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REVIEW

MiR-21: an environmental driver 
of malignant melanoma?
Bodo C Melnik*

Abstract 

Since the mid-1950’s, melanoma incidence has been rising steadily in industrialized Caucasian populations, thereby 
pointing to the pivotal involvement of environmental factors in melanomagenesis. Recent evidence underlines the 
crucial role of microRNA (miR) signaling in cancer initiation and progression. Increased miR-21 expression has been 
observed during the transition from a benign melanocytic lesion to malignant melanoma, exhibiting highest expres-
sion of miR-21. Notably, common BRAF and NRAS mutations in cutaneous melanoma are associated with increased 
miR-21 expression. MiR-21 is an oncomiR that affects critical target genes of malignant melanoma, resulting in 
sustained proliferation (PTEN, PI3K, Sprouty, PDCD4, FOXO1, TIPE2, p53, cyclin D1), evasion from apoptosis (FOXO1, 
FBXO11, APAF1, TIMP3, TIPE2), genetic instability (MSH2, FBXO11, hTERT), increased oxidative stress (FOXO1), angio-
genesis (PTEN, HIF1α, TIMP3), invasion and metastasis (APAF1, PTEN, PDCD4, TIMP3). The purpose of this review is to 
provide translational evidence for major environmental and individual factors that increase the risk of melanoma, 
such as UV irradiation, chemical noxes, air pollution, smoking, chronic inflammation, Western nutrition, obesity, sed-
entary lifestyle and higher age, which are associated with increased miR-21 signaling. Exosomal miR-21 induced by 
extrinsic and intrinsic stimuli may be superimposed on mutation-induced miR-21 pathways of melanoma cells. Thus, 
oncogenic miR-21 signaling may be the converging point of intrinsic and extrinsic stimuli driving melanomagenesis. 
Future strategies of melanoma treatment and prevention should thus aim at reducing the burden of miR-21 signal 
transduction.
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Background
In developed countries, melanoma incidence has been 
rising with an annual increase between 3 and 7% for Cau-
casians since the mid-1950’s [1]. Thus, epidemiological 
data clearly point to the involvement of environmental 
factors in melanomagenesis. Lifestyle factors including 
occupational exposure, Western style nutrition, obesity, 
increased body mass index (BMI), recreational sun expo-
sure, tanning and reduced physical activity may explain 
the relationship between environmental and socioeco-
nomic factors and malignant cutaneous melanoma [2]. 
Recent data suggest that the common BRAF(V600E) 
mutation detected in melanoma is not associated with 

chronic sun exposure [3]. Thus, other environmental 
and epigenetic factors may play a role in melanomagen-
esis. Significant changes of microRNA (miR) expression 
in response to environmental exposure of humans have 
recently been reported [4]. MiRs are important post-
transcriptional regulators controlling more than 30% of 
human mRNAs. Certain miRs such as miR-21 function 
as potent oncogenes [5] and play an important role in the 
initiation and progression of cancer [6]. OncomiRs affect 
all seven hallmarks of malignant cells: (1) self-sufficiency 
in growths signals, (2) insensitivity to anti-growth sig-
nals, (3) evasion from apoptosis, (4) limitless replicative 
potential, (5) angiogenesis, (6) invasion and metastasis, 
and (7)  inflammation [6]. Current melanoma research 
focuses on the contribution of miR dysregulation in 
malignant melanoma [7–9] and its relation to BRAF and 
NRAS oncogenic mutations [10–12].
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MiR-21 is highly expressed in melanoma cells and 
apparently plays a pivotal role in melanomagenesis 
[13]. A steady increase of miR-21 expression has been 
detected from benign to borderline melanocytic lesions 
and to primary cutaneous melanomas exhibiting an 
8.6-fold overexpression of miR-21 [14]. UV-irradiation 
stimulates miR-21 expression in the skin [15]. West-
ernized nutrition, air pollution and inflammation all 
increase miR-21 signaling [4, 16, 17]. This review by 
means of translational research presents an analysis of 
the potential role of environmental and intrinsic factors 
that are associated with increased miR-21 expression 
and highlights miR-21-dependent pathways that may 
synergize in driving initiation and progression of malig-
nant melanoma.

MiR‑21 and malignant melanoma
MiR-21 is a key oncogene, which is highly expressed in 
most cancers [18, 19]. Critical targets of miR-21 are 
mRNAs of tumor suppressor proteins, checkpoint regu-
lators of cell cycle control, and intrinsic and extrinsic 
pathways of cellular apoptosis [20]. MiR-21 inhibits 
mRNA expression of crucial tumor suppressor pro-
teins such as PTEN (phosphatase and tensin homolog) 
[21, 22], Sprouty1 and Sprouty2 [23–25], and PDCD4 
(programmed cell death protein 4) [26–29]. MiR-21 is a 
negative regulator of p53 signaling [30] and stimulates 
the expression of the cell cycle promoter cyclin D1 [31]. 
MiR-21 induces tumor angiogenesis through targeting 

PTEN, leading to activated AKT and ERK1/2 signaling, 
thereby enhancing hypoxia-inducible factor 1α (HIF1α) 
and the expression of the vascular endothelial growth 
factor (VEGF) [32]. HIF1α is a crucial downstream tar-
get of miR-21 in regulating tumor angiogenesis [32–34]. 
Overexpression of HIF1α and HIF2α is linked to VEGF 
expression and poorer prognosis in malignant melano-
mas [35, 36] (Figure 1).

