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1 Introduction and preliminaries
In , Mustafa and Sims [] introduced a new structure of generalized metric spaces,
which are called G-metric spaces, as follows.

Definition . [] Let X be a nonempty set, and let G : X × X × X −→ R+ be a function
satisfying the following axioms:
(G) G(x, y, z)= if x = y = z;
(G)  <G(x,x, y) for all x, y ∈ X with x �= y;
(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with z �= y;
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables);
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or a G-metric on X and the pair (X,G)
is called a G-metric space.

It is known that the function G(x, y, z) on a G-metric space X is jointly continuous in all
three of its variables, and G(x, y, z) =  if and only if x = y = z (see []).
Based on the notion of generalized metric spaces, Mustafa et al. [–] obtained some

fixed point results for mappings satisfying different contractive conditions. Chugh et al.
[] obtained some fixed point results for maps satisfying property P in G-metric spaces.
Shatanawi [] obtained some fixed point results for contractive mappings satisfying �-
maps in G-metric spaces.
In , Abbas and Rhoades [] initiated the study of common fixed point theory in

G-metric spaces. Since then, many common fixed point theorems for certain contractive
conditions have been established in G-metric spaces (see [–]).
Bhaskar and Lakshmikantham [] introduced the notion of coupled fixed point and

proved some interesting coupled fixed point theorems for mappings satisfying the mixed
monotone property. Later, Lakshmikantham and Ćirić [] introduced the concept of
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mixed g-monotonemapping and proved coupled coincidence and coupled common fixed
point theorems that extend theorems due to Bhaskar and Lakshmikantham [].
In [, ], authors established coupled fixed point theorems in cone metric spaces.

In , Shatanawi [] obtained some coupled fixed point results in G-metric spaces.
Recently, in [, ] authors established some coupled fixed point and common coupled
fixed point results in two G-metric spaces. Recently, coupled fixed point and common
coupled fixed point problems have also been considered in partially ordered G-metric
spaces (see [–]).
The aim of this article is to prove some new common coupled fixed point theorems for

mappings defined on a set equipped with two generalized metrics.
First, we present some known definitions and propositions.

Definition . [] Let (X,G) be a G-metric space, {xn} ⊂ X be a sequence. Then the se-
quence {xn} is called:

(i) a G-Cauchy sequence if, for any ε > , there is an n ∈N (the set of natural
numbers) such that for all n,m, l ≥ n, G(xn,xm,xl) < ε;

(ii) a G-convergent sequence if, for any ε > , there are an x ∈ X and an n ∈N such that
for all n,m ≥ n, G(x,xn,xm) < ε.

A G-metric space (X,G) is said to be G-complete if every G-Cauchy sequence in (X,G)
is G-convergent in X. It is known that {xn} is G-convergent to x ∈ X if and only if
G(xm,xn,x)→  as n,m → ∞.

Proposition . [] Let (X,G) be a G-metric space. Then the following are equivalent:
() {xn} is G-convergent to x.
() G(xn,xn,x) →  as n→ ∞.
() G(xn,x,x)→  as n→ ∞.
() G(xn,xm,x)→  as n,m → ∞.

Proposition . [] Let (X,G) be a G-metric space. Then, for any x, y ∈ X, we have
G(x, y, y) ≤ G(y,x,x).

Definition . [] An element (x, y) ∈ X ×X is called:

(C) a coupled fixed point of the mapping F : X ×X → X if F(x, y) = x and F(y,x) = y;
(C) a coupled coincidence point of mappings F : X ×X → X and g : X → X if F(x, y) = gx

and F(y,x) = gy, and in this case, (gx, gy) is called a coupled point of coincidence;
(C) a common coupled fixed point of mappings F : X ×X → X and g : X → X if F(x, y) =

gx = x and F(y,x) = gy = y.

Definition . [] Mappings F : X ×X → X and g : X → X are called:

(W) w-compatible if gF(x, y) = F(gx, gy) whenever F(x, y) = gx and F(y,x) = gy;
(W) w*-compatible if gF(x,x) = F(gx, gx) whenever F(x,x) = gx.

Recently, Abbas, Khan and Nazir [] extended some recent results of Abbas et al. []
and Sabetghadam et al. [] to the setting of two generalized metric spaces.

Theorem . (see [, Theorem .]) Let G and G be two G-metrics on X such that
G(x, y, z) ≤ G(x, y, z) for all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings
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satisfying

G
(
F(x, y),F(u, v),F(s, t)

)
≤ aG(gx, gu, gs) + aG

(
F(x, y), gx, gx

)
+ aG(gy, gv, gt) + aG

(
F(u, v), gu, gs

)
+ aG

(
F(x, y), gu, gs

)
+ aG

(
F(u, v),F(s, t), gx

)
(.)

for all (x, y), (u, v), (s, t) ∈ X × X, where ai ≥ , for i = , , . . . ,  and a + a + a + (a +
a + a) < . If F(X ×X) ⊂ g(X) and g(X) is a G-complete subspace of X, and F and g are
w*-compatible, then F and g have a unique common coupled fixed point.

Theorem . (see [, Theorem .]) Let G and G be two G-metrics on X such that
G(x, y, z) ≤ G(x, y, z) for all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings
satisfying

G
(
F(x, y),F(u, v),F(s, t)

)
≤ kmax

{
G(gx, gu, gs),G(gy, gv, gt),G

(
F(x, y), gu, gs

)}
(.)

for all (x, y), (u, v), (s, t) ∈ X × X, where  ≤ k < 
 . If F(X × X) ⊂ g(X) and g(X) is a G-

complete subspace of X, and F and g are w*-compatible, then F and g have a unique com-
mon coupled fixed point.

In this manuscript, we generalize, improve, enrich and extend the above coupled fixed
point results. It is worth mentioning that our results do not rely on the continuity of map-
pings involved therein. We also state some examples to illustrate our results. This paper
can be considered as a continuation of the remarkable works of Abbas et al. [, ] and
Sabetghadam et al. [].

