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1 Introduction

The dynamics of gauge theories in external electromagnetic fields has revealed a rich struc-

ture of new phenomena (see [1] for a recent review). One of these effects is the spontaneous

symmetry breaking of chiral symmetry induced by a magnetic field, which is known as mag-

netic catalysis [2–7]. It can be understood as due to the fermionic pairing and the effective

dimensional reduction which take place in the Landau levels. In strongly interacting sys-

tems the holographic duality [8] can be used to study this phenomenon [9] (see [10, 11] for

reviews and further references). The general objective of these holographic studies is to

uncover new physical effects of universal nature that are difficult to discover by using more

conventional approaches.
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In the holographic approach, the matter fields transforming in the fundamental repre-

sentation of the gauge group are introduced by adding flavor D-branes to the gravity dual.

If these flavor branes are treated as probes and their backreaction on the geometry is ne-

glected, we are in the so-called quenched approximation, which corresponds to discarding

quark loops on the field theory side. The magnetic field needed for the catalysis is intro-

duced as a worldvolume gauge field on the D-brane. From the study of the embeddings of

the probe one can extract the q̄q condensate as a function of the quark mass and verify the

breaking of chiral symmetry induced by the magnetic field.

To go beyond the probe approximation and to study the effects of quark loops in

the holographic approach one has to construct new supergravity duals which include the

backreaction of the flavor brane sources on the geometry. Finding these unquenched back-

grounds is a very difficult problem which can be simplified by considering a continuous

distribution of flavor branes (see [12] for a review of this smearing technique). In [13, 14]

the magnetic catalysis for the D3-D7 system with unquenched smeared flavor branes was

studied and the effects of dynamical flavors on the magnetic catalysis were analyzed.

In this paper we address the problem of the magnetic catalysis with unquenched fla-

vors in the ABJM theory [15]. The unflavored version of the ABJM model is a (2 + 1)-

dimensional Chern-Simons matter theory with N = 6 supersymmetry, whose gauge group

is U(N)×U(N), with Chern-Simons levels k and −k. It also contains bifundamental matter

fields. When the two parameters N and k are large, the ABJM theory can be holographi-

cally described by the ten-dimensional geometry AdS4×CP3 with fluxes. One can naturally

add flavor D6-branes extended along the AdS4 and wrapping an RP3 submanifold of the

internal CP3 [16, 17]. The smeared unquenched background for a large number Nf of mass-

less flavors has been constructed in [18]. These results were generalized in [19] to non-zero

temperature and in [20] to massive flavors. The main advantage of the ABJM case as com-

pared to other holographic setups is that the corresponding flavored backgrounds have a

good UV behavior without the pathologies present in other unquenched backgrounds (such

as, for example, the Landau pole singularity of the D3-D7 case). Moreover, in the case of

massless flavors the geometry is known analytically and is of the form AdSBH4×M6, where

AdSBH4 is a black hole in AdS4 and M6 is a squashed version of CP3. This simplicity

will allow us to obtain a holographic realization of the Callan-Symanzik equation for the

running of the quark mass due to the anomalous dimension generated by the unquenched

flavors.

We will carry out our analysis by considering a magnetized D6-brane probe in the ge-

ometry [18, 19] dual to the ABJM theory with unquenched massless flavors (i.e., dynamical

sea quarks), corresponding to the backreaction of a large number Nf of flavor D6-branes

with no magnetic field. We are thus neglecting the influence of the magnetic field on the

sea quarks. To take this effect into account we would have to find the backreaction to

magnetized flavor D6-branes, which is an involved problem beyond the scope of this work.

We will study the system both at zero and non-zero temperature. In both cases we will be

able to study the influence of the dynamical sea quarks at fully non-linear order in Nf .

The rest of this paper is organized as follows. In section 2 we introduce our holographic

model. We review the background of [18, 19], study the action of the probe in several
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coordinate systems and establish the dictionary to relate the holographic parameters to

the physical mass and condensate. In section 3 we obtain the different thermodynamic

properties of the magnetized brane and we find analytic results in some particular limiting

cases. Section 4 is devoted to the study of the phase diagram and of the magnetic catalysis

of chiral symmetry breaking. Finally, in section 5 we summarize our results and discuss

some possible research directions for the future. Appendix A contains the derivation of the

holographic dictionary for the condensate at zero temperature.

2 Holographic model

In this section we will recall the background of type IIA supergravity dual to unquenched

massless flavors in the ABJM Chern-Simons matter theory at non-zero temperature. This

background was obtained [18, 19] by including the backreaction of Nf flavor D6-branes,

which are continuously distributed in the internal space in such a way that the system

preserves N = 1 supersymmetry at zero temperature. This smearing procedure is a holo-

graphic implementation of the so-called Veneziano limit [21], in which both N and Nf

are large. As the smeared flavor branes are not coincident the flavor symmetry is U(1)Nf

rather than U(Nf ).

To study magnetic catalysis in this gravity dual with unquenched flavors, we will add an

additional flavor D6-brane probe with a magnetic field in its worldvolume. We will obtain

the action of this probe and introduce various systems of coordinates which are convenient

to describe the embeddings of the brane, both at zero and non-zero temperature.

2.1 Background metric

Our model consists of a probe D6-brane in the smeared flavored ABJM background of [18,

19], oriented such that their intersection is (2+1)-dimensional. We will begin by laying out

our conventions and reviewing the background geometry. The metric of the background

is [18, 19]

ds210 = L2

(
−hr2dt2 + r2(dx2 + dy2) +

dr2

hr2

)
+
L2

b2
(
qds2S4 + (E1)2 + (E2)2

)
, (2.1)

where L is a constant radius and the blackening factor is h(r) = 1− r3h
r3

, with rh constant.