APAF1, apoptotic protease activating factor-1, which 
is the molecular core of the apoptosome, has been iden-
tified as a miR-21 target [37]. Metastatic melanomas 
often lose APAF1, a cell-death effector that acts with 
cytochrome c and caspase-9 to mediate p53-depend-
ent apoptosis [38, 39]. There is an inverse correlation 
between APAF1 expression and melanoma progression 
[40, 41]. In fact, a significant difference in APAF1 mRNA 
expression between melanomas of Breslow thickness <1 
and >4 mm has been detected [41]. Thus, there is good 
reason to believe that increased miR-21 expression via 
suppression of APAF1 prevents apoptosis in melanoma. 
Further studies confirm the involvement of miR-21 in the 
pathogenesis, carcinogenesis, progression and metastasis 
of malignant melanoma [13, 14, 42–45].

Mutations in the BRAF gene and less frequently such 
as PTEN, KIT, CDK4, p53, MDM2, cyclin D1, AKT3, 
PI3Kα, or NRAS are involved in melanoma progression 
[10–12]. Important negative regulators of NRAS/BRAF/
MEK/ERK- and the PI3K/AKT/mTORC1 signaling path-
ways are targets of miR-21 (Figure  2). Sprouty proteins 

Figure 1 MiR-21 target mRNAs with potential impact on melanomagenesis. MiR-21 affects all major hallmarks of cancer: sustained proliferation, 
impaired apoptosis, genetic instability, angiogenesis and invasion, and inflammation (see list of abbreviations).
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are negative master regulators of RAF-RAS signaling 
[46]. MiR-21-mediated inhibition of Sprouty may thus 
promote mutated BRAF/NRAS signaling of melanoma 
cells. MiR-21 augments PI3K/AKT/mTORC1 signaling 
in cancer cells at various levels of the pathway [47, 48]. 
Recent evidence suggests that miR-21-mediated gene 
regulation interconnects with the AKT pathway [48]. 
In PC3 cells, miR-21 expression resulted in a dramatic 
increase in basal levels of the PI3K subunit p85 [49]. PI3K 
signaling is required for TGFβ-induced epithelial-mesen-
chymal (EMT)-like transition in human melanoma cells 
[50].

PTEN, which suppresses PI3K/AKT signaling, is often 
mutated in melanomas [12, 51]. Inactive mutated PTEN 
leads to overactivation of AKT, which inactivates FOXO 
tumor suppressor proteins [52].

Recent evidence shows that miR-21 not only targets 
PTEN, but also FOXO1 mRNA [53, 54]. Decreased 
FOXO activity has been associated with the malignant 
phenotype of melanoma cells [55, 56]. FOXO3a stimu-
lates apoptosis by negatively targeting miR-21 [57]. MiR-
21 suppresses the translation of pro-apoptotic FAS ligand 
(FASLG) [57]. It is noteworthy to mention that FoxO3a 
is a transcription factor promoting FOXO1 upregulation 
[58]. Thus, there exists a transcriptional and posttrans-
lational regulatory network between FOXO3a, FOXO1 
and miR-21 expression. Nuclear activity of FOXO tran-
scription factors depends on PI3K/AKT-mediated phos-
phorylation of FOXO proteins [59]. As the miR-21 target 
PTEN counteracts the activity of PI3K, miR-21 has an 
upstream influence on nuclear FOXO-mediated tran-
scription such as the expression of FOXO-dependent 

Figure 2 MiR-21 amplifies NRAS-BRAF-signaling by targeting Sprouty, enhances PI3K-AKT-mTORC1-signaling by targeting PTEN and PDCD4 
enhances TGFβ signaling by suppression of SMAD7. Note: c-Jun is an activating transcription factor of MIR21, whereas FOXO3a suppresses MIR21; 
AKT-mediated phosphorylation of FOXO3a derepresses MIR21; miR-21 target mRNAs are labelled in yellow; asterisk indicates common mutations in 
malignant cutaneous melanoma.
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target genes like FASLG, cyclin D1, p21, superoxide dis-
mutase and catalase involved in the regulation of apop-
tosis, cell cycle progression and defense against reactive 
oxygen species (ROS) [60]. Taken together, miR-21 
enhances upstream and downstream PI3K/AKT signal-
ing and reduces FOXO activities.

PDCD4 is a negative regulator of translation and acts 
as a tumor suppressor [61]. Notably, mTORC1 stimulates 
mRNA translation and protein synthesis via S6K1-medi-
ated phosphorylation of PDCD4 (Figure 2) [62]. PDCD4 
is suppressed in ~25% of human cell lines that are estab-
lished from advanced melanoma lesions [63]. PDCD4 is 
a target of miR-21 [26–29]. Thus, overexpression miR-
21 is involved in EMT by targeting PDCD4 and PTEN 
[64–67].

BTG2 (B-cell translocation gene 2) encodes an anti-
proliferative protein involved in the regulation of the 
G1/S transition of the cell cycle [68]. The tumor sup-
pressor BTG2 is relevant to cell cycle control and cellu-
lar response to DNA damage [69]. BTG2 acts as a major 
downstream effector of p53-dependent proliferation 
arrest of mouse and human fibroblasts transduced with 
oncogenic RAS [70]. BTG2 is a known target of miR-
21 [71]. Knockdown of miR-21 in B16 melanoma cells 
increases BTG2 levels [42], indicating that BTG2 is a 
miR-21 target in melanoma cells.