2 Common coupled fixed points
We begin with an example to illustrate the weakness of Theorem . above.

Example . Let X = [, ]. Define G,G : X ×X ×X → [,∞) by

G(x, y, z) = |x – y| + |y – z| + |z – x| and G(x, y, z) =


(|x – y| + |y – z| + |z – x|)

for all x, y, z ∈ X. Then (X,G) and (X,G) are two G-metric spaces. Define a map F : X ×
X → X by F(x, y) = 

x +

y and gx = x

 for all x, y ∈ X. For (x, y) = (u, v) = (, ) and (s, t) =
(, ), we have

G
(
F(x, y),F(u, v),F(s, t)

)
= G

(
F(, ),F(, ),F(, )

)
= G

(


,


,



)
= 
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and

max
{
G(gx, gu, gs),G(gy, gv, gt),G

(
F(x, y), gu, gs

)}
=max

{
G(g, g, g),G(g, g, g),G

(
F(, ), g, g

)}
=max

{
G(, , ),G(, , ),G

(


, , 

)}

=


.

Then it is easy to see that there is no k ∈ [,  ) such that

G
(
F(x, y),F(u, v),F(s, t)

) ≤ kmax
{
G(gx, gu, gs),G(gy, gv, gt),G

(
F(x, y), gu, gs

)}

for all (x, y), (u, v), (s, t) ∈ X × X. Thus, Theorem . cannot be applied to this example.
However, it is easy to see that (, ) is the unique common coincidence point of F and g .
In fact, F(, ) = g() = .

Now we shall prove our main results.

Theorem . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(s, t)

)
≤ aG(gx, gu, gs) + aG(gy, gv, gt) + aG

(
F(x, y), gx, gx

)
+ aG

(
F(u, v), gu, gu

)
+ aG

(
F(s, t), gs, gs

)
+ aG

(
F(x, y), gu, gs

)
+ aG

(
F(u, v), gs, gx

)
+ aG

(
F(s, t), gx, gu

)
+ aG

(
F(x, y), gx, gu

)
+ aG

(
F(u, v), gu, gs

)
+ aG

(
F(s, t), gs, gx

)
+ aG

(
F(x, y),F(u, v), gs

)
+ aG

(
F(u, v),F(s, t), gx

)
+ aG

(
F(s, t),F(x, y), gu

)
(.)

for all (x, y), (u, v), (s, t) ∈ X ×X, where ai ≥ , for i = , , . . . ,  and

a + a + a + a + (a + a + a + a + a + a + a) + (a + a + a) < . (.)

If F(X×X)⊂ g(X) and g(X) is a G-complete subspace of X, and F and g are w*-compatible,
then F and g have a unique common coupled fixed point.

Proof Let x, y ∈ X. Since F(X × X) ⊂ g(X), we can choose x, y ∈ X such that gx =
F(x, y) and gy = F(y,x). Similarly, we can choose x, y ∈ X such that gx = F(x, y)
and gy = F(y,x). Continuing in this way, we construct two sequences {xn} and {yn} in X
such that

gxn+ = F(xn, yn) and gyn+ = F(yn,xn), ∀n≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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It follows from (.), (.), (G) and Proposition . that

G(gxn, gxn+, gxn+)

=G
(
F(xn–, yn–),F(xn, yn),F(xn, yn)

)
≤ aG(gxn–, gxn, gxn) + aG(gyn–, gyn, gyn)

+ aG
(
F(xn–, yn–), gxn–, gxn–

)
+ aG

(
F(xn, yn), gxn, gxn

)
+ aG

(
F(xn, yn), gxn, gxn

)
+ aG

(
F(xn–, yn–), gxn, gxn

)
+ aG

(
F(xn, yn), gxn, gxn–

)
+ aG

(
F(xn, yn), gxn–, gxn

)
+ aG

(
F(xn–, yn–), gxn–, gxn

)
+ aG

(
F(xn, yn), gxn, gxn

)
+ aG

(
F(xn, yn), gxn, gxn–

)
+ aG

(
F(xn–, yn–),F(xn, yn), gxn

)
+ aG

(
F(xn, yn),F(xn, yn), gxn–

)
+ aG

(
F(xn, yn),F(xn–, yn–), gxn

)
= aG(gxn–, gxn, gxn) + aG(gyn–, gyn, gyn) + aG(gxn, gxn–, gxn–)

+ aG(gxn+, gxn, gxn) + aG(gxn+, gxn, gxn) + aG(gxn, gxn, gxn)

+ aG(gxn+, gxn, gxn–) + aG(gxn+, gxn–, gxn) + aG(gxn, gxn–, gxn)

+ aG(gxn+, gxn, gxn) + aG(gxn+, gxn, gxn–) + aG(gxn, gxn+, gxn)

+ aG(gxn+, gxn+, gxn–) + aG(gxn+, gxn, gxn)

= (a + a)G(gxn–, gxn, gxn) + aG(gyn–, gyn, gyn) + aG(gxn, gxn–, gxn–)

+ (a + a + a + a + a)G(gxn+, gxn, gxn)

+ (a + a + a)G(gxn–, gxn, gxn+)

+ aG(gxn+, gxn+, gxn–)

≤ (a + a)G(gxn–, gxn, gxn) + aG(gyn–, gyn, gyn) + aG(gxn–, gxn, gxn)

+ (a + a + a + a + a)G(gxn, gxn+, gxn+)

+ (a + a + a)
[
G(gxn–, gxn, gxn) +G(gxn, gxn, gxn+)

]
+ a

[
G(gxn–, gxn, gxn) +G(gxn, gxn+, gxn+)

]
≤ (a + a + a + a + a + a + a)G(gxn–, gxn, gxn) + aG(gyn–, gyn, gyn)

+
[
(a + a + a + a + a + a + a + a) + a

]
G(gxn, gxn+, gxn+),

which implies that

G(gxn, gxn+, gxn+)

≤ (a + a + a + a + a + a + a)G(gxn–, gxn, gxn) + aG(gyn–, gyn, gyn)
 – (a + a + a + a + a + a + a + a) – a

.

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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Similarly, we can prove that

G(gyn, gyn+, gyn+)

≤ (a + a + a + a + a + a + a)G(gyn–, gyn, gyn) + aG(gxn–, gxn, gxn)
 – (a + a + a + a + a + a + a + a) – a

.