In our conventions all coordinates are dimensionless and L has dimension of length. The

Bekenstein-Hawking temperature T of the black hole is related to rh as T = 3rh
4π . Notice

that T is dimensionless (the physical temperature is T/
√
α′). The internal metric in (2.1)

is a deformation of the Fubini-Study metric of CP3, represented as an S2-bundle over S4.
This deformation is generated by the backreaction of the massless flavors and introduces a

relative squashing q between the S2 fiber, corresponding to the two one-forms E1 and E2,

and the S4 base. We write the metric on the four-sphere in (2.1) as

ds2S4 =
4

(1 + ξ2)2

[
dξ2 + ξ2

3∑
i=1

(ωi)2

]
, (2.2)
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where 0 ≤ ξ < ∞ is a non-compact coordinate and the ωi are SU(2) left-invariant one-

forms satisfying dωi = 1
2εijk ω

j ∧ ωk. The S2 will be represented by the ordinary polar

coordinates 0 ≤ θ < π and 0 ≤ ϕ < 2π, in terms of which E1 and E2 can be written as

E1 = dθ +
ξ2

1 + ξ2
(
sinϕω1 − cosϕω2

)
(2.3)

E2 = sin θ

(
dϕ− ξ2

1 + ξ2
ω3

)
+

ξ2

1 + ξ2
cos θ

(
cosϕω1 + sinϕω2

)
. (2.4)

The metric (2.1) has two parameters q and b which deserve pronunciation. The param-

eter q is a constant squashing factor of the internal CP3 sub-manifold, whereas b represents

the relative squashing between the internal space and the AdSBH4 part of the metric. The

explicit expressions for the factors q and b of the smeared solution of [18, 19] are:

q = 3 +
3

2
ε̂− 2

√
1 + ε̂+

9

16
ε̂2 (2.5)

b =
2q

q + 1
, (2.6)

where ε̂ is the flavor deformation parameter, which depends on the number of flavors Nf

and colors N , as well as the ’t Hooft coupling λ = N/k, via

ε̂ =
3Nf

4k
=

3

4

Nf

N
λ . (2.7)

The radius L in (2.1) is also modified by the backreaction of the flavors. Indeed, it can be

written as [18]

L2 = π
√

2λ σ α′ , (2.8)

where σ is the so-called screening function, which determines the correction of the radius

with respect to the unflavored case and is given by the following function of the deformation

parameter

σ ≡
√

2− q
q
[
q + (1 + ε̂)(q − 1)

] b2 =
1

4

q
3
2 (2− q)

1
2 (1 + ε̂+ q)2[

q + (1 + ε̂)(q − 1)
] 5
2

. (2.9)

We note that most of the equations that we will manipulate in this paper only depend on

b, in which case it suffices to keep in mind that b is monotonously increasing between 1

and 5/4 as one dials ε̂ = 0 to ∞. Moreover, σ = 1 for ε̂ = 0 and it vanishes as 1/
√
ε̂ when

ε̂ is large.

The type IIA supergravity solution of [18, 19] also contains a constant dilaton φ,

given by

e−φ =
b

4

1 + ε̂+ q

2− q
k

L

√
α′ , (2.10)

as well as RR forms F2 and F4. In this paper we will only need the seven-form potential

C7 of F8 = − ∗ F2. To avoid unnecessary notation, we shall only present its pullback in

the subsection to follow.
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2.2 D6-brane action

Next we will add a probe D6-brane in this background, extended along the Minkowski and

radial coordinates and wrapping a three cycle C3 ' RP3 inside the internal manifold. The

cycle C3 extends along two directions of the S4 and one direction of the S2 fiber. It can

be characterized by requiring that the pullbacks of two of the one-forms ωi vanish (say, ω1

and ω2) and that the angle θ of the S2 is a function of the radial variable. By a suitable

choice of coordinates,1 the induced metric on the D6-brane worldvolume can be written as

dŝ27 = −L2r2 dt2 + L2 r2
[

(dx1)2 + (dx2)2
]

+
L2

r2

[
1 +

r2

b2
θ̇2
]
dr2

+
L2

b2

[
qdα2 + q sin2 αdβ2 + sin2 θ

(
dψ + cosαdβ

)2 ]
, (2.11)

where θ̇ = dθ/dr and 0 ≤ α < π, 0 ≤ β, ψ < 2π.

The D6-brane action has two contributions. As usual there is the Dirac-Born-Infeld

term, but we also have a Chern-Simons term due to the pullback of the RR seven-form

potential

SD6 = −TD6 e
−φ
∫
d7ζ
√
−det(g7 + F ) + TD6

∫
Ĉ7 , (2.12)

where the ζ’s are the coordinates of the induced metric and F = dA is the strength of the

worldvolume gauge field. The explicit form of the the pullback of C7 is [19]

Ĉ7 =
L7q

b3
e−φd3x ∧

[
hr3

b
sin θ cos θθ̇ + r2 sin2 θ + L2(r)

]
∧ dr ∧ Ξ3 , (2.13)

where Ξ3 = sinαdα∧dβ∧dψ and
∫
drL2(r) =

r3h
4b . To write C7 we have chosen a particular

gauge which leads to a finite renormalized action with consistent thermodynamics. In this

paper we will consider a background magnetic field described by a spatial component of

the D6-brane gauge field:

Ax2 = x1 L2B . (2.14)

In our conventions, the quantity B, as well as x1, is dimensionless. Notice also that the

physical magnetic field is related to B as

Bphys =
L2B

α′2
=

π
√

2λσB

α′
. (2.15)

A straightforward computation for the full action yields:

S = −N
∫
d3x

{
4b

r3h

∫
drr2 sin θ

(√
1 +

B2

r4

√
1 + h

(r
b

)2
θ̇2 − sin θ − hr

b
cos θθ̇

)
− 1

}
,

(2.16)

where the prefactor is

N =
2π2 r3h L

7 q

b4
TD6 e

−φ =
2
√

2π2(2− b) b σ
27

N
√
λ T 3 . (2.17)

1Let us require the pullbacks ω̂1 = ω̂2 = 0 and parameterize ω̂3 = dψ̂. Then, α, β, and ψ are defined

as: ξ =: tan
(
α
2

)
, β := ψ̂

2
, and ψ := ϕ− ψ̂

2
.
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For later use we also define:

Nr =
4b

r3h
N =

(2− b) b2 σ
4
√

2π

N3/2

√
k

. (2.18)

The equation of motion for the embedding scalar is thus,

∂r

(
g
(r
b

)2(
1 +

B2

r4

)
θ̇

)
= r2

(
3

2b
− 1 +

hr2

2g

)
sin 2θ , (2.19)

where we have defined

g =
hr2 sin θ√

1 + B2

r4

√
1 + h

(
r
b

)2
θ̇2

. (2.20)

The above equation of motion has generically two kinds of solutions. The first kind

are embeddings that penetrate the black hole horizon, those we shall call black hole (BH)

embeddings. The other kind are Minkowski (MN) embeddings, which terminate smoothly

above the horizon at some r0 > rh. Examples of both kind are the following. Clearly, the

equation of motion is satisfied with trivial constant angle BH embeddings θ = 0, π/2. The

equation of motion possesses a supersymmetric MN solution cos θ(r) =
(
r0
r

)b
at rh = 0

and B = 0. Away from zero temperature and vanishing magnetic field, this solution has

to be analyzed numerically. Our focus in this article is to study how these two types of

solutions map out the phase space as both the T and B are dialed, and the interesting

effects from the variation of the number of background flavors (essentially b). Before we

will get absorbed in analyzing several aspects of the system, we wish to introduce new

parameterizations better suited for the analyses.

