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1 Scattering without space-time

Scattering amplitudes in gauge theories are amongst the most fundamental observables in

physics. The textbook approach to computing these amplitudes in perturbation theory,

using Feynman diagrams, makes locality and unitarity as manifest as possible, at the

expense of introducing large amounts of gauge redundancy into our description of the

physics, leading to an explosion of apparent complexity for the computation of amplitudes

for all but the very simplest processes. Over the last quarter-century it has become clear

that this complexity is a defect of the Feynman diagram approach to this physics, and

is not present in the final amplitudes themselves, which are astonishingly simpler than

indicated from the diagrammatic expansion [1–7].

This has been best understood for maximally supersymmetric gauge theories in the

planar limit. Planar N = 4 SYM has been used as a toy model for real physics in many
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guises, but as toy models go, its application to scattering amplitudes is closer to the real

world than any other. For instance the leading tree approximation to scattering amplitudes

is identical to ordinary gluon scattering, and the most complicated part of loop amplitudes,

involving virtual gluons, is also the same in N = 4 SYM as in the real world.

Planar N = 4 SYM amplitudes turn out to be especially simple and beautiful, enjoying

the hidden symmetry of dual superconformal invariance [8, 9], associated with a dual

interpretation of scattering amplitudes as a supersymmetric Wilson loop [10–12]. Dual

superconformal symmetry combines with the ordinary conformal symmetry to generate an

infinite dimension “Yangian” symmetry [13]. Feynman diagrams conceal this marvelous

structure precisely as a consequence of making locality and unitarity manifest. For instance,

the Yangian symmetry is obscured in either one of the standard physical descriptions either

as a“scattering amplitude” in one space-time or a “Wilson-loop” in its dual.

This suggests that there must be a different formulation of the physics, where locality

and unitarity do not play a central role, but emerge as derived features from a different

starting point. A program to find a reformulation along these lines was initiated in [14, 15],

and in the context of a planar N = 4 SYM was pursued in [16–18], leading to a new phys-

ical and mathematical understanding of scattering amplitudes [19]. This picture builds

on BCFW recursion relations for tree [6, 7] and loop [18, 20] amplitudes, and represents

the amplitude as a sum over basic building blocks, which can be physically described as

arising from gluing together the elementary three-particle amplitudes to build more com-

plicated on-shell processes. These “on-shell diagrams” (which are essentially the same as

the “twistor diagrams” of [16, 21, 22]) are remarkably connected with “cells” of a beautiful

new structure in algebraic geometry, that has been studied by mathematicians over the

past number of years, known as the positive Grassmannian [19, 23]. The on-shell building

blocks can not be associated with local space-time processes. Instead, they enjoy all the

symmetries of the theory, as made manifest by their connection with the Grassmannian —

indeed, the infinite dimensional Yangian symmetry is easily seen to follow from “positive”

diffeomorphisms [19].

While these developments give a complete understanding for the on-shell building

blocks of the amplitude, they do not go further to explain why the building blocks have

to be combined in a particular way to determine the full amplitude itself. Indeed, the

particular combination of on-shell diagrams is dictated by imposing that the final result is

local and unitary — locality and unitarity specify the singularity structure of the amplitude,

and this information is used to determine the full integrand. This is unsatisfying, since we

want to see locality and unitarity emerge from more primitive ideas, not merely use them

to obtain the amplitude.

An important clue [17, 19, 24] pointing towards a deeper understanding is that the on-

shell representation of scattering amplitudes is not unique: the recursion relations can be

solved in many different ways, and so the final amplitude can be expressed as a sum of on-

shell processes in different ways as well. The on-shell diagrams satisfy remarkable identities

— now most easily understood from their association with cells of the positive Grassman-

nian — that can be used to establish these equivalences. This observation led Hodges [24] to

a remarkable observation for the simplest case of “NMHV” tree amplitudes, further devel-
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oped in [25]: the amplitude can be thought of as the volume of a certain polytope in momen-

tum twistor space. However there was no a priori understanding of the origin of this poly-

tope, and the picture resisted a direct generalization to more general trees or to loop am-

plitudes. Nonetheless, the polytope idea motivated a continuing search for a geometric rep-

resentation of the amplitude as “the volume” of “some canonical region” in “some space”,

somehow related to the positive Grassmannian, with different “triangulations” of the space

corresponding to different natural decompositions of the amplitude into building blocks.

In this note we finally realize this picture. We will introduce a new mathematical

object whose “volume” directly computes the scattering amplitude. We call this object

the “Amplituhedron”, to denote its connection both to scattering amplitudes and positive

geometry. The amplituhedron can be given a self-contained definition in a few lines as

done below in section 9. We will motivate its definition from elementary considerations,

and show how scattering amplitudes are extracted from it.

Everything flows from generalizing the notion of the “inside of a triangle in a plane”.

The first obvious generalization is to the inside of a simplex in projective space, which

further extends to the positive Grassmannian. The second generalization is to move from

triangles to convex polygons, and then extend this into the Grassmannian. This gives us the

amplituhedron for tree amplitudes, generalizing the positive Grassmannian by extending

the notion of positivity to include external kinematical data. The full amplituhedron at all

loop order further generalizes the notion of positivity in a way motivated by the natural

idea of “hiding particles”.

Another familiar notion associated with triangles and polygons is their area. This

is more naturally described in a projective way by a canonical 2-form with logarithmic

singularities on the boundaries of the polygon. This form also generalizes to the full

amplituhedron, and determines the (integrand of) the scattering amplitude. The geometry

of the amplituhedron is completely bosonic, so the extraction of the superamplitude from

this canonical form involves a novel treatment of supersymmetry, directly motivated by

the Grassmannian structure.

The connection between the amplituhedron and scattering amplitudes is a conjecture

which has passed a large number of non-trivial checks, including an understanding of how

locality and unitarity arise as consequences of positivity. Our purpose in this note is to

motivate and give the complete definition of the amplituhedron and its connection to the

superamplitude in planar N = 4 SYM. The discussion will be otherwise telegraphic and

few details or examples will be given. In two accompanying notes [26, 27], we will initiate

a systematic exploration of various aspects of the associated geometry and physics. A

much more thorough exposition of these ideas, together with many examples worked out

in detail, will be presented in [28].

Notation. The external data for massless n particle scattering amplitudes (for an excel-

lent review see [29]) are labeled as |λa, λ̃a, η̃a〉 for a = 1, . . . , n. Here λa, λ̃a are the spinor-

helicity variables, determining null momenta pAȦa = λAa λ̃
Ȧ
a . The η̃a are (four) grassmann

variables for on-shell superspace. The component of the color-stripped superamplitude
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with weight 4(k + 2) in the η̃’s is Mn,k. We can write

Mn,k(λa, λ̃a, η̃a) =
δ4(
∑

a λaλ̃a)δ
8(
∑

a λaη̃a)

〈12〉 . . . 〈n1〉 ×Mn,k(za, ηa) (1.1)

where (za, ηa) are the (super) “momentum-twistor” variables [24], with za =

(
λa
µa

)
. The

za, ηa are unconstrained, and determine the λa, λ̃a as

λ̃a =
〈a− 1 a〉µa+1 + 〈a+ 1 a− 1〉µa + 〈a a+ 1〉µa−1

〈a− 1 a〉〈a a+ 1〉 ,

η̃a =
〈a− 1 a〉ηa+1 + 〈a+ 1 a− 1〉ηa + 〈a a+ 1〉ηa−1

〈a− 1 a〉〈a a+ 1〉 (1.2)

where throughout this paper, the angle brackets 〈. . . 〉 denotes totally antisymmetric con-

traction with an ε tensor. Mn,k is cyclically invariant. It is also invariant under the little

group action (za, ηa)→ ta(za, ηa), so (za, ηa) can be taken to live in P3|4.

At loop level, there is a well-defined notion of “the integrand” for scattering amplitudes,

which at L loops is a 4L form. The loop integration variables are points in the (dual)

spacetime xµi , which in turn can be associated with L lines in momentum-twistor space

that we denote as L(i) for i = 1, · · · , L. The 4L form is [30–32]

M(za, ηa;L(i)) (1.3)

We can specify the line by giving two points L1(i),L2(i) on it, which we can collect as Lγ(i)

for γ = 1, 2. L can also be thought of as a 2 plane in 4 dimensions. In previous work,

we have often referred to the two points on the line L1,L2 as “AB”, and we will use this

notation here as well.

Dual superconformal symmetry says thatMn,k is invariant under the SL(4|4) symme-

try acting on (za, ηa) as (super)linear transformations. The full symmetry of the theory is

the Yangian of SL(4|4).

2 Triangles → positive Grassmannian

To begin with, let us start with the simplest and most familiar geometric object of all,

a triangle in two dimensions. Thinking projectively, the vertices are ZI1 , Z
I
2 , Z

I
3 where

I = 1, . . . , 3. The interior of the triangle is a collection of points of the form

Y I = c1Z
I
1 + c2Z

I
2 + c3Z

I
3 (2.1)

where we span over all ca with

ca > 0 (2.2)
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More precisely, the interior of a triangle is associated with a triplet (c1, c2, c3)/GL(1), with

all ratios ca/cb > 0, so that the ca are either all positive or all negative, but here and in the

generalizations that follow, we will abbreviate this by calling them all positive. Including

the closure of the triangle replaces “positivity” with “non-negativity”, but we will continue

to refer to this as “positivity” for brevity.