(.)

By combining (.) and (.), we obtain

G(gxn, gxn+, gxn+) +G(gyn, gyn+, gyn+)

≤ λ
[
G(gxn–, gxn, gxn) +G(gyn–, gyn, gyn)

]
, (.)

where λ = a+a+a+a+a+a+a+a
–(a+a+a+a+a+a+a+a)–a

. Obviously,  ≤ λ < .
Repeating the above inequality (.) n times, we get

G(gxn, gxn+, gxn+) +G(gyn, gyn+, gyn+)

≤ λ
[
G(gxn–, gxn, gxn) +G(gyn–, gyn, gyn)

]
≤ λ

[
G(gxn–, gxn, gxn) +G(gyn–, gyn, gyn)

]
≤ λ[G(gxn–, gxn–, gxn–) +G(gyn–, gyn–, gyn–)

]
≤ λ[G(gxn–, gxn–, gxn–) +G(gyn–, gyn–, gyn–)

]
≤ · · · ≤ λn[G(gx, gx, gx) +G(gy, gy, gy)

]
. (.)

Next, we shall prove that {gxn} and {gyn} are G-Cauchy sequences in g(X).
In fact, for each n,m ∈N,m > n, from (G) and (.), we have

G(gxn, gxm, gxm) +G(gyn, gym, gym)

≤ G(gxn, gxn+, gxn+) +G(gxn+, gxn+, gxn+)

+G(gyn, gyn+, gyn+) +G(gyn+, gyn+, gyn+)

+ · · · +G(gxm–, gxm–, gxm–) +G(gxm–, gxm, gxm)

+G(gym–, gym–, gym–) +G(gym–, gym, gym)

≤ [
λn + λn+ + · · · + λm–][G(gx, gx, gx) +G(gy, gy, gy)

]
≤ λn

 – λ

[
G(gx, gx, gx) +G(gy, gy, gy)

]
,

which implies that

lim
n,m→∞

[
G(gxn, gxm, gxm) +G(gyn, gym, gym)

]
= ,

and so

lim
n,m→∞G(gxn, gxm, gxm) =  and lim

n,m→∞G(gyn, gym, gym) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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Hence {gxn} and {gyn} areG-Cauchy sequences in g(X). ByG-completeness of g(X), there
exist gx, gy ∈ g(X) such that {gxn} and {gyn} converge to gx and gy, respectively.
Nowwe prove that F(x, y) = gx and F(y,x) = gy. In fact, it follows from (G) and (.) that

G
(
F(x, y), gx, gx

)
≤ G

(
F(x, y), gxn+, gxn+

)
+G(gxn+, gx, gx)

=G
(
F(x, y),F(xn, yn),F(xn, yn)

)
+G(gxn+, gx, gx)

≤ aG(gx, gxn, gxn) + aG(gy, gyn, gyn) + aG
(
F(x, y), gx, gx

)
+ aG

(
F(xn, yn), gxn, gxn

)
+ aG

(
F(xn, yn), gxn, gxn

)
+ aG

(
F(x, y), gxn, gxn

)
+ aG

(
F(xn, yn), gxn, gx

)
+ aG

(
F(xn, yn), gx, gxn

)
+ aG

(
F(x, y), gx, gxn

)
+ aG

(
F(xn, yn), gxn, gxn

)
+ aG

(
F(xn, yn), gxn, gx

)
+ aG

(
F(x, y),F(xn, yn), gxn

)
+ aG

(
F(xn, yn),F(xn, yn), gx

)
+ aG

(
F(xn, yn),F(x, y), gxn

)
+G(gxn+, gx, gx)

≤ aG(gx, gxn, gxn) + aG(gy, gyn, gyn) + aG
(
F(x, y), gx, gx

)
+ aG(gxn+, gxn, gxn) + aG(gxn+, gxn, gxn) + aG

(
F(x, y), gxn, gxn

)
+ aG(gxn+, gxn, gx) + aG(gxn+, gx, gxn) + aG

(
F(x, y), gx, gxn

)
+ aG(gxn+, gxn, gxn) + aG(gxn+, gxn, gx) + aG

(
F(x, y), gxn+, gxn

)
+ aG(gxn+, gxn+, gx) + aG

(
gxn+,F(x, y), gxn

)
+G(gxn+, gx, gx).

Letting n → ∞ in the above inequality, we obtain

G
(
F(x, y), gx, gx

) ≤ (a + a + a + a + a)G
(
F(x, y), gx, gx

)
. (.)

By (.) we have that a + a + a + a + a < . Hence, it follows from (.) that
G(F(x, y), gx, gx) = , and so F(x, y) = gx. In the same way, we can show that F(y,x) = gy.
Hence, (gx, gy) is a coupled point of coincidence of mappings F and g .
Next we prove that gx = gy. In fact, from (.) we have

G(gx, gy, gy)

=G
(
F(x, y),F(y,x),F(y,x)

)
≤ aG(gx, gy, gy) + aG(gy, gx, gx) + aG

(
F(x, y), gx, gx

)
+ aG

(
F(y,x), gy, gy

)
+ aG

(
F(y,x), gy, gy

)
+ aG

(
F(x, y), gy, gy

)
+ aG

(
F(y,x), gy, gx

)
+ aG

(
F(y,x), gx, gy

)
+ aG

(
F(x, y), gx, gy

)
+ aG

(
F(y,x), gy, gy

)
+ aG

(
F(y,x), gy, gx

)
+ aG

(
F(x, y),F(y,x), gy

)
+ aG

(
F(y,x),F(y,x), gx

)
+ aG

(
F(y,x),F(x, y), gy

)
= aG(gx, gy, gy) + aG(gy, gx, gx) + aG(gx, gx, gx)

+ aG(gy, gy, gy) + aG(gy, gy, gy) + aG(gx, gy, gy)

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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+ aG(gy, gy, gx) + aG(gy, gx, gy) + aG(gx, gx, gy)

+ aG(gy, gy, gy) + aG(gy, gy, gx) + aG(gx, gy, gy)

+ aG(gy, gy, gx) + aG(gy, gx, gy)

= (a + a + a + a + a + a + a + a)G(gx, gy, gy)

+ (a + a)G(gy, gx, gx)

≤ (a + a + a + a + a + a + a + a)G(gx, gy, gy)

+ (a + a)G(gy, gx, gx),

which implies that

G(gx, gy, gy) ≤ a + a
 – (a + a + a + a + a + a + a + a)

G(gy, gx, gx). (.)