Another recently identified target of miR-21 is the insu-
lin-like growth factor binding protein 3 (IGFBP3) [72]. 
Along with having a number of IGF-independent effects 
on cell growth and survival, IGFBP3 is known to modu-
late the activity of insulin-like growth factors (IGFs) [73]. 
In glioblastoma, miR-21-mediated downregulation of 
IGFBP3 expression promotes tumorigenesis [72]. Recent 
evidence underscores that IGFBP3 exerts a specific inhib-
itory effect on melanoma growth and dissemination [74].

Recently, the tumor suppressor FBXO11 has been iden-
tified as a novel miR-21 target [75]. FBXO11 is a compo-
nent of the SKP1-CUL1-F-box ubiquitin ligase complex 
that targets proteins for ubiquitination and proteasomal 
degradation [76], a regulatory mechanism that plays a 
crucial role in the maintenance of genome stability [77]. 
FBXO11 promotes apoptosis by mediating the degra-
dation of oncogenic BCL6. Notably, FBXO11 acts as a 
tumor suppressor in melanoma and has been shown to 
regulate apoptosis of B10BR mouse melanocytes [78].

Another recently detected miR-21 target is the tissue 
inhibitor of metalloproteinases 3 (TIMP3) [79]. Increased 
miR-21 expression enhances the invasive potential of 
melanoma cell lines through TIMP3 inhibition by (1) 
increasing matrix metalloproteinase activity [80], (2) by 
stimulating angiogenesis via TIMP3-mediated blockade 
of VEGF binding to VEGFR2 [80], and (3) by attenuat-
ing TIMP3-mediated apoptosis. Notably, TIMP3 exhibits 

potent antitumor activity in an animal model of mela-
noma [81] and induces apoptosis in melanoma cells [82]. 
Adenovirally expressed TIMP3 stabilzes tumor necro-
sis factor receptor-1 (TNF-R1), FAS, and TNF-related 
apoptosis, inducing ligand receptor-1 (TRAIL-R1) on 
melanoma cell surface, sensitizing these cells to apop-
tosis induced by TNF-α, anti-FAS-antibody and TRAIL 
[83]. Thus, the miR-21 target TIMP3 promotes apopto-
sis in melanoma cells by stabilizing three distinct death 
receptors and activating their apoptotic signaling cascade 
through caspase-8 (Figure 1).

Integrin-β4 (ITGβ4) is a novel miR-21 target gene and 
plays a role in the regulation of EMT, as it is remarkably 
derepressed after transient miR-21 silencing and down-
regulated after miR-21 overexpression. MiR-21-depend-
ent changes of ITGβ4 expression significantly affect cell 
migration properties of colon cancer cells [84].

Expression of the L1 cell adhesion molecule (L1CAM) 
frequently occurs in human cancers and is associated 
with poor prognosis in cancers. It has recently been dem-
onstrated that L1CAM induces the motility of B16F10 
melanoma cells via the activation of MAPK pathways 
[85]. Notably, miR-21-3p has been identified as a positive 
regulator of L1CAM expression [86].

Overexpression of tropomyosin 1 (TPM1) in MCF-7 
cells suppresses anchorage-independent growth, whereas 
overexpression of miR-21 increases tumor growth. Zhu 
et  al. [87] concluded that miR-21 acts as an oncogene 
by suppressing TPM1. Indeed, increased expression of 
TPM1 has been associated with decreased invasive and 
motile activities of melanoma cells [88, 89].

MiR‑21 enhances genetic instability of melanoma 
cells
The DNA mismatch repair (MMR) protein MSH2 is an 
important tumor suppressor and crucial caretaker of 
the MMR, including transcription-coupled repair [90], 
homologous recombination [91], base excision repair 
[92], and plays an important role in mutation avoidance 
and microsatellite stability [93]. MSH2 is involved in 
the repair of UVA-induced oxidative DNA damage by 
base excision repair [94]. MSH2 gene mutations are pre-
sent in the radial growth-phase of cutaneous malignant 
melanoma cell lines and can be further induced by UV-B 
[95]. Reduced or defective expression of MSH2 has been 
associated with high genomic instability, poor melanoma 
prognosis, and metastasis [95, 96]. Reduced expression or 
function of MSH2 is either a result of mutation-derived 
dysfunction of MSH2 [94–97] or miR-21-mediated 
downregulation of MSH2 mRNA [98] (Figure 1).

Telomerase is reactivated in most cancers and there is 
accumulating evidence that this is a driver event in malig-
nant melanoma [99–102]. hTERT is the catalytic subunit 
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of telomerase, which regulates telomerase activity. Wang 
et  al. [103] demonstrated in glioblastoma cells that 
enforced miR-21 expression increases hTERT expression 
mediated by STAT3, thereby promoting glioblastoma cell 
growth, whereas reduction of miR-21 represses hTERT 
expression in a STAT3-dependent fashion.

Genetic and epigenetic changes in melanoma 
that upregulate miR‑21
The development and progression of melanoma can 
be attributed to independent or combined genetic and 
epigenetic events [104]. The MIR21 promoter region 
includes binding sites for activating protein 1 (AP-1) 
and signal transducer and activator of transcription 3 
(STAT3) [19]. The AP-1 transcription factor c-Jun is 
highly expressed in melanoma cells [105]. AP-1/c-Jun 
activation results in enhanced expression of miR-21 
[106–109]. Primary human melanocytes genetically 
modified to ectopically express BRAF(V600E) or NRAS 
(G12D) induce c-Jun expression [108–110] (Figure  2). 
RAS oncogenes are well-characterized inducers of AP-1 
activity [109]. Indeed, oncogenic RAS induction in thy-
roid cells increases the expression of miR-21 [111]. Fur-
thermore, an autoregulatory loop mediated by miR-21 
and PDCD4 controls the AP-1 activity in RAS transfor-
mation [112].