One obvious generalization of the triangle is to an (n − 1) dimensional simplex in

a general projective space, a collection (c1, . . . , cn)/GL(1), with ca > 0. The n-tuple

(c1, . . . , cn)/GL(1) specifies a line in n dimensions, or a point in Pn−1. We can generalize

this to the space of k-planes in n dimensions — the Grassmannian G(k, n) — which we can

take to be a collection of n k−dimensional vectors modulo GL(k) transformations, grouped

into a k × n matrix

C =


 c1 . . . cn


 /GL(k) (2.3)

Projective space is the special case of G(1, n). The notion of positivity giving us the

“inside of a simplex” in projective space can be generalized to the Grassmannian. The only

possible GL(k) invariant notion of positivity for the matrix C requires us to fix a particular

ordering of the columns, and demand that all minors in this ordering are positive:

〈ca1 . . . cak〉 > 0 for a1 < · · · < ak (2.4)

We can also talk about the very closely related space of positive matrices M+(k, n), which

are just k × n matrices with all positive ordered minors. The only difference with the

positive Grassmannian is that in M+(k, n) we are not moding out by GL(k).

Note that while both M+(k, n) and G+(k, n) are defined with a given ordering for

the columns of the matrices, they have a natural cyclic structure. Indeed, if (c1, . . . , cn)

give a positive matrix, then positivity is preserved under the (twisted) cyclic action c1 →
c2, . . . , cn → (−1)k−1c1.

3 Polygons → (tree) Amplituhedron An,k(Z)

Another natural generalization of a triangle is to a more general polygon with n vertices

ZI1 , . . . , Z
I
n. Once again we would like to discuss the interior of this region. However in

general this is not canonically defined — if the points Za are distributed randomly, they
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don’t obviously enclose a region where all the Za are all vertices. Only if the Za form a

convex polygon do we have a canonical “interior” to talk about:

Now, convexity for the Za is a special case of positivity in the sense of the positive

matrices we have just defined. The points Za form a closed polygon only if the 3×n matrix

with columns Za has all positive (ordered) minors:

〈Za1Za2Za3〉 > 0 for a1 < a2 < a3 (3.1)

Having arranged for this, the interior of the polygon is given by points of the form

Y I = c1Z
I
1 + c2Z

I
2 + . . . cnZ

I
n with ca > 0 (3.2)

Note that this can be thought of as an interesting pairing of two different positive spaces.

We have

(c1, . . . , cn) ⊂ G+(1, n), (Z1, . . . , Zn) ⊂M+(3, n) (3.3)

If we jam them together to produce

Y I = caZ
I
a (3.4)

for fixed Za, ranging over all ca gives us all the points on the inside of the polygon, living

in G(1, 3).

This object has a natural generalization to higher projective spaces; we can consider

n points ZIa in G(1, 1 +m), with I = 1, . . . , 1 +m, which are positive

〈Za1 . . . Za1+m〉 > 0 (3.5)

Then, the analog of the “inside of the polygon” are points of the form

Y I = caZ
I
a , with ca > 0 (3.6)

This space is very closely related to the “cyclic polytope” [33], which is the convex hull of

n ordered points on the moment curve in Pm, Za = (1, ta, t
2
a, . . . , t

m
a ), with t1 < t2 · · · < tn.

From our point of view, forcing the points to lie on the moment curve is overly restrictive;

this is just one way of ensuring the positivity of the Za.
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We can further generalize this structure into the Grassmannian. We take positive

external data as (k+m) dimensional vectors ZIa for I = 1, . . . , k+m. It is natural to restrict

n ≥ (k+m), so that the external Za fill out the entire (k+m) dimensional space. Consider

the space of k-planes in this (k+m) dimensional space, Y ⊂ G(k, k+m), with co-ordinates

Y I
α , α = 1, . . . k, I = 1, . . . , k +m (3.7)

We then consider a subspace of G(k, k + m) determined by taking all possible “positive”

linear combinations of the external data,

Y = C · Z (3.8)

or more explicitly

Y I
α = CαaZ

I
a (3.9)

where

Cαa ⊂ G+(k, n), ZIa ⊂M+(k +m,n) (3.10)

It is trivial to see that this space is cyclically invariant if m is even: under the twisted

cyclic symmetry, Zn → (−1)k+m−1Z1 and cn → (−1)k−1c1, and the product is invariant

for even m.

We call this space the generalized tree amplituhedron An,k,m(Z). The polygon is the

simplest case with k = 1,m = 2. Another special case is n = (k + m), where we can use

GL(k+m) transformations to set the external data to the identity matrix ZIa = δIa. In this

case Ak+m,k,m is identical to the usual positive Grassmannian G+(k, k +m).

The case of immediate relevance to physics is m = 4, and we will refer to this as the

tree amplituhedron An,k(Z). The tree amplituhedron lives in a 4k dimensional space and is

not trivially visualizable. For k = 1, it is a polytope, with inequalities determined by linear

equations, while for k > 1, it is not a polytope and is more “curvy”. Just to have a picture,

below we sketch a 3-dimensional face of the 4 dimensional amplituhedron for n = 8, which

turns out to be the space Y = c1Z1 + . . . c7Z7 for Za positive external data in P3:
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4 Why positivity?

We have motivated the structure of the amplituhedron by mimicking the geometric idea

of the “inside” of a convex polygon. However there is a simpler and deeper origin of the

need for positivity. We can attempt to define Y = C ·Z with no positive restrictions on C

or Z. But in general, this will not be projectively meaningful, and this expression won’t

allow us to define a region in G(k, k+m). The reason is that for n > k+m, there is always

some linear combination of the Za which sum to zero! We have to take care to avoid this

happening, and in order to avoid “0” on the left hand side, we obviously need positivity

properties on both the Z’s and the C’s.

It is simple and instructive to see why positivity ensures that the Y = C · Z map is

projectively well-defined. We will see this as a by-product of locating the co-dimension

one boundaries of the generalized tree amplituhedron. Let us illustrate the idea already

for the simplest case of the polygon with k = 1,m = 2, with Y = c1Z1 + . . . cnZn. In

order to look at the boundaries of the space, let us compute 〈Y ZiZj〉 for some i, j. If as we

sweep through all the allowed c’s, 〈Y ZiZj〉 changes sign from being positive to negative,

then somewhere 〈Y ZiZj〉 → 0 and Y lies on the line (ZiZj) in the interior of the space,

thus (ZiZj) should not be a boundary of the polygon. On the other hand, if 〈Y ZiZj〉
everywhere has a uniform sign, then (ZiZj) is a boundary of the polygon:

Of course for the polygon it is trivial to directly see that the co-dimension one bound-

aries are just the lines (ZiZi+1), but we wish to see this more algebraically, in a way that

will generalize to the amplituhedron where “seeing” is harder. So, we compute

〈Y ZiZj〉 =
∑

a

ca〈ZaZiZj〉 (4.1)

We can see why there is some hope for the positivity of this sum, since the ca > 0, and also

ordered minors of the Z ′s are positive. It is however obvious that if i, j are not consecutive,

some of the terms in this sum will be positive, but some (where a is stuck between i, j)

will be negative. But precisely when i, j are consecutive, we get a manifestly positive sum:

〈Y ZiZi+1〉 =
∑

a

ca〈ZaZiZi+1〉 > 0 (4.2)

Since 〈ZaZiZi+1〉 > 0 for a 6= i, i+ 1, this is manifestly positive. Thus the boundaries are

lines (ZiZi+1) as expected.
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This also tells us that the map Y = C ·Z is projectively well-defined. There is no way

to get Y → 0, since this would make the left hand side identically zero, which is impossible

without making all the ca vanish, which is not permitted as we we mod out by GL(1) on

the ca.

We can extend this logic to higher k,m. Let’s look at the case m = 4 already for k = 1.

We can investigate whether the plane (ZiZjZkZl) is a boundary by computing

〈Y ZiZjZkZl〉 =
∑

a

ca〈ZaZiZjZkZl〉 (4.3)

Again, this is not in general positive. Only for (i, j, k, l) of the form (i, i + 1, j, j + 1), we

have

〈Y ZiZi+1ZjZj+1〉 =
∑

a

ca〈ZaZiZi+1ZjZj+1〉 > 0 (4.4)

For general even the m, the boundaries are when Y is on the plane

(ZiZi+1 . . . Zim/2−1
Zim/2

). This again shows that the Y = C ·Z is projectively well-defined.

The result extends trivially to general k, provided the positivity of C is respected. For

m = 4 the boundaries are again when the k-plane (Y1 · · ·Yk) is on (ZiZi+1ZjZj+1), as

follows from

〈Y1 . . . YkZiZi+1ZjZj+1〉 =
∑

a1<···<ak

〈ca1 . . . cak〉〈Za1 . . . ZakZiZi+1ZjZj+1〉 > 0 (4.5)

which also shows that Y is always a full rank k-plane in k + 4 dimensions.

The emergence of boundaries on the plane (ZiZi+1ZjZj+1) is a simple and striking

consequence of positivity. We will shortly understand that the location of these boundaries

are the “positive origin” of locality from the geometry of the amplituhedron.