In a similar way, we can show that

G(gy, gx, gx)≤ a + a
 – (a + a + a + a + a + a + a + a)

G(gx, gy, gy). (.)

Since a+a
–(a+a+a+a+a+a+a+a)

< , from (.) and (.), we must have G(gx, gy, gy) = 
so that gx = gy. Thus, (gx, gx) is a coupled point of coincidence of mappings F and g .
Now, we claim that a coupled point of coincidence is unique. Suppose that there is an-

other x* ∈ X such (gx*, gx*) is a coupled point of coincidence of mappings F and g , then by
(.) we have

G
(
gx, gx*, gx*

)
=G

(
F(x,x),F

(
x*,x*

)
,F

(
x*,x*

))
≤ aG

(
gx, gx*, gx*

)
+ aG

(
gx, gx*, gx*

)
+ aG

(
F(x,x), gx, gx

)
+ aG

(
F
(
x*,x*

)
, gx*, gx*

)
+ aG

(
F
(
x*,x*

)
, gx*, gx*

)
+ aG

(
F(x,x), gx*, gx*

)
+ aG

(
F
(
x*,x*

)
, gx*, gx

)
+ aG

(
F
(
x*,x*

)
, gx, gx*

)
+ aG

(
F(x,x), gx, gx*

)
+ aG

(
F
(
x*,x*

)
, gx*, gx*

)
+ aG

(
F
(
x*,x*

)
, gx*, gx

)
+ aG

(
F(x,x),F

(
x*,x*

)
, gx*

)
+ aG

(
F
(
x*,x*

)
,F

(
x*,x*

)
, gx

)
+ aG

(
F
(
x*,x*

)
,F(x,x), gx*

)
= aG

(
gx, gx*, gx*

)
+ aG

(
gx, gx*, gx*

)
+ aG(gx, gx, gx)

+ aG
(
gx*, gx*, gx*

)
+ aG

(
gx*, gx*, gx*

)
+ aG

(
gx, gx*, gx*

)
+ aG

(
gx*, gx*, gx

)
+ aG

(
gx*, gx, gx*

)
+ aG

(
gx, gx, gx*

)
+ aG

(
gx*, gx*, gx*

)
+ aG

(
gx*, gx*, gx

)
+ aG

(
gx, gx*, gx*

)
+ aG

(
gx*, gx*, gx

)
+ aG

(
gx*, gx, gx*

)
= (a + a + a + a + a + a + a + a + a)G

(
gx, gx*, gx*

)
+ aG

(
gx, gx, gx*

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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≤ (a + a + a + a + a + a + a + a + a)G
(
gx, gx*, gx*

)
+ aG

(
gx, gx, gx*

)
,

which implies that

G
(
gx, gx*, gx*

)
≤ a

 – (a + a + a + a + a + a + a + a + a)
G

(
gx, gx, gx*

)
. (.)

In the same way, we can show that

G
(
gx*, gx, gx

)
≤ a

 – (a + a + a + a + a + a + a + a + a)
G

(
gx*, gx*, gx

)
. (.)

Since a
–(a+a+a+a+a+a+a+a+a)

< , from (.) and (.), we must have G(gx, gx*,
gx*) =  so that gx = gx*. Hence, (gx, gx) is a unique coupled point of coincidence of map-
pings F and g .
Now we show that F and g have a unique common coupled fixed point. For this, let

gx = u. Then we have u = gx = F(x,x). By w*-compatibility of F and g , we have

gu = g(gx) = gF(x,x) = F(gx, gx) = F(u,u).

Thus, (gu, gu) is a coupled point of coincidence of F and g . By the uniqueness of a coupled
point of coincidence, we have gu = gx. Therefore, u = gu = F(u,u).
To prove the uniqueness, let u* ∈ X with u* �= u such that

u* = gu* = F
(
u*,u*

)
and u = gu = F(u,u).

By using (.), following the same arguments as in the proof of (.) and (.), we obtain

G
(
gu, gu*, gu*

)
≤ a

 – (a + a + a + a + a + a + a + a + a)
G

(
gu, gu, gu*

)
(.)

and

G
(
gu*, gu, gu

)
≤ a

 – (a + a + a + a + a + a + a + a + a)
G

(
gu*, gu*, gu

)
. (.)

Since a
–(a+a+a+a+a+a+a+a+a)

< , from (.) and (.), we must have G(gu, gu*,
gu*) =  so that u = gu = gu* = u*. Thus, F and g have a unique common coupled fixed
point. This completes the proof of Theorem .. �

Remark . Theorem . improves and extends Theorem . of Abbas et al. [], the
contractive condition defined by (.) is replaced by the new contractive condition defined

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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by (.). Theorem . also improves and extends Theorem ., Corollaries .-. and
Theorem . of Abbas et al. []

Now, we introduce an example to support Theorem ..

Example . Let X = [, ], and let two G-metrics G, G on X be given as

G(x, y, z) = |x – y| + |y – z| + |z – x| and

G(x, y, z) =


[|x – y| + |y – z| + |z – x|]

for all x, y, z ∈ X. Define F : X ×X → X and g : X → X as

F(x, y) =
x + y


and gx =
x


for all z, y ∈ X.
Now, for (x, y), (u, v), (s, t) ∈ X ×X, we have

G
(
F(x, y),F(u, v),F(s, t)

)
=G

(
x + y


,
u + v


,
s + t


)

=



[∣∣x + y – (u + v)
∣∣ + ∣∣u + v – (s + t)

∣∣ + ∣∣s + t – (x + y)
∣∣]

≤ 


[|x – u| + |y – v| + |u – s| + |v – t| + |s – x| + |t – y|]
=



{



[|x – u| + |y – v| + |u – s|] + 


[|v – t| + |s – x| + |t – y|]}

=


G(gx, gu, gs) +



G(gy, gv, gt)