Melanoma cells exhibit reduced expression of miR-
125b, which is a negative regulator of c-Jun [113]. 
Thus, miR-125b/c-Jun/miR-21 signaling may repre-
sent a further pathway linked to miR-21-dependent 
melanomagenesis.

STAT3 is constitutively activated in a majority of 
human melanoma cell lines and tumor specimens [114, 
115]. STAT3 activity is required for melanomagenesis 
and increases tumor invasiveness [116]. Noteworthy, 
STAT3 stimulates the expression of miR-21 [30, 40, 117]. 
In fact, STAT3/miR-21-signaling promotes proliferation 
and metastasis of B16 melanoma cells [42]. Inhibition of 
STAT3 is regarded as a potential therapeutic approach to 
target melanoma [118].

Approximately 50% of melanomas depend on mutant 
BRAF for proliferation, metastasis and survival [119]. 
Activation of STAT3 serine-727 and tyrosine-705 phos-
phorylations is promoted by BRAF(V600E) activity [118], 
whereas MEK inhibition decreases STAT3 phosphoryla-
tion in NRAS-mutant melanoma [119]. Furthermore, 
increased STAT3 signaling has been reported in primary 
oncogenic driver mutations of KIT, ALK, ROS1, RET 
and NTRK1 [12]. In addition, RAS-induced expression 
of miR-21 is mediated through STAT3 signaling [20]. 
Taken together, common driver mutations of malignant 
melanoma via AP-1 and STAT3 activate miR-21 signal 
transduction.

MiR-182 is upregulated in melanoma cell lines [8, 
120]. Aberrant miR-182 expression promotes melanoma 
metastasis by repressing FOXO3 and microphthalmia-
associated transcription factor (MITF) [120]. It has 
recently been demonstrated that miR-182 is upregu-
lated in melanoma cell lines after epigenetic modulation 
with the demethylating agents 5-aza-2′-deoxycytidine 
and trichostatin A [121]. It is concerning that miR-182 
downregulates the expression of FOXO3 [121], which 
is a critical repressor of MIR21 [57]. Thus, enhanced 
miR-182 signaling due to oncogenic mutations or epige-
netic upregulation may synergistically augment miR-21 
expression in melanoma. The intertwined connection 
between epigenetics and miRs such as miR-182 modulate 
the activity of the epigenetic machinery that plays a role 
in cancer development [122, 123].

Dermal fibroplasia appears to be related to the degree 
of atypia in dysplastic nevi [124]. Periadnexal fibrosis has 
been observed in melanoma in situ [125]. Thus, subepi-
dermal fibroplasia may be a co-feature of melanomagen-
esis. Recent evidence links skin fibrosis to miR signaling 
[126]. MiR-21 promotes fibrogenic EMT of epicardial 
mesothelial cells involving PDCD4 and Sprouty-1 [127]. 
MiR-21 has been identified as central regulator of fibrosis 
[128].

Cancer-associated fibrosis plays an important role for 
the tumor stroma that supports cancer growth and inva-
sion. Inhibition of miR-21 reduces liver fibrosis and pre-
vents the development of hepatocellular carcinoma [129]. 
A paracrine signaling network involving PDGF-CC and 
PDGF receptor-α in a mouse model of malignant mela-
noma accelerates tumor growth through recruitment 
and activation of different subsets of cancer-associated 
fibroblasts (CAFs) [130]. TGF-β1 is a pivotal signal that 
promotes the generation of CAFs. Li et al. [131] demon-
strated that miR-21 targets SMAD7, the upstream inhibi-
tor of TGF-β1 signaling. MiR-21 binds to the 3′ UTR of 
SMAD7 mRNA and inhibits its translation [131]. Over-
expression of miR-21 or the depletion of SMAD7 pro-
moted CAF formation [131]. These observations point to 
an important contribution of miR-21 in shaping melano-
ma’s stromal microenvironment. Increased perilesional 
fibrosis may thus reflect the histologic result of enhanced 
miR-21 expression during the transition from a benign 
melanocytic lesion to malignant melanoma [14].

Radiation‑induced upregulation of miR‑21
Ultraviolet irradiation
Ultraviolet radiation (UV) is regarded as a major risk fac-
tor for melanoma development [132, 133]. Both, UV-B 
and UV-A are implicated in melanomagenesis [134]. 
UV-B irradiation of human HaCaT keratinocytes and a 
human squamous carcinoma cell line releases IL-6 [135, 
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136], which activates STAT3 signaling [137], and may 
consecutively increase the expression of miR-21 [30, 
42]. Recent evidence underlines the predominant role of 
UV-A in melanomagenesis [138, 139]. Increased mela-
noma risk of airplane pilots has been linked to excessive 
UV-A exposure in the cockpit during flight time [140, 
141]. In fact, miRs play an important role in photocar-
cinogenesis [142].