2.3 Parameterization at non-zero temperature

It is useful to introduce another parameterization as discussed in [19]. Let us introduce a

system with isotropic Cartesian-like coordinates

R = u cos θ (2.21)

ρ = u sin θ , (2.22)

where the new radial coordinate u is related to the old one as

u
3
2b =

(
r

rh

) 3
2

+

√(
r

rh

)3

− 1 . (2.23)

We also define the functions f and f̃ as

f = 1− u−3/b (2.24)

f̃ = 1 + u−3/b . (2.25)

We also rescale the magnetic field as follows:

B̂ = 24/3
B

r2h
. (2.26)
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After these mappings the action becomes

S = −N
∫
d3x

{∫
dρρff̃u3/b−2

(√
1 +

B̂2

f̃8/3u4/b

√
1 +R′2 − 1

+

(
f

f̃
− 1

)
R

u2
(
ρR′ − 1

))
− 1

}
, (2.27)

where it is understood that u =
√
ρ2 +R2.

A generic solution to the equation of motion following from the action (2.27), behaves

close to the boundary as:

R = m+
c

ρ3/b−2
+ . . . , ρ→∞ , (2.28)

where m is related to the quark mass and c is proportional to the vacuum expectation

value 〈ψ̄ψ〉 (see below).

2.4 Parameterization at zero temperature

At zero temperature we also make use of the Cartesian-like coordinates as in (2.21) and

(2.22), but with

u = rb . (2.29)

The action (2.16) maps to

S = −Nr
b

∫
dρρu3/b−2

{√
1 +

B2

u4/b

√
1 +R′2 − 1

}
, (2.30)

where it is understood that u =
√
ρ2 +R2. We can scale out the B as follows:

u4/b = B2ũ4/b → u = Bb/2ũ (2.31)

R = Bb/2R̃ (2.32)

ρ = Bb/2ρ̃ . (2.33)

This leads us to

S = −B
3/2

b
Nr
∫
dρ̃ρ̃ũ3/b−2

{√
1 +

1

ũ4/b

√
1 + R̃′2 − 1

}
(2.34)

and to the following asymptotic behavior of the embedding function

R ∼ m0 +
c0

ρ3/b−2
→ R̃ ∼ m̃0 +

c̃0

ρ̃3/b−2
, (2.35)

where we defined the dimensionless quantities m̃0 and c̃0 as:

m̃0 ≡ B−b/2m0 (2.36)

c̃0 ≡ B(b−3)/2c0 . (2.37)

The parameters m0 and c0 can be related to the quark mass mq and the quark condensate

at zero temperature (denoted by 〈Oq〉0). The corresponding relation is worked out in the

next section and in appendix A.
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2.5 Running mass and condensate

The asymptotic value of the embedding function R should be related to the quark mass. To

find the precise relation we will consider a fundamental string stretched in the R direction

and ending on the flavor brane. The quark mass is just the Nambu-Goto action of the

string per unit time. While carrying out this computation we should take into account

that we are dealing with a theory with unquenched quarks in which the quark mass mq

acquires an anomalous dimension γm and mq therefore runs with the scale according to the

corresponding Callan-Symanzik equation. In our holographic setup the value of γm was

found in [18, 19] and is simply related to the squashing parameter b:

γm = b− 1 . (2.38)

In order to find the scale dependence of mq, we consider a fundamental string located at

the point ρ = ρ∗. We will start by considering the zero temperature case. Notice that ρ is

the holographic coordinate in our setup and, therefore, it is natural to think that the value

of ρ∗ determines the energy scale. The induced metric on a string worldsheet extended in

(t, R) at ρ = ρ∗ when T = 0 is given by:

ds22 = −L2
[
R2 + ρ2∗

] 1
b dt2 +

L2

b2
dR2

R2 + ρ2∗
. (2.39)

The running quark mass at zero temperature is then defined as:

mq =
1

2π(α′)
3
2

∫ m0

0

√
−det g2 dR =

√
λ

2

σ

b
√
α′

∫ m0

0

[
R2 + ρ2∗

] 1
2b
− 1

2 dR

=

√
λ

2

σ

b
√
α′

m0 ρ
1
b
−1
∗ 2F1

(
1

2
,
γm
2b

;
3

2
;−m

2
0

ρ2∗

)
. (2.40)

Notice that, in the unflavored case b = 1, γm = 0 and the effective mass mq is independent

of the scale parameter ρ∗, as it should. To determine the precise relation between ρ∗ and

the energy scale Λ, let us consider the relation (2.29) between the coordinate u and the

canonical AdS4 radial coordinate r. Taking into account that u ≈ ρ in the UV, it is natural

to identify r with the energy scale and define Λ as:

Λ ≡ ρ
1
b
∗ . (2.41)

The dependence of mq on Λ can be straightforwardly inferred from (2.40). Moreover, from

the integral representation in (2.40) we can readily obtain an evolution equation for mq

∂ mq

∂ log Λ
= mq −

σ√
α′

√
λ

2

m0

(Λ2b +m2
0)

γm
2b

. (2.42)

Clearly, the second term in (2.42) incorporates the flavor effects on the running of mq. In

the UV regime of large Λ we can just neglect m2
0 in the denominator of (2.42). The solution

of this UV equation can be obtained directly or by taking the large Λ limit of (2.40). We get

mq

√
α′√
λ
≈ σ√

2 b
m0 Λ−γm , (2.43)
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which shows that in the UV mq and m0 are proportional and that the running of mq

with the scale Λ is controlled by the mass anomalous dimension γm. Notice that the UV

mass (2.43) satisfies:
∂ mq

∂ log Λ
= −γm mq , (2.44)

which is just the Callan-Symanzik equation for the effective mass.

The analysis carried out above for mq is independent of the value of the magnetic field

B. When B 6= 0 it is convenient to write the solution of the evolution equation in terms of

the reduced mass parameter m̃0 defined in (2.36). We get:

mq

√
α′√
λ

=
σ√
2 b

B
b
2 m̃0 Λ−γm 2F1

(
1

2
,
γm
2b

;
3

2
;− Bb m̃2

0

Λ2(1+γm)

)
. (2.45)

To find the relation between the parameter c0 in (2.35) and the condensate we have to

compute the derivative of the free energy with respect to the bare quark mass µ0q , which

is the quark mass without the screening effects due to the quark loops. These effects are

encoded in the functions σ and b. By putting σ = b = 1, which corresponds to taking

ε̂ = 0, we switch off the dressing due to the dynamical flavors. Accordingly, to get µ0q in

terms of m̃0 we just take σ = b = 1 on the right-hand side of (2.45). We get

µ0q =

√
λ

2

√
B m̃0√
α′

. (2.46)

Notice that the value of m̃0 does not depend on the magnetic field, which is factorized in

the action (2.34). Therefore, the dependence of µ0q ∼
√
B on the field B is the same as in

the unflavored case, as it should.