5 Cell decomposition

The tree amplituhedron can be thought of as the image of the top-cell of the the positive

Grassmannian G+(k, n) under the map Y = C · Z. Since dimG(k, k + m) = mk ≤
dimG(k, n) = k(n− k) for n ≥ k +m, this is in general a highly redundant map. We can

already see this in the simplest case of the polygon, which lives in 2 dimensions, while the

ca span an (n− 1) dimensional space. The non-redundant maps into G(k, k+m) can only

come from the m× k dimensional “cells” of G+(k, n). For the polygon, these are the cells

we can label as (i, j, k), where all but (ci, cj , ck) are non-vanishing. The image of these cells

in the Y -space are of course just the triangles with vertices at Zi, Zj , Zk, which lie inside

the polygon.

The union of all these triangles covers the inside of the polygon. However, we can

also cover the inside of the polyon more nicely with non-overlapping triangles, giving a

triangulation. Said in a heavy-handed way, we find a collection of 2 dimensional cells of

G+(1, n), so that their images in Y space are non-overlapping except on boundaries, and
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collectively cover the entire polygon. Of course these collections of cells are not unique —

there are many different triangulations of the polygon. A particularly simple one is

which we can write as

∑

i

(1 i i+ 1) (5.1)

Sticking with k = 1 but moving to m = 4, the four-dimensional cells of G+(1, n) are labeled

by five non-vanishing c’s (ci, cj , ck, cl, cm). While it is harder to visualize, one can easily

show algebraically that the above simple triangulation of the polygon generalizes to

∑

i<j

(1 i i+ 1 j j + 1) (5.2)

This expression is immediately recognizable to physicists familiar with scattering am-

plitudes inN = 4 SYM. If the (i, j, k, l,m) are interpreted as “R-invariants”, this expression

is one of the canonical BCFW representations of the k = 1 “NMHV” tree amplitudes. In

the positive Grassmannian representation for amplitudes [17, 19], R-invariants are precisely

associated with the corresponding four-dimensional cells of G(1, n).

For general k, m any m × k dimensional cell of G+(k, n) maps under Y = C · Z into

some region or cell in G(k, k+m). Said more explicitly, consider an m×k dimensional cell Γ

of the G+(k, n), with “positive co-ordinates” CΓ(αΓ
1 , . . . , α

Γ
m×k) [19]. Putting Y = C(α) ·Z

and scanning over all positive α’s, this carves out a region in G(k, k + m) which is a

corresponding cell Γ of the tree amplituhedron. A cell decomposition is a collection T of

non-overlapping cells Γ which cover the entire amplituhedron.

The case of immediate relevance for physics is m = 4. For any k, the BCFW decom-

position of tree amplitudes gives us a collection of 4 × k dimensional cells of the positive

Grassmannian. We have performed extensive checks for high k and n, that for positive

external Z, under Y = C ·Z these cells are beautifully mapped into non-overlapping regions

of G(k, k+4) that together cover the entire tree amplituhedron. As we have stressed, other

than the desire to make the final result local and unitary, we did not previously have a

rational for thinking about this particular collection of cells of G+(k, n). Now we know

what natural question this collection of cells are answering: taken together they “cellulate”

the tree amplituhedron. We will shortly see how to directly associate the amplitude itself

directly with the geometry of the amplituhedron.
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6 “Volume” as canonical form

Before discussing how to determine the (super)amplitude from the geometry, let us define

the notion of a “volume” associated with the amplituhedron. As should by now be expected,

we will merely generalize a simple existing idea from the world of triangles and polygons.

The usual notion of “area” has units and is obviously not projectively meaningful.

However there is a closely related idea that is. For the triangle, we can consider a rational

2-form in Y -space, which has logarithmic singularities on the boundaries of the trian-

gle. This is naturally associated with positive co-ordinates for the triangle, if we expand

Y = Z3 + α1Z1 + α2Z2, then the form is

Ω123 =
dα1

α1

dα2

α2
(6.1)

which can be re-written more invariantly as

Ω123 =
〈Y dY dY 〉〈123〉2
〈Y 12〉〈Y 23〉〈Y 31〉 (6.2)

We can extend this to a form ΩP for the convex polygon P . The defining property of ΩP

is that

ΩP has logarithmic singularities on all the boundaries of P .

ΩP can be obtained by first triangulating the polygon in some way, then summing the

elementary two-form for each triangle, for instance as

ΩP =
∑

i

Ω1 i i+1. (6.3)

Each term in this sum has singularities corresponding to Y hitting the boundaries of the

corresponding triangle. Most of these singularities, associated with the internal edges of

the triangulation, are spurious, and cancel in the sum. Of course the full form ΩP is

independent of the particular triangulation.

This form is closely related to an area, not directly of the polygon P , but its dual P̃ ,

which is also a convex polygon [25]. If we dualize so that points are mapped to lines and

lines to points, then a point Y inside P is mapped to a line Y outside P̃ . If we write

ΩP = 〈Y d2Y 〉V (Y ), then V (Y ) is the area of P̃ living in the euclidean space defined by Y

as the line at infinity.

This form can be generalized to the tree amplituhedron in an obvious way. We define

a rational form Ωn,k(Y ;Z) with the property that

Ωn,k(Y ;Z) has logarithmic singularities on all the boundaries of An,k(Z).

Just as for the polygon, one concrete way of computing Ω is to give a cell decomposition

of the amplituhedron. For any cell Γ associated with positive co-ordinate (αΓ
1 , . . . , α

Γ
4k),

there is an associated form with logarithmic singularities on the boundaries of the cell

ΩΓ
n,k(Y ;Z) =

4k∏

i=1

dαΓ
i

αΓ
i

(6.4)
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For instance, consider 4 dimensional cells for k = 1, associated with cells in G+(1, n) which

are vanishing for all but columns a1, . . . , a5, with positive co-ordinates

(αa1 , . . . , αa4, αa5 = 1). Its image in Y space is simply

Y = αa1Za1 + . . . αa4Za4 + Za5 (6.5)

and the form is

dαa1

αa1
. . .

dαa4

αa4
=

〈Y d4Y 〉〈Za1Za2Za3Za4Za5〉4
〈Y Za1Za2Za3Za4〉 . . . 〈Y Za5Za1Za2Za3〉

(6.6)

Now, given a collection of cells T that cover the full amplituhedron, Ωn,k(Y ;Z) is given by

Ωn,k(Y ;Z) =
∑

Γ⊂T
ΩΓ
n,k(Y ;Z) (6.7)

As with the polygon, the form is independent of the particular cell decomposition.

Note that the definition of the amplituhedron itself crucially depends on the positivity

of the external data Z, and this geometry in turn determines the form Ω. However, once

this form is in hand, it can be analytically continued to any (complex!) Y and Z.

7 The superamplitude

We have already defined central objects in our story: the tree amplituhedron, together with

the associated form Ω that is loosely speaking its “volume”. The tree super-amplitudeMn,k

can be directly extracted from Ωn,k(Z). To see how, note that we we can always use a

GL(4 + k) transformation to send Y → Y0 as

Y0 =

(
04×k
1k×k

)
(7.1)

We can think of the 4 dimensional space complementary to Y0, acted on by an unbroken

GL(4) symmetry, as the usual P3 of momentum-twistor space. Accordingly, we identify

the top four components of the Za with the usual bosonic momentum-twistor variables za:

Za =




za
∗1
...

∗k




(7.2)

We still have to decide how to interpret the remaining k entries of Za. Clearly, if they are

normal bosonic variables, we have an infinite number of extra degrees of freedom. It is

therefore natural to try and make the remaining components infinitesimal, by saying that

some N + 1’st power of them vanishes. This is equivalent to saying that each entry can be

written as

Za =




za
φA1 · η1A

...

φAk · ηAk




(7.3)
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where φ1,...,k and ηa are Grassmann parameters, and A = 1, . . . ,N .

Now there is a unique way to extract the amplitude. We simply localize the form

Ωn,k(Y ;Z) to Y0, and integrate over the φ’s:

Mn,k(za, ηa) =

∫
dNφ1 . . . d

Nφk

∫
Ωn,k(Y ;Z)δ4k(Y ;Y0) (7.4)

Here δ4k(Y ;Y0) is a projective δ function

δ4k(Y ;Y0) =

∫
dk×kρβα det(ρ)4 δk×(k+4)(Y I

α − ρβαY I
0β) (7.5)

Note that there is really no integral to perform in the second step; the delta functions fully

fix Y . Any form on G(k, k + 4) is of the form

Ω = 〈Y1 . . . Ykd
4Y1〉 . . . 〈Y1 . . . Ykd

4Yk〉 × ωn,k(Y ;Z) (7.6)

and our expression just says that

Mn,k(za, ηa) =

∫
dNφ1 . . . d

Nφkωn,k(Y0;Za) (7.7)

Note that we can define this operation for any N , however, only for N = 4 does Mn,k

further have weight zero under the rescaling (za, ηa).