≤ 

G(gx, gu, gs) +



G(gy, gv, gt) +




G
(
F(x, y), gx, gx

)
+




G
(
F(u, v), gu, gu

)
+




G
(
F(s, t), gs, gs

)
+




G
(
F(x, y), gu, gs

)
+




G
(
F(u, v), gs, gx

)
+




G
(
F(s, t), gx, gu

)
+




G
(
F(x, y), gx, gu

)
+




G
(
F(u, v), gu, gs

)
+




G
(
F(s, t), gs, gx

)
+




G
(
F(x, y),F(u, v), gs

)
+




G
(
F(u, v),F(s, t), gx

)
+




G
(
F(s, t),F(x, y), gu

)

for all (x, y), (u, v), (w, z) ∈ X × X. Thus, (.) is satisfied with a = a = 
 , a = a = a =

a = a = a = a = 
 , a = a = 

 and a = a = a = 
 , where

a + a + a + a + (a + a + a + a + a + a + a) + (a + a + a) =



< .

It is obvious that F is w*-compatible with g . Hence, all the conditions of Theorem . are
satisfied. Moreover, (, ) is the unique common coupled fixed point of F and g .

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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In Theorem ., take α = a, α = a, α = a, α = a, α = a, α = a and a = a =
a = a = a = a = a = a = , to obtainTheorem. of Abbas et al. [] as the following
corollary.

Corollary . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(s, t)

)
≤ αG(gx, gu, gs) + αG(gy, gv, gt) + αG

(
F(x, y), gu, gs

)
+ αG

(
F(x, y), gx, gx

)
+ αG

(
F(u, v), gu, gs

)
+ αG

(
F(u, v),F(s, t), gx

)
(.)

for all (x, y), (u, v), (s, t) ∈ X × X, where αi ≥ , for i = , , . . . ,  and α + α + α + (α +
α + α) < . If F(X ×X) ⊂ g(X) and g(X) is a G-complete subspace of X, and F and g are
w*-compatible, then F and g have a unique common coupled fixed point.

In Theorem ., take s = u and t = v to obtain the following corollary, which extends and
generalizes the corresponding results of [, , ].

Corollary . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(u, v)

)
≤ aG(gx, gu, gu) + aG(gy, gv, gv) + aG

(
F(x, y), gx, gx

)
+ aG

(
F(u, v), gu, gu

)
+ aG

(
F(u, v), gu, gu

)
+ aG

(
F(x, y), gu, gu

)
+ aG

(
F(u, v), gu, gx

)
+ aG

(
F(u, v), gx, gu

)
+ aG

(
F(x, y), gx, gu

)
+ aG

(
F(u, v), gu, gu

)
+ aG

(
F(u, v), gu, gx

)
+ aG

(
F(x, y),F(u, v), gu

)
+ aG

(
F(u, v),F(u, v), gx

)
+ aG

(
F(u, v),F(x, y), gu

)
(.)

for all (x, y), (u, v) ∈ X ×X, where ai ≥ , for i = , , . . . ,  and

a + a + a + a + (a + a + a + a + a + a + a) + (a + a + a) < .

If F(X×X)⊂ g(X) and g(X) is a G-complete subspace of X, and F and g are w*-compatible,
then F and g have a unique common coupled fixed point.

If we take α = a, β = a, γ = a and a = a = a = a = a = a = a = a = a = a =
a =  in Theorem ., then the following corollary, which extends and generalizes the
comparable results of [, ], is obtained.

Corollary . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(s, t)

)
≤ αG(gx, gu, gs) + βG(gy, gv, gt) + γG

(
F(x, y), gu, gs

)
(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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for all (x, y), (u, v), (s, t) ∈ X×X,where α,β ,γ ≥  and α+β +γ < . If F(X×X) ⊂ g(X) and
g(X) is a G-complete subspace of X, and F and g are w*-compatible, then F and g have a
unique common coupled fixed point.

If we take α = a, β = a, γ = a, δ = a and a = a = a = a = a = a = a = a = a =
a =  in Theorem ., then the following corollary is obtained.

Corollary . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(s, t)

) ≤ αG(gx, gu, gs) + βG(gy, gv, gt)

+ γG
(
F(x, y), gu, gs

)
+ δG

(
F(x, y), gx, gu

)
(.)

for all (x, y), (u, v), (s, t) ∈ X×X,where α,β ,γ , δ ≥  and α+β +γ +δ < . If F(X×X) ⊂ g(X)
and g(X) is a G-complete subspace of X, and F and g are w*-compatible, then F and g have
a unique common coupled fixed point.

If we take α = a, α = a, α = a, α = a, α = a, α = a, α = a and a = a = a =
a = a = a = a =  in Theorem ., then the following corollary is obtained.

Corollary . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(s, t)

)
≤ αG

(
F(x, y), gx, gx

)
+ αG

(
F(u, v), gu, gu

)
+ αG

(
F(s, t), gs, gs

)
+ αG

(
F(u, v), gu, gs

)
+ αG

(
F(x, y),F(u, v), gs

)
+ αG

(
F(u, v),F(s, t), gx

)
+ αG

(
F(s, t),F(x, y), gu

)
(.)

for all (x, y), (u, v), (s, t) ∈ X ×X, where αi ≥ , for i = , , . . . ,  and

α + α + α + α + α + α + a <


.

If F(X×X)⊂ g(X) and g(X) is a G-complete subspace of X, and F and g are w*-compatible,
then F and g have a unique common coupled fixed point.

If we take α = a, β = a, γ = a and a = a = a = a = a = a = a = a = a = a =
a =  in Theorem ., then the following corollary is obtained.

Corollary . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(s, t)

)
≤ αG

(
F(u, v), gs, gx

)
+ βG

(
F(s, t), gx, gu

)
+ γG

(
F(s, t), gs, gx

)
(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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for all (x, y), (u, v), (s, t) ∈ X × X, where α,β ,γ ≥  and α + β + γ < 
 . If F(X × X) ⊂ g(X)

and g(X) is a G-complete subspace of X, and F and g are w*-compatible, then F and g
have a unique common coupled fixed point.