There is compelling evidence that miR-21 is upregu-
lated by UV-A radiation of human skin [15]. Syed et  al. 
[143] reported that both UV-A and UV-B irradiation 
of normal human epidermal keratinocytes activate 
STAT3. UV-B irradiation of the mouse epidermal JB6 
cells induces the expression of miR-21 [144]. Radiation-
induced bystander effects are established photobiological 
phenomena. Xu et  al. [145] report significant upregu-
lation of miR-21 in both directly irradiated cells and 
bystander cells. Notably, irradiated cells export miRs via 
exosomes [145–147] (Figure 3). Exosomes mediate cell–
cell communication in a variety of biological processes 
and are considered as a new class of most important 
signalosomes that transport regulatory miRs between 
cells [148, 149]. Not only ionizing radiation but also UV-
irradiation induces bystander effects in keratinocytes, 

fibroblasts and melanoma cells [150–153]. UV-induced 
expression of miR-21 in bystander keratinocytes may 
thus enhance exosomal miR-21 signaling, which affects 
gene regulation of adjacent melanocytic cells (Figure 3).

Radiofrequency fields
There is a strong correlation between the accessibility 
to air travel and increasing melanoma incidence [154]. 
However, UV-irradiation may not represent the only 
electromagnetic spectrum associated with increased 
melanoma risk. A good correlation in time has been 
found for the rollout of FM/TV broadcasting networks 
and increasing melanoma prevalence [155]. Notably, 
enhanced STAT3 activation in response to 1,800  MHz 
radiofrequency fields has recently been demonstrated 
in astrocytes and microglia [156]. Compared to the gen-
eral population, the incidence rate of gliomas is greater 
among melanoma patients [157]. In this regard, it is con-
siderable that both glia cells and melanocytes derive from 
common neural crest cells [158]. Mutant gene expres-
sion of p53 in the peripheral zone of glioblastoma has 
been increased by 65% in patients using cell phones more 
than 3 h per day [159]. As in melanomas [13, 14], miR-
21 is significantly overexpressed in glioblastomas [160]. 

Figure 3 Working model of exogenous and endogeneous factors that increase exosomal miR-21 signaling in malignant melanoma. The common 
BRAF(V600E) and NRAS(G12D) mutations in cutaneous melanoma increase miR-21 expression by upregulating AP-1 and STAT3. Keratinocyte-
derived exosomal miR-21 induced by UV-irradiation, exosomal miR-21 derived from the systemic circulation induced by dietary and environmen-
tal factors as well as obesity- and inflammation-associated exosomal miR-21 may enhance the total burden of miR-21 signaling of melanocytes 
promoting the transition to the malignant phenotype.
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The International Agency for Research on Cancer of the 
WHO classified radiofrequency electromagnetic fields 
as possibly carcinogenic to humans [161]. Thus, not only 
UV but also other electromagnetic spectra may activate 
oncogenic STAT3/miR-21 signaling.

Upregulation miR‑21 via circulating exosomes
Milk exosome‑derived miR‑uptake
Bovine milk provides abundant bioactive exosomal miRs 
[162–164]. Exosomal miRs of pasteurized cow´s milk, 
such as miR-29b, are absorbed by humans in biologically 
meaningful amounts, which reaches the systemic circu-
lation and affects gene expression of the milk consumer 
[16, 17]. It has been estimated that the 245 miRs detected 
in cow’s milk affect more than 11,000 human genes 
[16]. Milk has been proposed to represent an epigenetic 
transfection system that maintains maternal miR signal-
ing to the newborn infant to promote postnatal growth 
[17]. Remarkably, bovine miRs of cow’s milk survive milk 
processing such as pasteurization, homogenization and 
refrigerated storage for over 2 weeks [165]. Due to lactase 
persistence, Caucasian populations are able to consume 
pasteurized fresh milk, which has been introduced into 
the food chain for daily consumption through the avail-
ability of widespread cooling technology since the mid-
1950’s: The decade during which melanoma incidence 
increased substantially.

Exosomes facilitate miR transport over long distances 
[166]. Milk is obviously a mammalian interindividual 
miR-transfer system intended to provide maternal gene-
regulatory signals to the newborn [17]. Intriguingly, 
bovine miR-21, a predominant miR constituent of cow’s 
milk [164, 167, 168], is identical to human miR-21 (http://
www.mirbase.org). Notably, milk exosomes have been 
proven to be resistant against harsh degrading conditions 
[167, 168].

Recent epidemiological evidence links increased milk 
consumption to the pathogenesis of hepatocellular car-
cinoma [169]. In HepG2 hepatocellular carcinoma cells, 
interleukin 6 (IL-6) induces STAT3-dependent miR-21 
transcription [170]. Michaëlsson et  al. [171] reported 
a positive correlation between milk intake and overall 
mortality and increased IL-6 serum levels in two Swedish 
cohorts. Notably, increased serum IL-6 levels have been 
correlated with a worse prognosis of melanoma [172, 
173]. Milk also delivers exosomal miR-155 [164], which 
is involved in STAT3-mediated tumorigenesis [174, 175]. 
MiR-155 enhances STAT3 expression by reducing sup-
pressor of cytokine signaling 1 (SOCS1), a target of miR-
155 [175, 176]. Grignol et  al. [16] observed increased 
expression of both miR-21 and miR-155 during the pro-
gression of melanocytic lesions. Pieters et al. showed that 
commercial milk exosomes transmit TGF-β [168]. TGFβ 

signaling promotes a rapid increase in the expression of 
mature miR-21 through promoting the processing of pri-
mary transcripts of miR-21 (pri-miR-21) into precursor 
miR-21 (pre-miR-21) by the DROSHA complex [177]. 
Thus, intake of pasteurized milk may increase miR-21 
signaling either through direct exosomal transfer of miR-
21 or via STAT3- and TGFβ-mediated upregulation of 
miR-21 expression.