The explicit calculation of the vacuum expectation value 〈Oq〉0 has been performed in

appendix A, with the result:

−
〈Oq〉0 α

′

N
=

(3− 2b)(2− b)
4π

σ B
γm
2 c0 =

(3− 2b)(2− b)
4π

σ B c̃0 . (2.47)

eqs. (2.46) and (2.47) constitute the basic dictionary in our analysis of the chiral symmetry

breaking at zero temperature.

For non-zero temperature we shall proceed as in the T = 0 case. The induced metric

for the fundamental string extended in R at ρ = ρ∗ is now

ds22 = −
L2 r2h

2
4
3

[
R2 + ρ2∗

] 1
b
[
f∗(R)

]2 [
f̃∗(R)

]− 2
3dt2 +

L2

b2
dR2

R2 + ρ2∗
, (2.48)

where f∗(R) and f̃∗(R) are the functions defined in (2.24) and (2.25) at ρ = ρ∗. Accordingly,

the running quark mass at T 6= 0 is now given by an integral extended from the horizon

(for ρ∗ < 1) to R = m:

mT
q =

√
λ

2

σ

b
√
α′

rh

2
2
3

∫ m

Rh

[
R2 + ρ2∗

] 1
2b
− 1

2 f∗(R)
[
f̃∗(R)

]− 1
3 dR , (2.49)
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where Rh =
√

1− ρ2∗ for ρ∗ < 1 and Rh = 0 otherwise. We have not been able to integrate

analytically this expression for arbitrary values of ρ∗. In order to relate ρ∗ with the scale

Λ we recall that, in the UV, ρ
1
b ≈ u

1
b ≈ 2

2
3 r/rh. Therefore, identifying again r with Λ, we

have:

Λ = 2−
2
3 rh ρ

1
b
∗ . (2.50)

We readily obtain in the UV domain (Λ� 1):

mT
q

√
α′

√
λ
≈ σ√

2 b

rbh

2
2b
3

m Λ−γm . (2.51)

This UV function mT
q also satisfies the Callan-Symanzik equation (2.44). Actually, it is

easy to relate in the UV the effective mass mT
q to its zero temperature counterpart. In

order to establish this connection, let us connect m0 and c0 with the zero temperature

limit of m and c. To find these relations we recall that these parameters characterize the

leading and subleading UV behaviors of the embedding function. From this observation it

is easy to prove that

m
1
b ≈ 2

2
3 r−1h m

1
b
0 , c ≈ 22−

2b
3 rb−3h c0 , (T → 0) . (2.52)

By using the relation between m and m0 written in (2.52), we see that mq is just the limit

of mT
q as T → 0:

mq = lim
T→0

mT
q . (2.53)

The bare mass at non-zero temperature µq is obtained from the unflavored limit of the

UV running mass (2.51). We get [19]:

µq
√
α′ =

2
1
3 π

3

√
2λT m . (2.54)

The resulting vacuum expectation value at T 6= 0 has been obtained in appendix D of [19]

and is given by:

− 〈Oq〉 α
′

N
=

22/3π(3− 2b)(2− b)
9

σ T 2 c . (2.55)

The relation between the condensates at non-zero and zero temperature is similar to the

one corresponding to the masses. Indeed, by using (2.52) we get that 〈Oq〉0 is given by the

following zero temperature limit:

〈Oq〉0 = lim
T→0

[
B̂

γm
2 〈Oq〉

]
. (2.56)

The relation (2.56) is very natural from the point of view of the renormalization group.

Indeed, 〈Oq〉 and 〈Oq〉0 are dimensionful quantities defined at scales determined by the

temperature and the magnetic field, respectively. The quotient 〈Oq〉/〈Oq〉0 should be

given by the ratio of these two energy scales (which is basically
√
B̂) raised to some power

which, following the renormalization group logic, should be the mass anomalous dimension,

as in (2.56).

In the rest of this paper, we will use units in which α′ = 1. The appropriate power of

α′ can be easily obtained in all expressions by looking at their units.
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3 Some properties of the dual matter

We will discuss many of the characteristics of the dual matter as described by the gravita-

tional system. The BH phase describes typical metallic behavior. The phase is nongapped

to charged and neutral excitations. For example, the former can be easily verified by the

standard DC conductivity calculation [22] in a simple generalization of our model by intro-

ducing a non-vanishing charge density on the probe. The MN phase, on the other hand,

behaves like an insulator: it is gapped to both neutral and charged excitations; the latter

can be checked by the conductivity calculation of [23] and the former by fluctuation anal-

ysis. The interplay between these two phases in the presence of a charge density makes an

interesting story, which will be addressed in a future work.

In the absence of the magnetic field, the thermodynamic properties of the system were

discussed in great detail in [19]. Here we are more interested in the magnetic properties and

on the effects that the magnetic field will bear. We will break this narrative in two parts,

so that in this section we will constrain ourselves to the case where we have analytic control

and in the next section we will confront the numerical side of the story, most relevantly

the magnetic catalysis.

3.1 Thermodynamic functions

The free energy of the system is obtained from evaluating the Wick rotated on-shell ac-

tion (2.16). As discussed in [18, 19], the free energy is finite albeit subtle at non-zero

temperature; there is no need to invoke holographic renormalization to get rid off infini-

ties. The free energy of the probe is identified with the Euclidean on-shell action SE ,

through the relation F = T SE . In the calculation of SE we integrate over both the Eu-

clidean time and the non-compact two-dimensional space. Since the latter integration gives

rise to an (infinite) two-dimensional volume V2, from now on we divide all the extensive

thermodynamic quantities by V2 and deal with densities. The free energy density F can

be written as
F

N
= G(m, B̂) − 1 . (3.1)

The explicit expression for the function G(m, B̂) can be obtained from the action of the

D6-brane probe. For MN embeddings it is more convenient to use R(ρ) as embedding

function. From the expression (2.27) of the action in these variables, G(m, B̂) is given by

G(m, B̂) =

∫ ∞
0

dρ ρ
[
ρ2 + R2

] 3
2b
−1
f f̃

[√
1 +R′2

√
1 +

B̂2

f̃
8
3

[
ρ2 + R2

]− 2
b

−1 +

(
f

f̃
− 1

)
R

ρ2 +R2
(ρR′ −R)

]
. (3.2)

For black hole embeddings it is better to use the θ = θ(r) parameterization and represent

G(m, B̂) as:

G(m, B̂) =
4b

r3h

∫ ∞
rh

drr2 sin2 θ

[√
1 +

(
rh

2
2
3 r

)4

B̂2

√
1 + h

(r
b

)2
θ̇2 − sin θ − h

r

b
cos θ θ̇

]
.