Theorem . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(s, t)

)

≤ kmax

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(gx, gu, gs),G(gy, gv, gt),G(F(x, y), gu, gs),
G(F(x, y), gx, gu), G((F(x, y), gx, gx), G(F(u, v), gu, gu),


G(F(s, t), gs, gs), G(F(u, v), gu, gs),


G(F(x, y),F(u, v), gs), G(F(s, t),F(x, y), gu)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(.)

for all (x, y), (u, v), (s, t) ∈ X × X, where  ≤ k < . If F(X × X) ⊂ g(X) and g(X) is a G-
complete subspace of X, and F and g are w*-compatible, then F and g have a unique com-
mon coupled fixed point.

Proof Let x, y ∈ X. We choose x, y ∈ X such that gx = F(x, y) and gy = F(y,x), this
can be done in view of F(X × X) ⊂ g(X). Similarly, we can choose x, y ∈ X such that
gx = F(x, y) and gy = F(y,x). Continuing this process, we construct two sequences
{xn} and {yn} in X such that gxn+ = F(xn, yn) and gyn+ = F(yn,xn).
By using (.) and Proposition ., we obtain

G(gxn, gxn+, gxn+)

=G
(
F(xn–, yn–),F(xn, yn),F(xn, yn)

)

≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(gxn–, gxn, gxn),G(gyn–, gyn, gyn),
G(F(xn–, yn–), gxn, gxn),G(F(xn–, yn–), gxn–, gxn),

G(F(xn–, yn–), gxn–, gxn–), G(F(xn, yn), gxn, gxn),


G(F(xn, yn), gxn, gxn), G(F(xn, yn), gxn, gxn),


G(F(xn–, yn–),F(xn, yn), gxn), G(F(xn, yn),F(xn–, yn–), gxn)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(gxn–, gxn, gxn),G(gyn–, gyn, gyn),
G(gxn, gxn, gxn),G(gxn, gxn–, gxn),


G(gxn, gxn–, gxn–), G(gxn+, gxn, gxn),

G(gxn+, gxn, gxn), G(gxn+, gxn, gxn),

G(gxn, gxn+, gxn), G(gxn+, gxn, gxn)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= kmax

{
G(gxn–, gxn, gxn),G(gyn–, gyn, gyn),


G(gxn, gxn–, gxn–), G(gxn+, gxn, gxn)

}

≤ kmax

{
G(gxn–, gxn, gxn),G(gyn–, gyn, gyn),
G(gxn–, gxn, gxn),G(gxn, gxn+, gxn+)

}

= kmax
{
G(gxn–, gxn, gxn),G(gyn–, gyn, gyn),G(gxn, gxn+, gxn+)

}
≤ kmax

{
G(gxn–, gxn, gxn),G(gyn–, gyn, gyn),G(gxn, gxn+, gxn+)

}
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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If

max
{
G(gxn–, gxn, gxn),G(gyn–, gyn, gyn),G(gxn, gxn+, gxn+)

}
=G(gxn, gxn+, gxn+),

then inequality (.) becomes

G(gxn, gxn+, gxn+) ≤ kG(gxn, gxn+, gxn+),

which is a contradiction. So that

max
{
G(gxn–, gxn, gxn),G(gyn–, gyn, gyn),G(gxn, gxn+, gxn+)

}
=max

{
G(gxn–, gxn, gxn),G(gyn–, gyn, gyn)

}
.

This implies that

G(gxn, gxn+, gxn+) ≤ kmax
{
G(gxn–, gxn, gxn),G(gyn–, gyn, gyn)

}
. (.)

In a similar way, we obtain

G(gyn, gyn+, gyn+) ≤ kmax
{
G(gyn–, gyn, gyn),G(gxn–, gxn, gxn)

}
. (.)

Repeating inequalities (.) and (.), we obtain

G(gxn, gxn+, gxn+) ≤ kmax
{
G(gxn–, gxn, gxn),G(gyn–, gyn, gyn)

}
≤ kmax

{
G(gxn–, gxn–, gxn–),G(gyn–, gyn–, gyn–)

}
≤ kmax

{
G(gxn–, gxn–, gxn–),G(gyn–, gyn–, gyn–)

}
≤ · · ·
≤ knmax

{
G(gx, gx, gx),G(gy, gy, gy)

}
(.)

and

G(gyn, gyn+, gyn+) ≤ kmax
{
G(gyn–, gyn, gyn),G(gxn–, gxn, gxn)

}
≤ kmax

{
G(gyn–, gyn–, gyn–),G(gxn–, gxn–, gxn–)

}
≤ kmax

{
G(gyn–, gyn–, gyn–),G(gxn–, gxn–, gxn–)

}
≤ · · ·
≤ knmax

{
G(gy, gy, gy),G(gx, gx, gx)

}
. (.)

By virtue of inequalities (.) and (.), for eachm,n ∈N,m > n, repeated use (G) of a
G-metric gives

G(gxn, gxm, gxm)≤ G(gxn, gxn+, gxn+) +G(gxn+, gxn+, gxn+)

+ · · · +G(gxm–, gxm–, gxm–) +G(gxm–, gxm, gxm)

http://www.fixedpointtheoryandapplications.com/content/2013/1/181
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≤ (
kn + kn+ + · · · + km–)max

{
G(gx, gx, gx),G(gy, gy, gy)

}
≤ kn

 – k
max

{
G(gx, gx, gx),G(gy, gy, gy)

}

and

G(gyn, gym, gym) ≤ G(gyn, gyn+, gyn+) +G(gyn+, gyn+, gyn+)

+ · · · +G(gym–, gym–, gym–) +G(gym–, gym, gym)

≤ (
kn + kn+ + · · · + km–)max

{
G(gx, gx, gx),G(gy, gy, gy)

}
≤ kn

 – k
max

{
G(gx, gx, gx),G(gy, gy, gy)

}
,

which implies that

lim
n,m→∞G(gxn, gxm, gxm) =  and lim

n,m→∞G(gyn, gym, gym) = .