Tumor exosome‑derived miR‑21
Not only milk provides miR-21 via exosome transfer 
but also tumor cells. Intriguingly, miR content of cir-
culating tumor-derived exosomes has been found to 
correlate with the miR profile of the tumor [178, 179]. 
In patients with ovarian cancer, lung cancer and glio-
blastoma, miR-21 is one of the most abundant miRs 
detected in the patients’ circulating exosomes [178, 179]. 
The uptake of miR-21 delivering exosomes is facilitated 
via clathrin-mediated endocytosis and macropinocyto-
sis [180]. Notably, it has been demonstrated that tumor 
cell-derived exosomes regulate target gene expression in 
normal cells [180]. MiR-21 is also one of the major exo-
somal miRs released from melanoma cells [44, 181, 182]. 
Indeed, plasma miR-21 levels have been associated with 
the tumor burden in cutaneous melanoma [44]. Thus, 
exosomal melanoma-derived miR-21 may promote mel-
anoma invasion and distant metastasis. According to a 
recent concept, tumor-derived exosomal miRs such miR-
21 may be involved in tumor-mediated immunosuppres-
sion [183]. For instance, nasopharyngeal cancer-derived 
miR-21 induces IL-10 and B-cells that suppress CD8+ 
T-cell activities [184]. Moreover, miR-21 is involved 
in the generation of myeloid-derived suppressor cells 
(MDSCs), which exert potent immunosuppressive activi-
ties [185]. Recent evidence underlines that high levels 
of MDSCs are associated with a poor overall survival of 
melanoma patients [186]. Furthermore, miR-21 targets 
two important regulatory checkpoints in the TLR sign-
aling pathway, myeloid differentiation factor 88 (MyD88) 
and interleukin-1 receptor-associated kinase 1 (IRAK1) 
[187]. Moreover, tumor-secreted miR-21 can function via 
binding as ligands to murine TLR7 and human TLR8 in 
immune cells, thereby triggering a TLR-mediated pro-
metastatic inflammatory response that ultimately may 
lead to tumor growth and metastasis [188].

Age‑ and inflammation‑induced miR‑21
MiR-21 is a major miR component of human plasma that 
increases in association with age, inflammation, cardio-
vascular disease, and obesity [189–191]. STAT3 activa-
tion of miR-21 has been proposed as a mechanistic link 
between inflammation and cancer development [192]. 
Inflammasome activation and increased IL-1β signaling 

http://www.mirbase.org
http://www.mirbase.org
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has recently been proposed to play a potential role in 
driving melanomagenesis [193]. Serum IL-1β is signifi-
cantly increased in advanced melanoma patients [194]. 
Remarkably, it has been demonstrated in human aortic 
epithelial cells that IL-1β treatment induces a three to 
fourfold response of miR-21-3p expression compared 
with control treatment [195]. This can be explained by 
IL-1β-induced IL-6/STAT3 signaling [196].

Inflammation is a newly recognised hallmark of can-
cer that substantially contributes to the development and 
progression of malignancies [197]. Increasing evidence 
underlines the role that local immune response and sys-
temic inflammation have in the progression of tumors 
and survival of cancer patients. It has recently been pro-
posed that miR-21 plays a key role in the induction and 
resolution of inflammatory responses [198] and in the 
regulation of immune homeostasis [196]. Tumor necro-
sis factor-α-induced protein 8-like 2 (TIPE2), which 
belongs to the TNF-α-induced protein-8 family, is a 
negative regulator of innate and adaptive immunity and 
is a direct target of miR-21 [199, 200]. TIPE2 negatively 
regulates inflammation by switching arginine metabo-
lism from nitric oxide synthase to arginase, which con-
verts arginine to ornithine and urea [201]. Melanomas 
are auxotrophic for arginine due to the reduced expres-
sion of argininosuccinate synthetase-1 (ASS1), which is 
the rate-limiting enzyme for arginine biosynthesis [202]. 
Furthermore, miR-21-regulated TIPE2 controls innate 
immunity to RNA by targeting the PI3K-RAC pathway 
[203]. TIPE2 is able to suppress TNF-α-induced hepato-
cellular carcinoma metastasis by inhibiting ERK1/2 and 
NF-κB activation [204]. Downregulated TIPE2 is associ-
ated with increased cell proliferation and poor progno-
sis in non-small lung cancer [205]. Furthermore, TIPE2 
provides a molecular bridge from inflammation to cancer 
by targeting the RAS signaling pathway [206, 207]. TIPE2 
binds the RAS-interacting domain of the RALGDS (RAL 
guanine nucleotide dissociation stimulator) family of 
proteins, which are essential effectors of activated RAS. 
This binding prevents RAS from forming an active com-
plex, thereby inhibiting the activation of the downstream 
signaling molecules RAL and AKT [207]. Thus, miR-21 
reduces TIPE2-mediated suppression of RAS-induced 
tumorigenesis, which may have a potential impact on 
RAS-driven melanomagenesis.

Association of nutrition and lifestyle factors 
overexpressing miR‑21
High glucose consumption
Western diet is characterized by excessive consump-
tion of sugar and hyperglycemic carbohydrates result-
ing in excessive glucose intake. About 75% of all foods 
and beverages contain added sugar in a large array of 

forms. Consumption of soft drinks has increased five-
fold since 1950 [208]. It has recently been demonstrated 
that miR-21 is upregulated in a time-dependent manner 
in response to high concentration glucose stimulation 
in Raw 264.7 macrophages [209]. Inhibition of miR-21 
increases mRNA and protein levels of PDCD4 [209]. 
Thus, the steady increase in daily glucose consumption 
may be related to the total burden of miR-21.