This connection between the form and the super-amplitude also allows us to directly

exhibit the relation between our super-amplitude expressions and the Grassmannian for-

mulae of [17, 19]. Consider the form in Y -space associated with a given 4k dimensional

cell Γ of G+(k, n). Then, if CΓ
αa(α1, . . . , α4k) are positive co-ordinates for the cell, and

ΩΓ =
dαΓ

1

αΓ
1
. . .

dαΓ
4k

αΓ
4k

is the associated form in Y space, then it is easy to show that

∫
d4φ1 . . . d

4φk

∫
ΩΓδ4k(Y ;Y0) =

∫
dαΓ

1

αΓ
1

. . .
dαΓ

4k

αΓ
4k

δ4k|4k(Cαa(z)Za) (7.8)

where Za = (za|ηa) are the super momentum-twistor variabes. This is precisely the formula

for computing on-shell diagrams (in momentum-twistor space) as described in [17, 19, 34].

Thus, while the amplituhedron geometry and the associated form Ω are purely bosonic, we

have extracted from them super-amplitudes which are manifestly supersymmetric. Indeed,

the connection to the Grassmannian shows much more — the superamplitude obtained for

each cell is manifestly Yangian invariant [19].

8 Hiding particles → loop positivity in G+(k, n;L)

The direct generalization of “convex polygons” into the Grassmannian G(k, k+4) has given

us the tree amplituhedron. We will now ask a simple question: can we “hide particles” in a

natural way? This will lead to an extended notion of positivity giving us loop amplitudes.

It is trivial to imagine what we might mean by hiding a single particle, but as we will

see momentarily, the idea of hiding particles is only natural if we hide pairs of adjacent
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particles. To pick a concrete example, suppose we have some positive matrix C with

columns we’ll label (A1, B1, 1, 2, . . . ,m,A2, B2,m + 1, . . . n). We can always gauge-fix the

A1, B1 and A2, B2 columns so that the matrix takes the form




A1 B1 1 2 . . . m A2 B2 m+ 1 . . . n

1 0 ∗ ∗ . . . ∗ 0 0 ∗ . . . ∗
0 1 ∗ ∗ . . . ∗ 0 0 ∗ . . . ∗
0 0 ∗ ∗ . . . ∗ 1 0 ∗ . . . ∗
0 0 ∗ ∗ . . . ∗ 0 1 ∗ . . . ∗
0 0 ∗ ∗ . . . ∗ 0 0 ∗ . . . ∗
...

...
...

...
...

...
...

...
...

...
...

0 0 ∗ ∗ . . . ∗ 0 0 ∗ . . . ∗




We would now like to “hide” the particles A1, B1, A2, B2. We do this simply by chopping

out the corresponding columns. The remaining matrix can be grouped into the form




D(1)

D(2)

C


 (8.1)

But the “hidden” particles leave an echo in the positivity properties of this matrix. The

positivity of the minors involving all of (A1, B1, A2, B2), (A2, B2) and (A1, B1) individually,

as well those not involving A1, B1, A2, B2 at all enforce that the ordered maximal minors

of the following matrices

(
C
)
,

(
D(1)

C

)
,

(
D(2)

C

)
,




D(1)

D(2)

C


 (8.2)

are all positive.

We can now see why particles are most naturally hidden in pairs. If we had instead

hidden single particles as A1, A2, A3, . . . in separate columns, the remaining minors would

be positive or negative depending on the orderings of A1, A2, A3, . . . , which is additional

structure over and above the cyclic ordering of the external data. In order to avoid this

arbitrariness, we should hide particles in even numbers, with pairs the minimal case. In

order to ensure that only minors involving the pairs (AiBi) are taken into account, we mod

out by the GL(2) action rotating the (Ai, Bi) columns into each other.

This “hidden particle” picture has thus motivated an extended notion of positivity

associated with the Grassmannian. We are used to considering a k-plane in n dimensions

C, with all ordered minors positive. But we can also imagine a collection of L 2-planes
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D(i) in the (n− k) dimensional complement of C, schematically

We call this space G(k, n;L), and we will denote the collection of (D(i), C) as C. We can

extend the notion of positivity to G(k, n;L) by demanding that not only the ordered minors

of C, but also of C with any collection of the D(i), are positive. (All minors must include

the matrix C, since the D(i) are defined to live in the complement of C). Note that this

notion is completely permutation invariant in the D(i).

Very interestingly, it turns out that while we motivated this notion of positivity by

hiding particles from an underlying positive matrix, there are positive configurations of C
that can not be obtained by hiding particles from a positive matrix in this way.

Extending the map Y = C.Z in the obvious way to include the D’s leads us to define

the full amplituhedron.

9 The Amplituhedron An,k,L(Z)

We can now give the full definition of the amplituhedron An,k,L(Z). First, the external

data for n ≥ k+4 particles is given by the vectors ZIa living in a (4+k) dimensional space;

where a = 1, . . . , n and I = 1, . . . , 4 + k. The data is positive

〈Za1 . . . Za4+k
〉 > 0 for a1 < · · · < a4+k (9.1)

The amplituhedron lives in G(k, k + 4;L): the space of k planes Y in (k + 4) dimensions,

together with L 2-planes L(i) in the 4 dimensional complement of Y , schematically

We will denote the collection of (L(i), Y ) as Y.
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The amplituhedron An,k,L(Z) is the subspace of G(k, k + 4;L) consisting of all Y’s

which are a positive linear combination of the external data,

Y = C · Z (9.2)

More explicitly in components, the k-plane is Y I
α , and the 2-planes are LIγ(i), where γ = 1, 2

and i = 1, . . . , L . The amplituhedron is the space of all Y,L(i) of the form

Y I
α = CαaZ

I
a , LIγ(i) = Dγa(i)Z

I
a (9.3)

where as in the previous section the Cαa specifies a k-plane in n-dimensions, and the Dγa(i)

are L 2-planes living in the (n−k) dimensional complement of C, with the positivity prop-

erty that for any 0 ≤ l ≤ L, all the ordered (k+2l)×(k+2l) minors of the (k+2l)×n matrix




D(i1)
...

D(il)

C




(9.4)

are positive.

The notion of cells, cell decomposition and canonical form can be extended to the

full amplituhedron. A cell Γ is associated with a set of positive co-ordinates αΓ =

(αΓ
1 , . . . , α

Γ
4(k+L)), rational in the C, such that for α’s positive, C(α) = (D(i)(α), C(α))

is in G+(k, n;L). A cell decomposition is a collection T of non-intersecting cells Γ whose

images under Y = C · Z cover the entire amplituhedron. The rational form Ωn,k,L(Y;Z) is

defined by having the property that

Ωn,k,L(Y ;Z) has logarithmic singularities on all the boundaries of An,k,L(Z)

A concrete formula follows from a cell decomposition as

Ωn,k,L(Y;Z) =
∑

Γ⊂T

4(k+L)∏

i=1

dαΓ
i

αΓ
i

(9.5)

Of course any cell decomposition gives the same form Ωn,k,L.

10 The loop amplitude form

We can extract the 4L-form for the loop integrand from Ωn,k,L in the obvious way. The

2-planes L(i), being in the complement of Y0, can be taken to be non-vanishing in the first

4 entries LI(i) = (L(i)2×4|02×k). Each Lγ(i) gives us a line (Lγ=1Lγ=2)(i) (which we have

also been calling (AB)(i)) in P3. These are the momentum-twistor representation of the

loop integration variables. The analog of equation (7.4) for the loop integrand form is

Mn,k(za, ηa;L(γ(i)) =

∫
d4φ1 . . . d

4φk

∫
Ωn,k,L(Y,Lγ(i);Z)δ4k(Y ;Y0) (10.1)
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Any form on G(k, k + 4k;L) can be written as

Ω = 〈Y d4Y1〉 . . . 〈Y d4Yk〉
L∏

i=1

〈Y L1(i)L2(i)d
2L1(i)〉〈Y L1(i)L2(i)d

2L2(i)〉 × ωn,k,L(Y,L(i))(Z)

(10.2)

where we denoted Y = Y1 . . . Yk. So we have for the integrand of the all-loop amplitude

Mn,k(za, ηa,Lγ(i))=

∫
d4φ1 . . . d

4φk

L∏

i=1

〈L1(i)L2(i)d
2L1(i)〉〈L1(i)L2(i)d

2L2(i)〉ωn,k(Y0,Lγ(i);Za)

(10.3)

Already the simplest case k = 0 of the amplituhedron is interesting at loop level. At 1-

loop, we have a 2-plane in 4 dimensions AB, and the D matrix is just restricted to be in

G+(2, n). It is easy to see that the 4 dimensional cells of G+(2, n) are labeled by a pair of

triples [a, b, c;x, y, z], where the top row of the matrix is non-zero in the columns (a, b, c)

and the bottom in columns (x, y, z). A simple collection of these

∑

i<j

[1 i i+ 1; 1 j j + 1] (10.4)

beautifully covers the amplituhedron in this case. The map into G(2, 4) for each cell is

A = Z1 + αiZi + αi+1Zi+1, B = −Z1 + αjZj + αj+1Zj+1 (10.5)

and so the form associated with the cell is

dαi
αi

dαi+1

αi+1

αj
αj

dαj+1

αj+1
=

〈ABd2A〉〈ABd2B〉〈AB(1 i i+ 1) ∩ (1 j j + 1)〉2
〈AB 1 i〉〈AB 1 i+ 1〉〈AB i i+ 1〉〈AB 1 j〉〈AB 1 j + 1〉〈AB j j + 1〉

(10.6)

The form Ω gives exactly the “Kermit” expansion for the MHV integrand given in [18], now

obtained without any reference to tree amplitudes, forward limits or recursion relations.