Hence {gxn} and {gyn} areG-Cauchy sequences in g(X). ByG-completeness of g(X), there
exist gx, gy ∈ g(X) such that {gxn} and {gyn} converge to gx and gy, respectively.
Now, we prove that F(x, y) = gx and F(y,x) = gy. For this, using (G) and (.), we have

G
(
F(x, y), gx, gx

)
≤ G

(
F(x, y), gxn+, gxn+

)
+G(gxn+, gx, gx)

=G
(
F(x, y),F(xn, yn),F(xn, yn)

)
+G(gxn+, gx, gx)

≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(gx, gxn, gxn),G(gy, gyn, gyn),
G(F(x, y), gxn, gxn),G(F(x, y), gx, gxn),


G(F(x, y), gx, gx), G(F(xn, yn), gxn, gxn),


G(F(xn, yn), gxn, gxn), G(F(xn, yn), gxn, gxn),


G(F(x, y),F(xn, yn), gxn), G(F(xn, yn),F(x, y), gxn)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+G(gxn+, gx, gx)

= kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(gx, gxn, gxn),G(gy, gyn, gyn),
G(F(x, y), gxn, gxn),G(F(x, y), gx, gxn),

G(F(x, y), gx, gx), G(gxn+, gxn, gxn),

G(gxn+, gxn, gxn), G(gxn+, gxn, gxn),


G(F(x, y), gxn+, gxn), G(gxn+,F(x, y), gxn)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+G(gxn+, gx, gx)

= kmax

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(gx, gxn, gxn),G(gy, gyn, gyn),
G(F(x, y), gxn, gxn),G(F(x, y), gx, gxn),

G(F(x, y), gx, gx), G(gxn+, gxn, gxn),


G(F(x, y), gxn+, gxn), G(gxn+,F(x, y), gxn)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+G(gxn+, gx, gx). (.)
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On taking the limit as n→ ∞, we obtain that

G
(
F(x, y), gx, gx

) ≤ kG
(
F(x, y), gx, gx

) ≤ kG
(
F(x, y), gx, gx

)
, (.)

which implies that G(F(x, y), gx, gx) = , and so F(x, y) = gx. In a similar way, we can show
that F(y,x) = gy. Hence, (gx, gy) is a coupled point of coincidence of the mappings F and g .
Now, we shall show that gx = gy. In fact, from (.) we have

G(gx, gy, gy)

=G
(
F(x, y),F(y,x),F(y,x)

)

≤ kmax

⎧⎪⎨
⎪⎩

G(gx, gy, gy),G(gy, gx, gx),G(F(x, y), gy, gy),G(F(x, y), gx, gy),

G((F(x, y), gx, gx), G(F(y,x), gy, gy), G(F(y,x), gy, gy),


G(F(y,x), gy, gy), G(F(x, y),F(y,x), gy), G(F(y,x),F(x, y), gy)

⎫⎪⎬
⎪⎭

= kmax
{
G(gx, gy, gy),G(gy, gx, gx)

}
≤ kmax

{
G(gx, gy, gy),G(gy, gx, gx)

}
. (.)

In the same way, we can show that

G(gy, gx, gx)≤ k
{
G(gy, gx, gx),G(gx, gy, gy)

}
. (.)

If

max
{
G(gx, gy, gy),G(gy, gx, gx)

}
=G(gx, gy, gy),

then by (.) we have G(gx, gy, gy) ≤ kG(gx, gy, gy). This implies that G(gx, gy, gy) = ,
so that gx = gy. If

max
{
G(gx, gy, gy),G(gy, gx, gx)

}
=G(gy, gx, gx),

then from (.) we obtain G(gy, gx, gx) ≤ kG(gy, gx, gx), which implies that G(gy, gx,
gx) = , so that gx = gy.
Therefore, (gx, gx) is a coupled point of coincidence of mappings F and g .
If there is another x* ∈ X such that (gx*, gx*) is a coupled point of coincidence of map-

pings F and g , then by (.) we get

G
(
gx, gx*, gx*

)
=G

(
F(x,x),F

(
x*,x*

)
,F

(
x*,x*

))

≤ kmax

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(gx, gx*, gx*),G(gx, gx*, gx*),G(F(x,x), gx*, gx*),
G(F(x,x), gx, gx*), G((F(x,x), gx, gx), G(F(x*,x*), gx*, gx*),


G(F(x*,x*), gx*, gx*), G(F(x*,x*), gx*, gx*),


G(F(x,x),F(x*,x*), gx*), G(F(x*,x*),F(x,x), gx*)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= kmax
{
G

(
gx, gx*, gx*

)
,G

(
gx*, gx, gx

)}
≤ kmax

{
G

(
gx, gx*, gx*

)
,G

(
gx*, gx, gx

)}
. (.)
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In the same way, we can show that

G
(
gx*, gx, gx

) ≤ k
{
G

(
gx*, gx, gx

)
,G

(
gx, gx*, gx*

)}
. (.)

If

max
{
G

(
gx, gx*, gx*

)
,G

(
gx*, gx, gx

)}
=G

(
gx, gx*, gx*

)
,

then by (.) we haveG(gx, gx*, gx*) ≤ kG(gx, gx*, gx*). This implies thatG(gx, gx*, gx*) =
, so that gx = gx*. If

max
{
G

(
gx, gx*, gx*

)
,G

(
gx*, gx, gx

)}
=G

(
gx*, gx, gx

)
,

then from (.) we obtain G(gx*, gx, gx) ≤ kG(gx*, gx, gx), which implies that G(gx*, gx,
gx) = , so that gx = gx*.
Thus, (gx, gx) is a unique coupled point of coincidence of mappings F and g .
Now we show that F and g have a unique common coupled fixed point. For this, let

gx = u. Then we have u = gx = F(x,x). By w*-compatibility of F and g , we have

gu = g(gx) = gF(x,x) = F(gx, gx) = F(u,u).

Thus, (gu, gu) is a coupled point of coincidence of F and g . By the uniqueness of a coupled
point of coincidence, we have gu = gx. Therefore, u = gu = F(u,u), that is, (u,u) is the
common coupled fixed point of F and g .
To prove the uniqueness, let v ∈ X with v �= u such that

v = gv = F(v, v) and u = gu = F(u,u).