High fat intake and obesity
Several studies demonstrated an association between 
increased BMI and melanoma incidence and mortality 
[3]. MiR-21 is involved in adipocyte differentiation and 
is upregulated in subcutaneous adipose tissue of obese 
individuals [210, 211]. A long-term high-fat diet (HFD) 
upregulates murine miR-21 and induces obesity in mice 
[212]. MiR-21 is robustly expressed in human adipose 
tissue and positively correlates with BMI [211], whereas 
long-term inhibition of miR-21 reduces obesity in db/
db mice [213]. Pandey et  al. [214] provided evidence 
that HFD-induced obesity leads to increased melanoma 
progression in male C57BL/6J mice associated with 
enhanced Cav-1 and FASN expression in tumors from 
HFD mice. Cav-1 and FASN are coordinately regulated 
and Cav-1 interacts with FASN in melanoma cells [214]. 
In accordance with this, Malvi et al. [215] demonstrated 
that reduction of caloric intake by orlistat treatment of 
obese mice significantly diminishes melanoma progres-
sion. Interestingly enough, adipocytes secrete exosomes 
containing abundant miRs [216, 217]. In the B16F10 mel-
anoma allograft model, adipose tissue conditioned media 
from HFD-induced obese mice increase lymphangi-
ogenesis and lymph node metastasis [218]. Exposure to 
media from adipocyte cultures increases cell prolifera-
tion and reduces sensitivity of melanoma cells to apop-
tosis induced by cisplatin and docetaxel [219]. Notably, 
miR-21 has been shown to decrease chemosensitivity of 
cancer cells to cisplatin [220, 221] and docetaxel [222, 
223]. Future studies should elucidate whether adipocyte-
derived miR-21 may play a role in melanomagenesis 
(Figure 3).

Alcohol consumption
There is epidemiological evidence that drinking alcohol is 
associated with an increased risk of melanoma [224, 225]. 
Expression of miR-21 and several of their target genes 
are regulated by acute psychological stress and have been 
correlated with alcohol consumption in a laboratory set-
ting [226].

Sedentary lifestyle
Sedentary lifestyle with insufficient physical activity is 
not only a risk factor for obesity but may be related to 
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the increasing prevalence of melanoma in industrial-
ized societies. In fact, US men and women exercising 
five to seven days per week have been reported to be at 
decreased risk of melanoma [227]. In accordance with 
this, a melanoma-protective effect of increased physical 
exercise has been reported in Greece [228]. Nielsen et al. 
[229] observed a decrease of circulating plasma miR-21 
in response to chronic exercise. Thus, a sedentary life-
style may adversely affect miR-21 signaling.

Pollution‑mediated upregulation of miR‑21
Smoking and nicotine exposure upregulates the expres-
sion of miR-21 [67, 230]. Chronic arsenic exposure acts 
as a co-carcinogen in melanoma [231]. Arsenic expo-
sure induces the expression of miR-21 [65, 232–235]. A 
recent study shows that miR-21 is involved in exosome-
mediated intercellular communication between neoplas-
tic and normal human bronchial epithelial (HBE) cells 
[236]. Exosomes derived from arsenite-transformed HBE 
cells stimulate proliferation of normal HBE cells, whereas 
exosomes from miR-21-depleted cells fail to stimulate 
proliferation. Collectively, these data support the concept 
that exosomal miR-21 is involved in cell–cell communi-
cation during carcinogenesis induced by environmen-
tal chemicals. Furthermore, air pollution and oxidative 
stress induce the expression of miR-21. It has been dem-
onstrated that metal-rich particulate matter increases 
the expression of miR-21 in peripheral blood leukocytes 
[237]. Notably, miR-21 expression has been associ-
ated with exposure to diesel exhaust linked to increased 
plasma levels of 8-hydroxy-deoxyguanosine (8-OHdG) 
[238]. 8-OHdG is induced in DNA by oxidative stress 
and UV irradiation [239]. Indeed, melanoma patients 
with low expression of nuclear 8-OHdG have signifi-
cantly longer survival times compared to those with high 
expression [240]. Thus, air pollution and urbanisation 
may affect melanomagenesis via environmental stressors 
that upregulate miR-21 expression (Table 1).

Conclusions
Overexpression miR-21 is a common molecular feature 
of malignant melanoma [13]. MiR-21 plays a crucial 
role in regulatory circuits involving epigenetic switches 
required for the transformation of cancer cells [192]. 
MiR-21 expression is upregulated by environmental, epi-
genetic and genetic changes that may all promote mela-
nomagenesis. In comparison to epidermal keratinocytes, 
environment insults are apparently more critical for mel-
anocytes, as these cells are considerably more resistant to 
apoptosis [241–243]. Thus, environmental and epigenetic 
factors that persistently increase miR-21 signaling may 
have predominantly long-lasting impacts on melano-
cytes. In this regard, melanoma appears to represent a 

prototype of a cancer that is promoted by environmental 
factors.

Apparently, the expression of miR-21 steadily increases 
during the transition of a benign melanocytic to a bor-
derline and malignant lesion [14]. MiR-21 is an oncomiR 
that intersects with all hallmarks of cancer: (1) sustaining 
proliferative signaling, (2) evading growth suppressors, 
(3) activating invasion and metastasis, (4) enabling rep-
licative immortality, (5) inducing angiogenesis, (6) resist-
ing cell death, and (7) inflammation [197, 244] (Figure 1). 
Exosome-derived miRs have been implicated to play a 
major role in the development and progression of cancer 
by epigenetic reprogramming [245]. Westernized envi-
ronments, nutrition, and lifestyle may modify epigenetic 
programming via miR-21.