(3.3)
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The fact that the system under study is defined at a fixed temperature and magnetic

field implies that the appropriate thermodynamic potential is

dF = − s dT − M dB , (3.4)

where s is the entropy density andM is the magnetization of the system. Following (3.4),

the entropy density s is given by the following expression

s = −
(
∂F

∂T

)
B

= − N
T

[
3F

N
+ T

(
∂G
∂m

)
B̂

(
∂m

∂T

)
B

+ T

(
∂G
∂B̂

)
m

(
∂B̂

∂T

)
B

]
. (3.5)

Let us compute the different derivatives on the right-hand side of (3.5). First of all we use

that [19]
∂G
∂m

=
2b− 3

b
c , (3.6)

and that T ∂m/∂T = −bm, as follows from (2.51) when mT
q and Λ are fixed. Moreover, we

define the function J (m, B̂) as

J (m, B̂) ≡ 1

B̂

∂G(m, B̂)

∂B̂
. (3.7)

Then, taking into account the B̂ ∝ T−2 temperature dependence of the rescaled magnetic

field in (2.26), we get:

T
s

N
= 3 − 3G(m, B̂) + 2 B̂2 J (m, B̂) − (3− 2b) cm . (3.8)

For Minkowski embeddings, J (m, B̂) is explicitly given by the following integral:

J (m, B̂) ≡
∫ ∞
0

dρ
[
ρ2 + R2

] 1
2b
−1
f f̃−

1
3

√
1 +R′2√

B̂2 +
(
ρ2 + R2

) 2
b f̃

8
3

, (3.9)

whereas for a black hole embedding we have:

J (m, B̂) =
b rh

2
2
3

∫ ∞
rh

dr sin2 θ

√
1 + h

(
r
b

)2
θ̇2√

r4 +
(
rh

2
2
3

)4
B̂2

. (3.10)

The internal energy density E can be computed from the relation E = F + Ts, with

the result
E

N
= 2 − 2G(m, B̂) + 2 B̂2 J (m, B̂) − (3− 2b) cm . (3.11)

The heat capacity density cv is defined as cv = ∂E/∂T . Computing explicitly the derivative

of E with respect to the temperature in (3.11), and using (3.6), we arrive at the following

expression:

T
cv
N

= 2T
s

N
− 2 B̂2

(
J (m, B̂) + 2B̂

∂J (m, B̂)

∂B̂

)

+(2b− 3)

[(
3− b− b ∂(log c)

∂(logm)

)
cm − 4mB̂

∂c

∂B̂

]
. (3.12)
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In order to holographically investigate the joint effect of the presence of flavors and

magnetic field on the speed of sound, we use the following definition

v2s = −∂P
∂E

=
∂F

∂T

(
∂E

∂T

)−1
=

s

cv
. (3.13)

Let us apply the formula (3.13) for the background plus probe system. Expanding at first

order in the probe functions, we get:

v2s =
sback + s

cv,back + cv
≈ 1

2
− cv − 2s

4sback
, (3.14)

where we have taken into account that cv,back = 2sback and, therefore, v2s = 1/2 for the

background, as it corresponds to a conformal system in 2 + 1 dimensions. Since, we can

rewrite the ratio N/T sback in the following form [19]

N
T sback

=
1

4

λ

N

q

b4
σ2 , (3.15)

we arrive at the following expression for the deviation δv2s = v2s − 1
2 :

δv2s ≈
λ

N

q σ2

16 b4

[
2 B̂2

(
J (m, B̂) + 2B̂

∂J (m, B̂)

∂B̂

)

+(3− 2b)

((
3 − b − b

∂(log c)

∂(logm)

)
cm− 4mB̂

∂c

∂B̂

)]
, (3.16)

where we have used (3.12) to compute cv − 2s for the probe.

According to (3.4) the magnetization of the system is given by the following expression

M = −
(
∂F

∂B

)
T

= − 2
4
3π

3 b
Nr T B̂ J (m, B̂) . (3.17)

The magnetic susceptibility χ is defined as:

χ ≡ ∂M
∂B

. (3.18)

For generic embeddings, which are numerical, also the thermodynamic quantities need

to be calculated numerically. However, there are two corners were analytic results can be

obtained. The first one is when we study embeddings with asymptotically large m and the

other when the embeddings are massless. We will consider these two cases separately in

the next two subsections.

3.2 Massless embeddings

For zero mass (and c = 0) the embedding is necessarily a black hole embedding and it is

more convenient to use the θ = θ(r) parameterization. Actually, the massless embeddings
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in these variables are just characterized by the condition θ = π/2. Therefore, it follows

from (3.3) that the function G(m = 0, B̂) is given by the following integral:

G(m = 0, B̂) =
4b

r3h

∫ ∞
rh

drr2

√1 +

(
rh

2
2
3 r

)4

B̂2 − 1

 , (3.19)

which can be explicitly performed:

G(m = 0, B̂) =
4b

3

[
1 − 2F1

(
−1

2
,−3

4
,
1

4
;−B̂

2

2
8
3

)]
. (3.20)

Then, it follows that the free energy is given by

F

N
= −1 +

4b

3

[
1 − 2F1

(
−1

2
,−3

4
,
1

4
;−
(

3

4π

)4 B2

T 4

)]
. (3.21)

Let us next compute the entropy density for the massless embeddings. By taking m = 0

in (3.8), we find

T
s(m = 0, B̂)

N
= −3G(m = 0, B̂) + 2 B̂2 J (m = 0, B̂) + 3 . (3.22)

The integral J (m = 0, B̂) can be evaluated explicitly from its definition (3.10),

J (m = 0, B̂) =
b

2
2
3

2F1

(
1

4
,
1

2
,
5

4
;−B̂

2

2
8
3

)
. (3.23)

Plugging this result into (3.22), after some calculation, we arrive at the following simple

expression for the entropy density of the massless embeddings:

T
s(m = 0, B)

N
= 3 − 4b + 4b

√
1 +

(
3

4π

)4 B2

T 4
. (3.24)

Similarly, the internal energy for zero mass is obtained from (3.11):

E

N

∣∣∣
m=0

= 2 +
8b

3

[√
1 +

(
3

4π

)4 B2

T 4
− 1 +

(
3

4π

)4 B2

T 4 2F1

(
1

2
,
1

4
,
5

4
;−
(

3

4π

)4 B2

T 4

)]
.