In this simple case, direct triangulation of the space is straightforward. But we could

also have worked backwards, starting with the BCFW formula, and recognizing how each

term in the “Kermit” expansion is associated with positive co-ordinates for some cell of the

amplituhedron. We could then observe that, remarkably, these cells are non-overlapping,

and together cover the full amplituhedron.

In order to illustrate more of the structure of the loop amplituhedron, including the

interplay between the “C ′′ and “D′′ matrices, let us consider the 1-loop k = 1 amplitude for

n = 6. There are 16 terms in the BCFW recursion, which can all be mapped back to their

Y,AB space form, and in turn associated with positive co-ordinates in the amplituhedron.

For instance, one of BCFW terms is

〈Y AB13〉〈Y AB(561) ∩ (2345)〉4〈Y AB(123) ∩ (Y 456)〉2
〈Y 2345〉〈Y AB(561) ∩ (Y 345)〉〈Y AB(561) ∩ (Y 234)〉〈Y AB(561) ∩ (Y 235)〉〈Y AB56〉
〈Y AB(561) ∩ (Y 45(23) ∩ (Y AB1))〉〈Y AB12〉〈Y AB23〉〈Y AB13〉〈Y AB15〉〈Y AB16〉
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While it may not be immediately apparently, this is nothing but the “dlog” canonical form

associated with the following positive co-ordinates for the (D,C) matrix

(
D

C

)
=




1 x y 0 0 0

−w 0 0 0 −1 −z
w xt1 t2 + t1y t3 1 + t4 z




This exercise can be repeated with all 16 BCFW terms. The corresponding (D,C) matrices

are
(

0 0 1 x y 0
0 −t1 −t2 − w 0 zt3 zt4
1 t1 t2 0 t3 t4

)(
0 0 1 x y 0
0 0 −w 0 z + t3 t4
1 t1 t2 0 t3 t4

)(
0 0 1 0 x + t3y yt4
0 −t1w −z − t2w 0 t3 t4
1 t1 t2 0 t3 t4

)

(
0 0 t1 t2 + x + yw y 0
0 0 0 wz z + t3 t4
1 0 t1 t2 t3 t4

)( −1 0 0 x y 0
w 0 0 0 1 z
t1 t2 t3 t4 + x y 0

)(
1 0 −x −w 0 0
−1 0 0 −y −z 0

1 + t1 t2 t3 + xt4 y + wt4 z 0

)

(
1 x y 0 0 0

−w 0 0 0 −1 −z
w xt1 t2 + t1y t3 1 + t4 z

)(
0 t2 t3 + x + yw y 0 0
0 0 zw t4 + z 1 0
t1 t2 t3 t4 1 0

)( −1 0 x y 0 0
w 0 0 0 1 z

w + t1 t2 t3 + xt4 yt4 1 z

)

( −1 0 0 x y 0
w 0 0 0 1 z

t1 + w 0 t2 t3 + xt4 1 + t4y z

)(
x 1 y 0 0 0
0 w z + wy + t1 t2 0 0
1 0 t1 t2 t3 t4

)( −1 0 0 x y 0
w 0 0 0 1 z

w + t1 t2 t3 t4x 1 + t4y z

)

(
0 x 1 w 0 0
−z −y 0 0 −1 0

z(1 + t1) y t2 wt2 + t3 1 + t1 + t4 0

)( −1 0 −x −y 0 0
w 0 0 0 1 z
w 0 xt1 t2 + yt1 1 + t3 + t4 z(1 + t4)

)

( −1 −x −y 0 0 0
w 0 0 0 1 z
w 0 t1 t2 1 + t3 + t4 z(1 + t4)

)( −1 −x −y 0 0 0
w 0 0 0 1 z
w t1x t2 + yt1 0 1 + t3 + t4 z(1 + t4)

)

One can easily check that for all variables positive, the bottom row of these matrices is

positive, and all the ordered 3× 3 minors are also positive. For any cell, we can range over

all the positive variables, which under the Y = C · Z gives an image of the cell in (Y,AB)

space. Remarkably, we find that these cells are non-overlapping, and cover the entire space.

This can be checked directly in a simple way. We begin by fixing positive external data

(Z1, · · · , Z6). We then choose any positive matrix C at random, which gives an associated

point Y inside the amplituhedron. We can ask whether or not this point is contained in

one of the cells, by seeing whether Y can be reproduced with positive values for all eight

variables of the cell. Doing this we find that every point in the amplituhedron is contained

in just one of these cells (except of course for points on the common boundaries of different

cells). The cells taken together therefore give a cellulation of the amplituhedron.

Note that the form shown above, associated with a BCFW term, has some physical

poles (like 〈Y AB12〉), but also many unphysical poles. The unphysical poles are associated

with boundaries of the cell that are “inside” the amplituhedron, and not boundaries of the

amplituhedron themselves. These boundaries are spurious, and so are the corresponding

poles, which cancel in the sum over all BCFW terms.

We have checked in many other examples, for higher k and also at higher loops, that

(a) BCFW terms can be expressed as canonical forms associated with cells of the ampli-

tuhedron and (b) these collection of cells do cover the amplituhedron.

It is satisfying to have a definition of the loop amplituhedron that lives directly in the

space relevant for loop amplitudes. This is in contrast with the approach to computing

the loop integrand using recursion relations, which ultimately traces back to higher k and
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n tree amplitudes. Consider the simple case of the 2-loop 4-particle amplitude. We are

after a form in the space of two 2-planes (AB)1, (AB)2 in four dimensions. The BCFW

approach begins with the k = 2, n = 8 tree amplitudes, and arrives at the form we are

interested in after taking two “forward limits”. But the amplituhedron lives directly in the

(AB)1, (AB)2 space, and we can find a cell decomposition for it directly, yielding the form

without having to refer to any tree amplitudes.

We have understood how to directly “cellulate” the amplituhedron in a number of

other examples, and strongly suspect that there will be a general understanding for how

to do this. The BCFW decomposition of tree amplitudes seems to be associated with

particularly nice, canonical cellulations of the tree amplituhedron. Loop level BCFW also

gives a cell decomposition. The “direct” cellulations we have found in many cases are

however simpler, without an obvious connection to the BCFW expansion.

11 Locality and unitarity from positivity

Locality and unitarity are encoded in the positive geometry of the amplituhedron in a beau-

tiful way. As is well-known, locality and unitarity are directly reflected in the singularity

structure of the integrand for scattering amplitudes. In momentum-twistor language, the

only allowed singularities at tree-level should occur when 〈ZiZi+1ZjZj+1〉 → 0; in the loop-

level integrand, we can also have poles of the form 〈AB i i+1〉 → 0, and 〈AB(i)AB(j)〉 → 0.

Unitarity is reflected in what happens as poles are approached, schematically we have [19]

Given the connection between the form Ωn,k,L and the amplitude, it is obvious that the

first (co-dimension one) poles of the amplitude are associated with the co-dimension one

“faces” of the amplituhedron. For trees, we have already seen that, remarkably, positivity

forces these faces to be precisely where 〈Y1 . . . YkZiZi+1ZjZj+1〉 → 0, exactly as needed

for locality. The analog statement for the full loop amplituhedron also obviously includes

〈Y1 · · ·YkAB i i+ 1〉 → 0.

The factorization properties of the amplitude also follow directly as a consequence of

positivity. For instance, let us consider the boundary of the tree amplituhedron where

the k plane (Y1 . . . Yk) is on the plane (ZiZi+1ZjZj+1). We can e.g. assume that Y1 is a

linear combination of (Zi, Zi+1, Zj , Zj+1), and thus that the top row of the C matrix is

only non-zero in these columns. But then, positivity remarkably forces the C matrix to
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“factorize” in the form

i i+ 1 j j + 1

↑
kL
↓




∗ ∗ 0 . . . 0 ∗ ∗ 0 . . . 0
0 . . . 0

L 0 . . . 0
0 . . . 0

0 . . . 0
0 . . . 0 R
0 . . . 0




↑
kR
↓

for all possible kL, kR such that kL + kR = k − 1. This factorized form of the C matrix in

turn implies that on this boundary, the amplituhedron does “split” into lower-dimensional

amplituhedra in exactly the way required for the factorization of the amplitude.

We can similarly understand the single-cut of the loop integrand. Consider for con-

creteness the simplest case of the n particle one-loop MHV amplitude. On the boundary

where 〈AB n1〉 → 0, the D matrix has the form

( 1 2 . . . n

1 0 . . . −xn
y1 y2 . . . yn

)

The connection of this D matrix to the forward limit [35] of the NMHV tree ampli-

tude is simple. In the language of [18], the forward limit in momentum-twistor space is

represented as

we start with the tree NMHV amplitude, associated with the positive 1× n matrix

(yA yB y1 y2 . . . yn) (11.1)

and first we “add” particle n + 1 between n and A, which adds three degrees of freedom

xn, xA, α

( A B 1 2 . . . n n+ 1

xA αxA 0 0 . . . −xn −1

yA yB + αyA y1 y2 . . . yn 0

)
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and we finally “merge” n + 1, 1, which means shifting column 1 as c1 → c1 − cn+1 and

removing column (n+ 1). This gives us the matrix

( A B 1 2 . . . n

xA αxA 1 0 . . . −xn
yA yB + αyA y1 y2 . . . yn

)

note that the the A,B columns have precisely four degrees of freedom xA, α, yA, yB which

we can remove by GL(2) acting on the A,B columns. Chopping off A,B we are then left

precisely with the D matrix on the single cut. This shows that the single cut of the loop

integrand is the forward limit of the tree amplitude, exactly as required by unitarity.

