

∂λ∂ϕ
= − sinϕ cosϕ′ sin(λ′ − λ)

= − sinψ sinα sinϕ = G. (A.11)

Second partial derivatives of generalized Stokes’ func-
tion S(t (r, R), ψ(ϕ, λ, ϕ′, λ′)) according to the geocentric
spherical coordinates (r, ϕ, λ):

∂2S(t, ψ)

∂ϕ2
= t2

{
6tC2

D5
+ 3tC2 − 2 cosψ

D3
− 3 cosψ

D

+3t (2C2 − cos2 ψ)

1 − t cosψ + D

(
1 + 1

D

)

+ 3t2C2 cosψ

D3(1 − t cosψ + D)

+ 3t2C2 cosψ

(1 − t cosψ + D)2

(
1 + 2

D
+ 1

D2

)

+ cosψ

(
5 + 3 ln

1 − t cosψ + D

2

)}
,

(A.12)
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∂2S(r, ψ)

∂ϕ∂λ
= t2

{
6tCE

D5
+ 3tCE + 2G

D3
+ 3G

D

+3t (C2 + CE + G cosψ)

1 − t cosψ + D

(
1 + 1

D

)

+ 3t2CE cosψ

D3(1 − t cosψ + D)

+ 3t2CE cosψ

(1 − t cosψ + D)2

(
1 + 2

D
+ 1

D2

)

−G

(
5 + 3 ln

1 − t cosψ + D

2

) }
,

(A.13)

∂2S(r, ψ)

∂ϕ∂r
= t2

r

{
− 6C(1 − t cosψ)

D5
− C

D3
− 6C

D

− 6tC cosψ

1 − t cosψ + D

(
1 + 1

D

)

+C

(
13 + 6 ln

1 − t cosψ + D

2

) }
,

(A.14)

∂2S(r, ψ)

∂λ2
= t2

{
6t E2

D5
+ 3t E2 + 2F

D3
+ 3F

D

+3t (2E2 + F cosψ)

1 − t cosψ + D

(
1 + 1

D

)

+ 3t2E2 cosψ

D3(1 − t cosψ + D)

+ 3t2E2 cosψ

(1 − t cosψ + D)2

(
1 + 2

D
+ 1

D2

)

−F

(
5 + 3 ln

1 − t cosψ + D

2

) }
,

(A.15)

∂2S(r, ψ)

∂λ∂r
= t2

r

{
− 6E(1 − t cosψ)

D5
− E

D3
− 6E

D

− 6t E cosψ

1 − t cosψ + D

(
1 + 1

D

)

+E

(
13 + 6 ln

1 − t cosψ + D

2

) }
,

(A.16)

∂2S(r, ψ)

∂r2
= t

r2

{
(1 − t cosψ)

{
6(1 − t cosψ)

D5
+ 3

D3

}

− 2

D3
+ 9

D
− 18D + 2

−3t cosψ

(
15 + 6 ln

1 − t cosψ + D

2

) }
.

(A.17)

The particular entries of tensor-valued kernel function S:

Sϕϕ(t, ψ, α) = 1

r2
∂2S(r, ψ, R)

∂ϕ2
,

Sϕλ(t, ψ, α, ϕ) = 1

r2 cosϕ

∂2S(r, ψ, R)

∂ϕ∂λ
,

Sϕr (t, ψ, α) = 1

r

∂2S(r, ψ, R)

∂ϕ∂r
,

Sλλ(t, ψ, α, ϕ) = 1

r2 cos2 ϕ

∂2S(r, ψ, R)

∂λ2
,

Sλr (t, ψ, α, ϕ) = 1

r cosϕ

∂2S(r, ψ, R)

∂λ∂r
,

Srr (t, ψ) = ∂2S(r, ψ, R)

∂r2
.

(A.18)
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