(3.25)

We will compute the heat capacity by taking m = 0 in (3.12) and using the remarkable

property:

J (m = 0, B̂) + 2 B̂
∂J (m = 0, B̂)

∂B̂
=

b

2
2
3

1√
1 + B̂2

2
8
3

, (3.26)

which combined with (3.24) leads to the simple result:

T
cv
N

∣∣∣
m=0

= 6 + 8b

[
1√

1 +
(

3
4π

)4 B2

T 4

− 1

]
. (3.27)
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This result can be confirmed by computing directly the derivative of the internal energy

written in (3.25). The deviation of the speed of sound with respect to the conformal value

v2s = 1/2 is readily obtained from (3.16):

δv2s ≈
λ

2N

q σ2

b3

(
3

4π

)4 B2

T 4

√
1 +

(
3
4π

)4 B2

T 4

, (3.28)

and the magnetization of the system at zero mass follows from (3.17) and (3.23):

M(m = 0, B) = −3Nr
4π

B

T
2F1

(
1

4
,
1

2
,
5

4
;−
(

3

4π

)4 B2

T 4

)
. (3.29)

We note that the magnetization is always negative and vanishes at zero field. It is no

surprise that the system is diamagnetic. The magnetic field appears with even power inside

the DBI action, which implies that the spontaneous magnetization vanishes. Moreover,

the DBI action has a specific (plus) sign, meaning that the magnetization is always non-

positive.2

To obtain the magnetic susceptibility we have to compute the derivative of the right-

hand side of (3.29) with respect to the magnetic field (see (3.18)). We get:

χ(m = 0, B) = − 3Nr
8π T

 1√
1 +

(
3
4π

)4 B2

T 4

+ 2F1

(
1

4
,
1

2
,
5

4
;−
(

3

4π

)4 B2

T 4

) . (3.30)

In the equations written above for the massless black hole embeddings the dependence

on the number of flavors is contained implicitly in the parameter b (see (2.6)), while the

dependence on the magnetic field and temperature is manifest. One can take further limits

in some of these functions. For example, the T = 0 values of the free energy (3.21) and

entropy (3.22) are:

F (m = 0)

Nr

∣∣∣
T=0

=
B3/2

6
√
π

Γ

[
1

4

]2
, s(m = 0)

∣∣∣
T=0

=
4π

3
Nr B , (3.31)

while the magnetization (3.29) of the massless embeddings at zero temperature is:

M(m = 0)
∣∣∣
T=0

= − 1

4
√
π
Nr Γ

[
1

4

]2 √
B . (3.32)

Let us pause here for a while. We wish to emphasize, that though we were able to produce

analytic formulas in the special case of massless embedding, this phase is only relevant for

small values of B̂. In particular, the T = 0 case is never thermodynamically preferred. The

phase diagram will be addressed in section 4.

2In other systems, where the gauge fields have Chern-Simons terms, their contribution to the magneti-

zation can be positive thus leading to a competition with the DBI part. As a result one might get a positive

overall magnetization leading to paramagnetism (see [24, 25]), or even to ferromagnetism (as in [25]).
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3.2.1 Small magnetic field

Let us focus on limits of thermodynamic quantities for the massless case when the magnetic

field is small (actually when B/T 2 → 0). These expressions give the first correction, due

to the magnetic field, to the conformal behavior of the probe at B/T 2 → 0. For F , s, E,

and cv we find

F

N
≈ −1 + 2b

(
3

4π

)4 B2

T 4
, T

s

N
≈ 3 + 2b

(
3

4π

)4 B2

T 4
,

E

N
≈ 2 + 4b

(
3

4π

)4 B2

T 4
, T

cv
N
≈ 6 − 4b

(
3

4π

)4 B2

T 4
. (3.33)

Moreover, the variation of the speed of sound at leading order in B/T 2 is:

δv2s ≈
λ

2N

q σ2

b3

(
3

4π

)4 B2

T 4
, (B/T 2 → 0), (3.34)

and the magnetization becomes:

M ≈ −3Nr
4π

B

T
= −3(2− b) b2σ

(4π)2
√

2
N
√
λ
B

T
, (B/T 2 → 0). (3.35)

It follows that the susceptibility at vanishing magnetic field is:

χ(m = B = 0) = −3(2− b)b2σ
(4π)2

√
2

N
√
λ

1

T
. (3.36)

Thus, the diamagnetic response of the system goes to zero as the temperature approaches

infinity. The behavior possessed by (3.36) closely resembles another (2 + 1)-dimensional

construction [27]. In both cases the system behaves as in Curie’s law χ ∝ 1/T , though they

are diamagnetic. From a dimensional analysis point of view this temperature dependence

is the expected one for the magnetic susceptibility in 2 + 1 dimensions, since at high T

conformality is restored.

3.3 Approximate expressions for large mass

When the D6-brane probe remains far away from the horizon, it is possible to obtain

analytic results for the free energy and the rest of the thermodynamic quantities. Following

the analysis of [19, 26], for large m the embeddings are nearly flat and given by the following

expression

R(ρ) = R0 + δR(ρ) , (3.37)

where R0 is a constant and δR(ρ) is much smaller than R0. Before calculating the free

energy we want an approximate expression for the condensate of the theory as a function

of the mass and the magnetic field. For this task we need the relationship between R0 and

m. A simple calculation yields the following expansion in powers of m

R0 = m− a(b)m1− 6
b +

1

4
a1(b)B̂

2m1− 4
b + · · · , (3.38)
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where the function a(b) is given in equation (B.15) of [19], which we record here for com-

pleteness and a1(b) is

a(b) =
3

3 + 2b

[
2b

3− 2b
+ ψ

(
3

b

)
− ψ

(
3

2b

)]
(3.39)

a1(b) =
2b

3− 2b
− ψ

(
3

2b

)
+ ψ

(
2

b

)
, (3.40)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. Using (3.38) it is possible to obtain

an approximate expression for the condensate as a function of the mass for any number of

flavors

c =
6 b

4b2 − 9
m−1−

3
b +

1

2

b B̂2

3− 2b
m−1−

1
b − 4

3

b B̂2

3− 2b
m−1−

4
b + · · · . (3.41)