12 Four particles at all loops

Let us briefly describe the simplest example illustrating the novelties of positivity at loop

level, for four-particle scattering at L loops. We can parametrize each D(i) as

D(i) =

(
1 xi 0 −wi
0 yi 1 zi

)
(12.1)

In this simple case the positivity constraints are just that all the 2× 2 minors of D(i) and

the 4× 4 minors

det

(
D(i)

D(j)

)
(12.2)

are positive. This translates to

xi, yi, zi, wi > 0, (xi − xj)(zi − zj) + (yi − yj)(wi − wj) < 0 (12.3)

We can rephrase this problem in a simple, purely geometrical way by defining two dimen-

sional vectors ~ai = (xi, yi),~bi = (zi, wi). The points are in the upper quadrant of the plane.

The mutual positivity condition is just (~ai − ~aj) · (~bi − ~bj) < 0. Geometrically this just

means that the ~a,~b must be arranged so that for every pair i, j, the line directed from

~ai → ~aj is pointed in the opposite direction as the one directed from ~bi → ~bj . An example

of an allowed configuration of such points for L = 3 is
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Finding a cell decomposition of this 4L dimensional space directly gives us the integrand

for the four-particle amplitude at L-loops.

Now, we know that the final form can be expressed as a sum over local, planar diagrams.

This makes it all the more remarkable that no-where in the definition of our geometry

problem do we reference to diagrams of any sort, planar or not! Nonetheless, this property

is one of many that emerges from positivity.

As we will describe at greater length in [26], it is easy to find a cell decomposition

for the full space “manually” at low-loop orders. We suspect there is a more systematic

approach to understanding the geometry that might crack the problem at all loop order.

As an interesting warmup to the full problem, we can investigate lower-dimensional “faces”

of the four-particle amplituhedron. Cellulations of these faces corresponds to computing

certain cuts of the integrand, at all loop orders. We will discuss many of these faces and

cuts systematically in [26]. Here we will content ourselves by presenting some especially

simple but not completely trivial examples.

Let us start by considering an extremely simple boundary of the space, where all the

wi → 0. This corresponds to having all the lines intersect (Z1Z2). The positivity conditions

then simply become

(xi − xj)(zi − zj) < 0 (12.4)

which is trivial to triangulate. Whatever configuration of x’s we have are ordered in some

way, say x1 < · · · < xL. Then we must have z1 > · · · > zL. The yi just have to be positive.

The associated form is then trivially (we omit the measure
∏
i dxidzidyi):

1

y1
. . .

1

yL

1

x1

1

x2 − x1
. . .

1

xL − xL−1

1

zL

1

zL−1 − zL
. . .

1

z1 − z2
+ perm. (12.5)

Now, this cut is particularly simple to understand from the point of view of the familiar

“local” expansions of the integrand — there is only only local diagram that can possibly

contribute to this cut: the “ladder” diagram. The corresponding cut is precisely what we

have above from positivity.

We can continue along these lines to explore faces of the amplituhedron which deter-

mine cuts to all loop orders that are difficult (if not impossible) to derive in any other

way. For instance, suppose that some of the lines intersect (Z1Z2), so that the wi → 0 for

i = 1, . . . , L1 and others intersects (Z3Z4), so that yI → 0 for I = L1 + 1, . . . , L. To pick a

concrete interesting example, let choose L−2 lines to intersect (12) and 2 lines to intersect

(34). We can further specialize the geometry and take more cuts by making the L’th line

– 22 –



J
H
E
P
1
0
(
2
0
1
4
)
0
3
0

pass through the point 3 — this corresponds to sending zL → 0. Let us also take the

(L− 1)’st line to pass through the point 4 — this corresponds to sending zL−1, wL−1 →∞
with wL−1/zL−1 ≡WL−1 fixed.

We can again label the xi;xI so they are in increasing order; then the positivity

conditions become

x1 < · · · < xL−2, z1 > · · · > zL−2; xL−1 < xL (12.6)

and

WL−1yi > (xL−1 − xi), wLyi > zi(xi − xL) (12.7)

This space is also trivial to triangulate, but the corresponding form is more interesting.

The ordering for the z’s is associated with the form

1

zL−2(zL−3 − zL−2)(zL−4 − zL−3) . . . (z1 − z2)

The interesting part of the space involves xi, yi. Note that if xi < xL−1, the second

inequality on yi is trivially satisfied for positive yi, and the only constraint on yi is just

yi > (xL−1 − xi)/WL−1. If xL−1 < xi < xL, then both inequalities are satisfied and

we just have yi > 0. Finally if xi > xL, the first inequality is trivially satisfied and

we just have yi > zi(xi − xL)/wL. Thus, given any ordering for all the x′s, there is

an associated set of inequalities on the y’s, and the corresponding form in x, y space is

trivially obtained. For instance, consider the case L = 5, and an ordering for the x’s where

x1 < x4 < x2 < x5 < x3. The corresponding form in (x, y) space is just

1

x1(x4 − x1)(x2 − x4)(x5 − x2)(x3 − x5)

1

y1 − (x4 − x1)/W4

1

y2

1

y3 − z3(x3 − x5)/w5
(12.8)

By summing over all the possible orderings x’s, we get the final form. For general L, we

can simply express the result (again omitting the measure) as a sum over permutations σ:

L−2∏

l=1

1

(zl − zl+1)
×

∑

σ;σ1<···<σL−2;σL−1<σL

1

wLWL−1

L∏

l=1

1

(xσ−1
l
− xσ−1

l−1
)

(12.9)

×
L−2∏

i=1





(yi − (xL−1 − xi)/WL−1)−1 σi < σL−1

y−1
i σL−1 < σi < σL

(yi − (xi − xL)zi/wL)−1 σL < σi





where we define for convenience zL−1 = xσ−1
0

= 0.

This gives us non-trivial all-loop order information about the four-particle integrand.

The expression has a feature familiar from BCFW recursion relation expressions for tree

and loop level amplitudes. Each term has certain “spurious” poles, which cancel in the

sum. This result can be checked against the cuts of the corresponding amplitudes that are
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available in “local form”. The diagrams that contribute are of the type

but now there are non-trivial numerator factors that don’t trivially follow from the structure

of propagators. The full integrand is available through to seven loops in the literature [36–

40]. The inspection of the available local expansions on this cut does not indicate an

obvious all-loop generalization, nor does it betray any hint that that the final result can

be expressed in the one-line form given above. For instance just at 5 loops, the local form

of the cut is given as a sum over diagrams,

with intricate numerator factors. If all terms are combined with a common denominator of

all physical propagators, the numerator has 347 terms. Needless to say, the complicated ex-

pression obtained in this way perfectly matches the amplituhedron computation of the cut.

13 Master Amplituhedron

We have defined the amplituhedron An,k,L separately for every n, k and loop order L. How-

ever, a trivial feature of the geometry is that An,k,L is contained in the “faces” of An′,k′,L′ ,
for n′ > n, k′ > k,L′ > L. The objects needed to compute scattering amplitudes for any

number of particles to all loop orders are thus contained in a “master amplituhedron” with

n, k, L→∞.

In this vein it may also be worth considering natural mathematical generalizations of

the amplituhedron. We have already seen that the generalized tree amplituhedron An,k,m
lives in G(k, k+m) and can be defined for any even m. It is obvious that the amplituhedron

with m = 4, of relevance to physics, is contained amongst the faces of the object defined

for higher m.

If we consider general even m, we can also generalize the notion of “hiding particles”

in an obvious way: adjacent particles can be hidden in even numbers. This leads us
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to a bigger space in which to embed the generalized loop amplituhedron. Instead of just

consideringG(k, k+4;L) of (k− planes) Y together with L (2−planes) inm = 4 dimensional

complement of Y , we can consider a space G(k, k+m;L2, L4, . . . , Lm−2), of k-planes Y in

(k+m) dimensions, together with L2 (2-planes), L4 (4-planes), . . . Lm−2 ((m− 2)-planes)

in the m dimensional complement of Y , schematically:

Once again we have Y = C ·Z, with the obvious extension of the loop positivity conditions

on C to G(k, n;L2, L4, . . . , Lm−2). We can call this space An,k;m,L2,...,Lm−2(Z). The m = 4

amplituhedron is again just a particular face of this object. It would be interesting to

see whether this larger space has any interesting role to play in understanding the m = 4

geometry relevant to physics.

14 Outlook

This paper has concerned itself with perturbative scattering amplitudes in gauge theories.