The most common BRAF and RAS mutations of mel-
anoma are associated with increased miR-21 expres-
sion (Figure 2). Upregulated miR-21 expression induced 
by various lifestyle factors and environmental condi-
tions of industrialized countries may be the converging 
point of oncogenic stimuli promoting melanomagenesis. 
Increased expression of miR-21 has been observed in 
association with UV-irradiation and other electromag-
netic radiation, smoking, pollution with exposure to par-
ticulate matter and diesel exhaust. MiR-21 signaling of 
melanoma cells may be upregulated by exosomal transfer 
of miR-21.

Exosomes have been identified as major players main-
taining a molecular crosstalk between tumor cells and 

Table 1 Environmental and  lifestyle factors suggested 
to upregulate miR‑21 signaling

MiR‑21 stimulus Mode of action [Refs.]

UV-irradiation IL-6, STAT3; exosome release [15, 135–137]

Cell phone use STAT3 upregulation [156]

Smoking Increased miR-21 expression [67, 230]

Alcohol abuse Increased miR-21 expression [226]

Pollution Increased miR-21 expression by particulate matter 
[237]

Increased miR-21 expression by diesel exhaust [238]

Arsenic Increased miR-21 expression [65, 232–235]

Exosome release of bronchial epithelial cells [236]

Inflammation IL-1β, IL-6, STAT3 [192–198]

Milk consumption Uptake of milk-delivered exosomal miR-21 [16, 17, 
162–168]

Transfer of bovine miR-155, STAT3; IL-6 [169, 170, 173]

Obesity Increased adipocyte miR-21 expression [210, 212]

Adipocyte-derived exosome release [211–216]

Tumor diseases Release of tumor cell-derived exosomes [44, 
178–186]

Sedentary lifestyle Physical exercise decreases miR-21 expression [229]

Higher age Increased plasma miR-21 levels [189]
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cell of the innate immune system [246]. Exosomes may 
reach pigmented lesions either via bystander effects 
of UV-irradiated keratinocytes or via the circulation 
or underlying subcutaneous adipose tissue in obesity. 
Thus, environmental and intrinsic factors may work in 
an additive or synergistic manner, thereby increasing the 
total individual burden of miR-21 signaling (Figure  3). 
It is of special concern that miR-21 not only promotes 
melanoma progression, but that it is also involved in 
the initiation of melanoma. MiR-21-mediated suppres-
sion of MSH2-dependent DNA mismatch repair, insuf-
ficient FoxO-controlled ROS-homeostasis, imbalances 
of FBXO11-regulated proteasomal degradation of critical 
proteins involved in cell proliferation and apoptosis, and 
miR-21-stimulated telomerase activity may all increase 
genetic instability promoting the risk of mutagenesis. In 
this regard, miR-21 may represent the common denomi-
nator of accumulating environmental and intrinsic stress-
ors that drive the initiation and progression of malignant 
melanoma (Figure 3).

The versatility of miRs as molecular tools inspires the 
design of novel strategies for the treatment of malignant 
melanoma [247]. As suggested for glioblastoma and ovar-
ian carcinoma [248, 249], anti-miR-21 treatment may 
be a promising option for the treatment of malignant 
melanoma [79]. It has been demonstrated that the cur-
cumin analog EF24 exhibited potent anticancer activity 
in B16 murine melanoma cells associated with a down-
regulation of miR-21 [250]. Furthermore, inhibition of 
miR-21 increases chemosensitivity in a variety of tumors 
[220–223]. There is further evidence that anti-miR-21 
treatment downregulates the anti-apoptotic mitochon-
drial membrane protein BCL2 (B-cell leukemia 2), which 
blocks apoptotic cell death [251]. BCL2 is a MITF target 
gene involved in melanocyte and melanoma cell pro-
liferation and survival [252, 253]. Combined inhibition 
of NF-κB and BCL2 triggers synergistic reduction of 
viability and induces apoptosis in melanoma cells [254]. 
Remarkably, miR-21 inhibition suppresses proliferation 
and migration of nasopharyngeal carcinoma and breast 
cancer cells through downregulation of anti-apoptotic 
BCL2 [255, 256]. Furthermore, disruption of miR-21 by 
transcription activator-like effector nucleases (TALENs) 
in cancerous cells lead to diminished cell transformation 
and increased expression of cell-environment interaction 
genes [257].

Taken together, melanoma is a model cancer sys-
tem not only involving genetic but also environmental 
components [258]. At the molecular level, miR-21 links 
environmental exposure to melanomagenesis. Circulat-
ing exosomal miRs, especially miR-21, represents a very 
important signaling system of cell communication [259] 
that apparently mediates the impact of environmental 

and epigenetic factors in melanomagenesis. Circulating 
and locally generating exosomal miR-21 through vari-
ous environmental stimuli may significantly contribute 
to the multistep process of melanomagenesis. Decreasing 
the input and magnitude of extrinsic and intrinsic stim-
uli that promote overexpression and release of exosomal 
miR-21 may thus be a very promising approach in the 
prevention and treatment of melanoma, the most serious 
human skin disease that is apparently promoted by com-
mon Western lifestyle factors.
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