Using these results in (3.2) and (3.9) it is possible to evaluate the functions G(m, B̂)

and J (m, B̂) for large values of the mass parameter m. For G we get

G(m, B̂) = 1 +
b

2

B̂2

m
1
b

− 2 b

3 + 2b

1

m
3
b

− b

3

B̂2

m
4
b

+ · · · , (3.42)

while J behaves for large m as:

J (m, B̂) = b

[
1

m
1
b

− 2

3

1

m
4
b

]
+ · · · . (3.43)

It is now straightforward to compute the different thermodynamic functions in this high

mass regime. Indeed, the free energy and the entropy follow directly by substituting (3.42)

and (3.43) into (3.1) and (3.8), respectively,

F

N
= − 2 b

3 + 2b

1

m
3
b

+
b

2

B̂2

m
1
b

− b

3

B̂2

m
4
b

· · · (3.44)

T
s

N
=

12 b

3 + 2b

1

m
3
b

+
b B̂2

m
4
b

+ · · · . (3.45)

Similarly, E and cv can be expanded as

E

N
=
b

2

B̂2

m
1
b

+
10 b

3 + 2b

1

m
3
b

+
2b

3

B̂2

m
4
b

+ · · · (3.46)

T
cv
N

=
60 b

3 + 2b

1

m
3
b

+ 2b
B̂2

m
4
b

+ · · · , (3.47)

and the variation of the speed of sound at large m is given by

δv2s = − 9

4

λ

N

σ2

(3 + 2b)(2− b)b2
1

m
3
b

+ · · · . (3.48)

Finally, in the high mass regime the magnetization can be expanded as:

M = − 2
4
3π

9
Nr T B̂

(
3

m
1
b

− 2

m
4
b

)
· · · . (3.49)

This regime of large m is achieved when the temperature is low. Therefore, it is

interesting to compare these results with the ones obtained when T = 0. We will perform

this analysis in the next subsection.
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3.3.1 Zero temperature limit

One can calculate the different thermodynamic functions at zero temperature by working

directly with the parameterization of section 2.4, in which the embeddings are characterized

by the two rescaled parameters m̃0 and c̃0 (see (2.36) and (2.37)). For large values of m̃0 one

can proceed as above and find an approximate expression of the condensate as a function

of the mass:

c̃0 =
1

2

b

3− 2b
m̃
−1− 1

b
0 + · · · , (m̃0 →∞) . (3.50)

Notice that, according to our dictionary (2.46), large m̃0 corresponds to large µ0q or small B.

Actually, we can extract the dependence of the condensate on the B field by rewriting (3.50)

in terms of the unrescaled parameters c0 and m0

c0 =
1

2

b

3− 2b
B2 m

−1− 1
b

0 + · · · . (3.51)

It is worth pointing out that (3.50) and (3.51) can also be obtained by using (2.52) and

keeping the leading terms in the T → 0 limit. It is instructive to write (3.51) in terms of

physical quantities. We can use our dictionary (2.46) and (2.47) to translate (3.51) to

−
〈Oq〉0
N

=
(2− b) b

8π2
Bphys√

2λ

[ √
λ

2
√

2π σ

Bphys

(µ0q)
2

] b+1
2b

, (3.52)

where we have written the result in terms of Bphys = L2B. Similarly, by direct calculation

or by using the limiting expressions (2.52), one finds that the free energy for large m̃0 can

be approximated as:
F

Nr
=

1

2
B2m

− 1
b

0 + · · · , (3.53)

which, in terms of physical quantities corresponds to

F =
(2− b)b2

8π2
√

2

N√
λ
µ0q Bphys

[ √
λ

2
√

2π σ

Bphys

(µ0q)
2

] b+1
2b

+ · · · . (3.54)

By computing the derivatives with respect to the magnetic field of the free energy written

above one can easily obtain the magnetization and susceptibility at zero temperature in

the regime in which µ0q/
√
B is large.

4 Magnetic catalysis

In this section we will address the full phase diagram of the system at non-zero magnetic

field, zero and non-zero temperature, and in the presence of background smeared flavors

Nf 6= 0. There are excellent reviews [10, 11] which discuss some of the interesting phe-

nomena that occur on probe-brane systems when an external magnetic field is turned on.

To narrow the scope we focus on a particular effect where the magnetic field induces spon-

taneous chiral symmetry breaking, known as the magnetic catalysis [5–7]. Only rather

recently have we witnessed attempts in addressing magnetic catalysis that arise away from
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the probe limit [13, 14]. Current paper constitutes our second step in this direction, the

first one being the construction of a dual to unquenched massive flavors [20]. Ultimately,

one wishes to combine the two and also backreact the magnetic field on the supergravity

solution. Our goal is very ambitious, but we nevertheless feel that it should not go without

serious attempt. In the current paper, we are more modest and consider the magnetic field

only residing on the probe, but as a background we consider the fully backreacted massless

flavored ABJM model.

We will begin our discussion with zero temperature case and then move on to non-zero

temperature. Our findings resemble somewhat the results in the supersymmetric D3-D7

probe brane analysis [10, 11]. However, surprisingly, the flavor factors go along the ride

and we can thus analyze the background flavor effects exactly, in contrast to D3-D7 system

where the flavors have to be treated perturbatively [13, 14]. We also show that the magnetic

catalysis is enhanced (suppressed) with flavor effects at large (small) magnetic field strength

when the bare quark mass is non-zero.

4.1 Zero temperature

Consider the equation of motion for the embedding R̃ = R̃(ρ̃) as derived from the ac-

tion (2.34) at zero temperature T = 0. At non-zero B the supersymmetry is broken, and

thus the D6-brane has a profile (as in (2.35)) which depends on ρ̃. For large m̃0, the con-

densate can be obtained analytically (see (3.50)), but for small values of m̃0, the c̃0 needs

to be numerically solved for. In figure 1 (left panel) we display the parametric plot of c̃0
versus m̃0, which was generated by varying the IR value R̃(0) = R̃0 and shooting towards

the AdS boundary.3 In figure 1 (right panel) we plot the free energy as a function of m̃0.

We find several possible solutions for some given small m̃0, but immediately infer that the

physical solution is the one with lowest free energy. This corresponds to the solution with

larger condensate, i.e., corresponding to the right arms of (m̃0, c̃0) curves. We also note,

that the large m̃0 tail corresponds to the analytic behavior (3.50), whereas zooming in

toward origin of the plot would probably result in a self-similar behavior of the equation

of state, similarly as was analyzed in [19].