However the deeper motivations for studying this physics, articulated in [14, 15] have to do

with some fundamental challenges of quantum gravity. We have long known that quantum

mechanics and gravity together make it impossible to have local observables. Quantum

mechanics forces us to divide the world in two pieces — an infinite measuring apparatus

and a finite system being observed. However for any observations made in a finite region

of space-time, gravity makes it impossible to make the apparatus arbitarily large, since

it also becomes heavier, and collapses the observation region into a black hole. In some

cases like asymptotically AdS or flat spaces, we still have precise quantum mechanical

observables, that can be measured by infinitely large apparatuses pushed to the boundaries

of space-time: boundary correlators for AdS space and the S-matrix for flat space. The fact

that no precise observables can be associated with the inside of the space-time strongly

suggests that there should be a way of computing these boundary observables without

any reference to the interior space-time at all. For asymptotically AdS spaces, gauge-

gravity duality [41] gives us a wonderful description of the boundary correlators of this

kind, and gives a first working example of emergent space and gravity. However, this

duality is still an equivalence between ordinary physical systems described in standard

physical language, with time running from infinite past to infinite future. This makes the

duality inapplicable to our universe for cosmological questions. Heading back to the early
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universe, an understanding of emergent time is likely necessary to make sense of the big-

bang singularity. More disturbingly, even at late times, due to the accelerated expansion

of our universe, we only have access to a finite number of degrees of freedom, and thus the

division of the world into “infinite” and “finite” systems, required by quantum mechanics

to talk about precise observables, seems to be impossible [42]. This perhaps indicates the

need for an extension of quantum mechanics to deal with subtle cosmological questions.

Understanding emergent space-time or possible cosmological extensions of quantum

mechanics will obviously be a tall order. The most obvious avenue for progress is di-

rectly attacking the quantum-gravitational questions where the relevant issues must be

confronted. But there is another strategy that takes some inspiration from the similarly

radical step taken in the transition from classical to quantum mechanics, where classi-

cal determinism was lost. There is a powerful clue to the coming of quantum mechanics

hidden in the structure of classical mechanics itself. While Newton’s laws are manifestly

deterministic, there is a completely different formulation of classical mechanics — in terms

of the principle of least action — which is not manifestly deterministic. The existence of

these very different starting points leading to the same physics was somewhat mysterious

to classical physicists, but today we know why the least action formulation exists: the

world is quantum-mechanical and not deterministic, and for this reason, the classical limit

of quantum mechanics can’t immediately land on Newton’s laws, but must match to some

formulation of classical physics where determinism is not a central but derived notion. The

least action principle formulation is thus much closer to quantum mechanics than Newton’s

laws, and gives a better jumping off point for making the transition to quantum mechanics

as a natural deformation, via the path integral.

We may be in a similar situation today. If there is a more fundamental description of

physics where space-time and perhaps even the usual formulation of quantum mechanics

don’t appear, then even in the limit where non-perturbative gravitational effects can be

neglected and the physics reduces to perfectly local and unitary quantum field theory, this

description is unlikely to directly reproduce the usual formulation of field theory, but must

rather match on to some new formulation of the physics where locality and unitarity are

derived notions. Finding such reformulations of standard physics might then better prepare

us for the transition to the deeper underlying theory.

In this paper, we have taken a baby first step in this direction, along the lines of the pro-

gram put forward in [14, 15] and pursued in [17–19]. We have given a formulation for planar

N = 4 SYM scattering amplitudes with no reference to space-time or Hilbert space, no

Hamiltonians, Lagrangians or gauge redundancies, no path integrals or Feynman diagrams,

no mention of “cuts”, “factorization channels”, or recursion relations. We have instead pre-

sented a new geometric question, to which the scattering amplitudes are the answer. It is

remarkable that such a simple picture, merely moving from “triangles” to “polygons”, suit-

ably generalized to the Grassmannian, and with an extended notion of positivity reflecting

“hiding” particles, leads us to the amplituhedron An,kL, whose “volume” gives us the scat-

tering amplitudes for a non-trivial interacting quantum field theory in four dimensions. It

is also fascinating that while in the usual formulation of field theory, locality and unitarity

are in tension with each other, necessitating the introduction of the familiar redundancies

to accommodate both, in the new picture they emerge together from positive geometry.
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A great deal remains to be done both to establish and more fully understand our

conjecture. The usual positive Grassmannian has a very rich cell structure. The task of

understanding all possible ways to make ordered k×k minors of a k×nmatrix positive seems

daunting at first, but the key is to realize that the “big” Grassmannian can be obtained by

gluing together (“amalgamating” [43]) “little” G(1, 3)’s and G(2, 3)’s, building up larger

positive matrices from smaller ones [19]. Remarkably, this extremely natural mathematical

operation translates directly to the physical picture of building on-shell diagrams from

gluing together elementary three-particle amplitudes. This story of [19] is most naturally

formulated in the original twistor space or momentum space, while the amplituhedron

picture is formulated in momentum-twistor space. At tree-level, there is a direct connection

between the cells of G(k, n) that cellulate the amplituhedron, and those of G(k+2, n), which

give the corresponding on-shell diagram interpretation of the cell [19]. In this way, the

natural operation of decomposing the amplituhedron into pieces is ultimately turned into

a vivid on-shell scattering picture in the original space-time. Moving to loops, we don’t have

an analogous understanding of all possible cells of the extended positive space G+(k, n;L)

— we don’t yet know how to systematically find positive co-ordinates, how to think about

boundaries and so on, though certainly the on-shell representation of the loop integrand

as “non-reduced” diagrams in G(k+ 2, n) [19] gives hope that the necessary understanding

can be reached. Having control of the cells and positive co-ordinates for G+(k, n;L) will

very likely be necessary to properly understand the cellulation An,k;L. It would also clearly

be very illuminating to find an analog of the amplituhedron, built around positive external

data in the original twistor variables.This might also shed light on the connection between

these ideas and Witten’s twistor-string theory [4, 44], along the lines of [45–48].

While cell decompositions of the amplituhedron are geometrically interesting in their

own right, from the point of view of physics, we need them only as a stepping-stone to

determining the form Ωn,k,L. This form was motivated by the idea of the area of a (dual)

polygon. For polygons, we have another definition of “area”, as an integral, and this gives us

a completely invariant definition for Ω free of the need for any triangulation. We do not yet

have an analog of the notion of “dual amplituhedron”, and also no integral representation

for Ωn,k,L. However in [27], we will give strong circumstantial evidence that such such an

expression should exist. On a related note, while we have a simple geometric picture for

the loop integrand at any fixed loop order, we still don’t have a non-perturbative question

to which the full amplitude (rather than just the fixed-order loop integrand) is the answer.

Note that the form Ωn,k,L is given directly by construction as a sum of “dlog” pieces.

This is a highly non-trivial property of the integrand, made manifest (albeit less directly) in

the on-shell diagram representation of the amplitude [19] (see also [49, 50]). Optimistically,

the great simplicity of this form should allow a new picture for carrying out the integrations

and arriving at the final amplitudes. The crucial role that positive external data played in

our story suggests that this positive structure must be reflected in the final amplitude in

an important way. The striking appearance of “cluster variables” for external data in [51]

is an example of this.

We also hope that with a complete geometric picture for the integrand of the amplitude

in hand, we are now positioned to make direct contact with the explosion of progress in
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using ideas from integrability to determine the amplitude directly [52–55]. A particularly

promising place to start forging this connection is with the four-particle amplitude at all

loop orders. As we noted, the positive geometry problem in this case is especially simple,

while the coefficient of the log2 infrared divergence of the (log of the) amplitude gives the

cusp anomalous dimension, famously determined using integrability techniques in [56–58].

Another natural question is how the introduction of the spectral parameter in on-shell

diagrams given in [59, 60] can be realized at the level of the amplituhedron.

On-shell diagrams in N = 4 SYM and the positive Grassmannian have a close analog

with on-shell diagrams in ABJM theory and the positive null Grassmannian [61], so it is

natural to expect an analog of the amplituhedron for ABJM as well. Should we expect

any of the ideas in this paper to extend to other field theories, with less or no supersym-

metry, and beyond the planar limit? As explained in [19], the connection between on-shell

diagrams and the Grassmannian is valid for any theory in four dimensions, reflecting only

the building-up of more complicated on-shell processes from gluing together the basic

three-particle amplitudes. The connection with the positive Grassmannian in particular is

universal for any planar theory: only the measure on the Grassmannian determining the

on-shell form differs from theory to theory. Furthermore, on-shell BCFW representations

of scattering amplitudes are also widely available — at loop level for planar gauge theories,

and at the very least for gravitational tree amplitudes (where there has been much recent

progress from other points of view [62–67]). As already mentioned, one of the crucial clues

leading to the amplituhedron was the myriad of different BCFW representation of tree am-

plitudes, with equivalences guaranteed by remarkable rational function identities relating

BCFW terms. We have finally come to understand these representations and identities as

simple reflections of amplituhedron geometry. As we move beyond planar N = 4 SYM,

we encounter even more identities with this character, such as the BCJ relations [68, 69].

Indeed even sticking to planar N = 4 SYM, such identities, of a fundamentally non-planar

origin, give rise to remarkable relations between amplitudes with different cyclic orderings

of the external data. It is hard to believe that these on-shell objects and the identities they

satisfy only have a geometric “triangulation” interpretation in the planar case, while the

even richer structure beyond the planar limit have no geometric interpretation at all. This

provides a strong impetus to search for a geometry underlying more general theories.