By using (.), following the same arguments as in the proof of (.) and (.), we obtain

G(u, v, v) = G(gu, gv, gv)≤ k
{
G(gu, gv, gv),G(gv, gu, gu)

}
= k

{
G(u, v, v),G(v,u,u)

}
(.)

and

G(v,u,u) = G(gv, gu, gu) ≤ k
{
G(gv, gu, gu),G(gu, gv, gxv)

}
= k

{
G(v,u,u),G(u, v, v)

}
. (.)

If max{G(u, v, v),G(v,u,u)} = G(u, v, v), then by (.) we have G(u, v, v) ≤ kG(u, v, v),
which implies that G(u, v, v) = , so that u = v. If max{G(u, v, v),G(v,u,u)} = G(v,u,u),
then from (.) we obtain G(v,u,u) ≤ kG(v,u,u), which implies that G(v,u,u) = , so
that u = v.
Thus, (u,u) is a unique common coupled fixed point of mappings F and g . This com-

pletes the proof of Theorem .. �
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Remark . Theorem . improves and extends Theorem . of Abbas et al. [] in the
following aspects:
() The contractive condition defined by (.) is replaced by the new contractive

condition defined by (.).
() The condition  ≤ k < 

 is replaced by the new condition  ≤ k < .

Corollary . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(s, t)

)
≤ kmax

{
G(gx, gu, gs),G(gy, gv, gt),G

(
F(x, y), gu, gs

)}
(.)

for all (x, y), (u, v), (s, t) ∈ X × X, where  ≤ k < . If F(X × X) ⊂ g(X) and g(X) is a G-
complete subspace of X, and F and g are w*-compatible, then F and g have a unique com-
mon coupled fixed point.

Remark . Corollary . improves and extends Theorem . of Abbas et al. [], the
condition  ≤ k < 

 is replaced by the new condition  ≤ k < .

Next, we introduce two examples to support Corollary ..

Example . Let us reconsider Example .. For all (x, y), (u, v), (s, t) ∈ X ×X, we have

G
(
F(x, y),F(u, v),F(s, t)

)
=G

(



x +



y,



u +



v,



s +



t
)

≤ 


(|x – u| + |u – s| + |s – x|) + 


(|y – v| + |v – t| + |t – y|)
=




· 

(|gx – gu| + |gu – gs| + |gs – gx|) + 


· 

(|gy – gv| + |gv – gt| + |gt – gy|)

=



G(gx, gu, gs) +



(gy, gv, gt)

≤
(




+



)
max

{
G(gx, gu, gs), (gy, gv, gt)

}

≤ 


max
{
G(gx, gu, gs),G(gy, gv, gt),G

(
F(x, y), gu, gs

)}
.

Then the statement (.) of Corollary . is satisfied for k = 
 . Other assumptions of

Corollary . are easy to verify. So, by Corollary ., there exists a unique x ∈ X such
that gx = F(x,x) = x. In fact, it is easy to see that (, ) is the unique common coupled fixed
point of F and g .

Example . Let X = [, ]. Define G,G : X ×X ×X → [,∞) by

G(x, y, z) = |x – y| + |y – z| + |z – x| and G(x, y, z) =


(|x – y| + |y – z| + |z – x|)
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for all x, y, z ∈ X. Then (X,G) and (X,G) are two G-metric spaces. Define a map F : X ×
X → X by F(x, y) =  – 

x –

y and gx = x for all x, y ∈ X. We have

G
(
F(x, y),F(u, v),F(s, t)

)
=G

(
 –



x –



y,  –



u –



v,  –



s –



t
)

≤ 

(|x – u| + |u – s| + |s – x|) + 


(|y – v| + |v – t| + |t – y|)

=



G(gx, gu, gs) +



(gy, gv, gt)

≤
(




+



)
max

{
G(gx, gu, gs), (gy, gv, gt)

}

≤ 


max
{
G(gx, gu, gs),G(gy, gv, gt),G

(
F(x, y), gu, gs

)}
.

Then the statement (.) of Corollary . is satisfied for k = 
 . Other assumptions of

Corollary . are easy to verify. So, by Corollary ., there exists a unique x ∈ X such
that gx = F(x,x) = x. In fact, g(  ) = F(  ,


 ) =


 .

Remark . Theorem . cannot be applied to Example . since (.) does not hold.
In fact, if (.) holds for some k ∈ [,  ), then

 = G

(


,


,



)

= G
(
F(, ),F(, ),F(, )

)
≤ kmax

{
G(g, g, g),G(g, g, g),G

(
F(, ), g, g

)}
= kmax

{
G(, , ),G(, , ),G

(


, , 

)}

= kmax

{


,


,



· 


}

=


k <



,

which is a contradiction.

Corollary . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(s, t)

) ≤ kmax

{
G(gx, gu, gs),G(gy, gv, gt),

G(F(x, y), gu, gs),G(F(x, y), gx, gu)

}
(.)

for all (x, y), (u, v), (s, t) ∈ X × X, where  ≤ k < . If F(X × X) ⊂ g(X) and g(X) is a G-
complete subspace of X, and F and g are w*-compatible, then F and g have a unique com-
mon coupled fixed point.
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Corollary . Let G and G be two G-metrics on X such that G(x, y, z) ≤ G(x, y, z) for
all x, y, z ∈ X, and let F : X ×X → X, g : X → X be two mappings satisfying

G
(
F(x, y),F(u, v),F(s, t)

)

≤ kmax

⎧⎪⎨
⎪⎩

G((F(x, y), gx, gx),G(F(u, v), gu, gu),
G(F(s, t), gs, gs),G(F(u, v), gu, gs),

G(F(x, y),F(u, v), gs),G(F(s, t),F(x, y), gu)

⎫⎪⎬
⎪⎭ (.)

for all (x, y), (u, v), (s, t) ∈ X × X, where  ≤ k < 
 . If F(X × X) ⊂ g(X) and g(X) is a G-

complete subspace of X, and F and g are w*-compatible, then F and g have a unique com-
mon coupled fixed point.

Remark . Theorem . and Corollaries .-. improve and extend Theorems .,
., ., Corollary ., . and . of Sabetghadam et al. [].
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