Planar N = 4 SYM amplitudes are Yangian invariant, a fact that is invisible in the

conventional field-theoretic description in terms of amplitudes in one space or Wilson loops

in the dual space. We have become accustomed to such striking facts in string theory, which

has a rich spectrum of U dualities, that are impossible to make manifest simultaneously in

conventional string perturbation theory. Indeed the Yangian symmetry of planar N = 4

SYM is just fermionic T -duality [70]. The amplituhedron has now given us a new descrip-

tion of planar N = 4 SYM amplitudes which does not have a usual space-time/quantum

mechanical description, but does make all the symmetries manifest. This is not a “du-

ality” in the usual sense, since we are not identifying an equivalence between existing

theories with familiar physical interpretations. We are seeing something rather different:

new mathematical structures for representing the physics without reference to standard

physical ideas, but with all symmetries manifest. Might there be an analogous story for

superstring scattering amplitudes?
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Sci. École Norm. Sup. 42 (2009) 865 [math.AG/0311245] [INSPIRE].

[44] R. Roiban, M. Spradlin and A. Volovich, Dissolving N = 4 loop amplitudes into QCD tree

amplitudes, Phys. Rev. Lett. 94 (2005) 102002 [hep-th/0412265] [INSPIRE].

[45] L. Dolan and P. Goddard, Gluon tree amplitudes in open twistor string theory, JHEP 12

(2009) 032 [arXiv:0909.0499] [INSPIRE].

[46] D. Nandan, A. Volovich and C. Wen, A Grassmannian étude in NMHV minors, JHEP 07

(2010) 061 [arXiv:0912.3705] [INSPIRE].

[47] N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and

Grassmannian dualities, JHEP 01 (2011) 049 [arXiv:0912.4912] [INSPIRE].

[48] J.L. Bourjaily, J. Trnka, A. Volovich and C. Wen, The Grassmannian and the twistor string:

connecting all trees in N = 4 SYM, JHEP 01 (2011) 038 [arXiv:1006.1899] [INSPIRE].

[49] A.E. Lipstein and L. Mason, From the holomorphic Wilson loop to ‘d log’ loop-integrands for

super-Yang-Mills amplitudes, JHEP 05 (2013) 106 [arXiv:1212.6228] [INSPIRE].

[50] A.E. Lipstein and L. Mason, From d logs to dilogs the super Yang-Mills MHV amplitude

revisited, JHEP 01 (2014) 169 [arXiv:1307.1443] [INSPIRE].

[51] J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and

cluster coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].

– 31 –

http://en.wikipedia.org/wiki/Cyclic_polytope
http://dx.doi.org/10.1088/1126-6708/2009/11/045
http://arxiv.org/abs/0909.0250
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0250
http://dx.doi.org/10.1007/JHEP05(2011)080
http://arxiv.org/abs/1007.3224
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3224
http://dx.doi.org/10.1103/PhysRevD.75.085010
http://arxiv.org/abs/hep-th/0610248
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610248
http://dx.doi.org/10.1103/PhysRevD.72.085001
http://arxiv.org/abs/hep-th/0505205
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505205
http://dx.doi.org/10.1103/PhysRevD.76.125020
http://arxiv.org/abs/0705.1864
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.1864
http://dx.doi.org/10.1007/JHEP03(2012)032
http://arxiv.org/abs/1112.6432
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6432
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.013
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.013
http://arxiv.org/abs/1201.5329
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5329
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://arxiv.org/abs/hep-th/0106109
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106109
http://arxiv.org/abs/math.AG/0311245
http://inspirehep.net/search?p=find+EPRINT+math/0311245
http://dx.doi.org/10.1103/PhysRevLett.94.102002
http://arxiv.org/abs/hep-th/0412265
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412265
http://dx.doi.org/10.1088/1126-6708/2009/12/032
http://dx.doi.org/10.1088/1126-6708/2009/12/032
http://arxiv.org/abs/0909.0499
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0499
http://dx.doi.org/10.1007/JHEP07(2010)061
http://dx.doi.org/10.1007/JHEP07(2010)061
http://arxiv.org/abs/0912.3705
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3705
http://dx.doi.org/10.1007/JHEP01(2011)049
http://arxiv.org/abs/0912.4912
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4912
http://dx.doi.org/10.1007/JHEP01(2011)038
http://arxiv.org/abs/1006.1899
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1899
http://dx.doi.org/10.1007/JHEP05(2013)106
http://arxiv.org/abs/1212.6228
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6228
http://dx.doi.org/10.1007/JHEP01(2014)169
http://arxiv.org/abs/1307.1443
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.1443
http://dx.doi.org/10.1007/JHEP01(2014)091
http://arxiv.org/abs/1305.1617
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1617


J
H
E
P
1
0
(
2
0
1
4
)
0
3
0

[52] S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super

Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].

[53] B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for

N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 111 (2013) 091602

[arXiv:1303.1396] [INSPIRE].

[54] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting

and matching data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].

[55] L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the

three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].

[56] N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B

670 (2003) 439 [hep-th/0307042] [INSPIRE].

[57] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 01

(2007) P01021 [hep-th/0610251] [INSPIRE].

[58] B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. 11 (2006)

P11014 [hep-th/0603157] [INSPIRE].

[59] L. Ferro, T.  Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Spectral parameters for

scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 01 (2014) 094

[arXiv:1308.3494] [INSPIRE].

[60] L. Ferro, T.  Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Harmonic R-matrices for

scattering amplitudes and spectral regularization, Phys. Rev. Lett. 110 (2013) 121602

[arXiv:1212.0850] [INSPIRE].

[61] Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal Grassmannian,

JHEP 02 (2014) 104 [arXiv:1309.3252] [INSPIRE].

[62] A. Hodges, A simple formula for gravitational MHV amplitudes, arXiv:1204.1930

[INSPIRE].

[63] F. Cachazo and Y. Geyer, A ‘twistor string’ inspired formula for tree-level scattering

amplitudes in N = 8 SUGRA, arXiv:1206.6511 [INSPIRE].

[64] F. Cachazo and D. Skinner, Gravity from rational curves in twistor space, Phys. Rev. Lett.

110 (2013) 161301 [arXiv:1207.0741] [INSPIRE].

[65] D. Skinner, Twistor strings for N = 8 supergravity, arXiv:1301.0868 [INSPIRE].

[66] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimension,

arXiv:1307.2199 [INSPIRE].

[67] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and

gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].

[68] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys.

Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[69] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy

of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

[70] N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the

amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].

– 32 –

http://dx.doi.org/10.1007/JHEP07(2012)174
http://arxiv.org/abs/1112.1060
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1060
http://dx.doi.org/10.1103/PhysRevLett.111.091602
http://arxiv.org/abs/1303.1396
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1396
http://dx.doi.org/10.1007/JHEP01(2014)008
http://arxiv.org/abs/1306.2058
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2058
http://dx.doi.org/10.1007/JHEP12(2013)049
http://arxiv.org/abs/1308.2276
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2276
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.015
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.015
http://arxiv.org/abs/hep-th/0307042
http://inspirehep.net/search?p=find+EPRINT+hep-th/0307042
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
http://dx.doi.org/10.1088/1742-5468/2006/11/P11014
http://dx.doi.org/10.1088/1742-5468/2006/11/P11014
http://arxiv.org/abs/hep-th/0603157
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603157
http://dx.doi.org/10.1007/JHEP01(2014)094
http://arxiv.org/abs/1308.3494
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3494
http://dx.doi.org/10.1103/PhysRevLett.110.121602
http://arxiv.org/abs/1212.0850
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.0850
http://dx.doi.org/10.1007/JHEP02(2014)104
http://arxiv.org/abs/1309.3252
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3252
http://arxiv.org/abs/1204.1930
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1930
http://arxiv.org/abs/1206.6511
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6511
http://dx.doi.org/10.1103/PhysRevLett.110.161301
http://dx.doi.org/10.1103/PhysRevLett.110.161301
http://arxiv.org/abs/1207.0741
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0741
http://arxiv.org/abs/1301.0868
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0868
http://arxiv.org/abs/1307.2199
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2199
http://dx.doi.org/10.1007/JHEP07(2014)033
http://arxiv.org/abs/1309.0885
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0885
http://dx.doi.org/10.1103/PhysRevD.78.085011
http://dx.doi.org/10.1103/PhysRevD.78.085011
http://arxiv.org/abs/0805.3993
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3993
http://dx.doi.org/10.1103/PhysRevLett.105.061602
http://arxiv.org/abs/1004.0476
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0476
http://dx.doi.org/10.1088/1126-6708/2008/09/062
http://arxiv.org/abs/0807.3196
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3196

	Scattering without space-time
	Triangles -> positive Grassmannian
	Polygons -> (tree) Amplituhedron cal A(n,k)(Z)
	Why positivity?
	Cell decomposition
	``Volume'' as canonical form
	The superamplitude
	Hiding particles -> loop positivity in G(+)(k,n;L)
	The Amplituhedron cal A(n,k,L)(Z)
	The loop amplitude form
	Locality and unitarity from positivity
	Four particles at all loops
	Master Amplituhedron
	Outlook