4.1.1 Zero bare mass

An important result is that the m̃0 = 0 embedding has a non-zero fermion condensate

c̃0 ∝ 〈Oq〉0. In terms of physical quantities, the relation (2.47) between 〈Oq〉0 and c̃0 has

been written in the appendix (eq. (A.7)). The introduction of the magnetic field B has

therefore induced a spontaneous chiral symmetry breaking.

We now focus on the flavor effects. While we find in figure 1 that the c̃0 grows with

increasing ε̂, the condensate 〈Oq〉0 given in (A.7) actually has the opposite behavior with

more flavor. In figure 2 we plot essentially 〈Oq〉0 against ε̂ and see that the condensate

actually decreases monotonously with ε̂ for fixed Bphys. In a different system [13] the

tendency for the condensate to decrease with flavor was also observed. At infinite flavor

ε̂→∞, 〈Oq〉0 reaches a constant non-zero value.

3Notice that only m̃0 ≥ 0 embeddings are physical; otherwise the angle θ > π/2.
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Figure 1. Plot of the condensate c̃0 (left) and the free energy (right) versus the rescaled mass m̃0.

The solid blue is ε̂ = 0 and the dashed blue is ε̂ = ∞. Both of the curves on the right panel start

at the value (at m̃0 = 0) Γ(1/4)2

6
√
π

as extracted from (3.31). Notice that there is no phase transition,

since for all m̃0 ≥ 0 we reside on the same solution.
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Figure 2. Plot of the condensate against the deformation parameter at zero bare mass. At infinite

flavor the condensate reaches a constant value for fixed physical magnetic field Bphys. Notice that

we normalized the depicted quantity to unity in the quenched limit.

4.1.2 Non-zero bare mass

While the magnetic catalysis is the main focus of this paper, it is interesting to study the

case with non-vanishing bare mass. In other words, we wish to study the system when

the chiral symmetry is explicitly broken, rather than spontaneously , and ask what does the

condensate care about the magnetic field and background flavor.

When the bare mass is non-zero it is convenient to study the value of the condensate

for a fixed value of µ0q . From our dictionary (2.46) we can relate the mass parameter m̃0
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Figure 3. Plots of the condensate versus the magnetic field, when the bare quark mass is non-zero.

The solid blue is ε̂ = 0 and the dashed blue is ε̂ = 10. In the right panel we have also included the

ε̂ = 0.1 (solid red) and the ε̂ = 1 (dotted black) curves.

to µ0q and the physical magnetic field. We get:

m̃0 =

√
2
√

2π σ

[
(µ0q)

2

√
λBphys

] 1
2

. (4.1)

The formula (4.1) enables us to plot the condensate against the magnetic field itself, in

units of µ0q rather than the rescaled mass m̃0. Indeed, let us now consider the quantity:

− λ

(µ0q)
2

〈Oq〉0
N

=
(3− 2b)(2− b)

4π2
√

2

√
λBphys

(µ0q)
2

c̃0 . (4.2)

The condensate parameter c̃0 depends non-trivially on m̃0 (the precise dependence must

be found by numerical calculations), which in turn can be written as in (4.1). Thus, it

follows that the left-hand side of (4.2) depends on
√
λBphys/(µ

0
q)

2.

In figure 3 we show the condensate against the magnetic field and find that it increases

monotonously. Moreover, for small Bphys/(µ
0
q)

2 the condensate for the flavored theory is

larger than the unflavored one. Thus, for small Bphys or large µ0q , the flavors produce

an enhancement of the chiral symmetry breaking. In figure 3 we illustrate this flavor

effect by plotting the difference of condensates as a function of Bphys/(µ
0
q)

2. Actually, for

small values of Bphys/(µ
0
q)

2 we can use the approximate expression (3.50) to estimate c̃0.

Plugging (3.50) and (4.1) into (4.2) we get for small Bphys/(µ
0
q)

2

− λ

(µ0q)
2

〈Oq〉0
N

≈ (2− b)b
8
√

2π2
(2π
√

2σ)−
1
2
− 1

2b

[√
λBphys

(µ0q)
2

] 3
2
+ 1

2b

. (4.3)

Thus, we get a power law behavior with an exponent which depends on the number of

flavors and matches the numerical results.

For large values of Bphys/(µ
0
q)

2 the flavors suppress the condensate and we have a

behavior similar to the massless case. Curiously, this change of behavior occurs at values

of Bphys/(µ
0
q)

2 which are almost independent of the number of flavors (see figure 3).
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4.2 Non-zero temperature

Having understood the basic physics behind introducing the magnetic field, let us now

heat up the system and study what happens. In addition to the MN embeddings, we now

also have the BH embeddings at our disposal. At zero magnetic field, B = 0, we recall

that there is going to be a phase transition from the MN phase to the BH phase as the

temperature is increased [19]. The black hole begins to increasingly attract the probe D6-

brane. Turning on B has the opposite effect, in some sense the magnetic field makes the

D6-brane to repel. We thus have two competing effects in play and we need to explore the

four-dimensional phase space (T,B, µq, ε̂), to find out which phase is thermodynamically

preferred. Recall that at non-zero temperature we can form the dimensionless ratio (2.26),

which for the physical magnetic field is B̂phys ≡ 24/3
Bphys

r2h
and that the bare mass µq was

introduced in [19], see below. This narrows down the phase space down to three dimensions

(B̂phys, µq, ε̂). Let us begin our journey in the simpler case with vanishing bare quark mass

µq = 0.

4.2.1 Zero bare mass

We start exploring the phase space in the case where we set µq = 0. This slice of the

full phase diagram is easily obtained. At any given ε̂ we only have two options, either the

system is in the chirally symmetric BH phase (small B̂phys) or the system is in the MN phase

(large B̂phys) and the chiral symmetry is broken; see figure 4. There is a first order phase

transition at some critical B̂phys
crit , which depends on ε̂. Above this critical B̂phys

crit , the BH

phase is never reached and thus the chiral symmetry is spontaneously broken. The phase

diagram (ε̂, B̂) is presented in figure 5 (left panel). The curve plotted B̂phys
crit = B̂phys

crit (ε̂)

shows that the critical magnetic field decreases with increasing number of flavors. In other

words, at fixed temperature, the more flavor there is the smaller magnetic field is needed

to realize magnetic catalysis. As a consequence the critical condensate will also be smaller

with more flavors, as is visible in figure 5 (right panel).

We finish this subsection by presenting the graph figure 6, which represents the con-

densate as a function of the magnetic field at selected flavor deformation parameters (ε̂ = 0

and 10) and zero bare quark mass. The swallow-tail structures of the free energy graphs

are indications of the first order phase transition, and from figure 6 we conclude that the

condensate acts as an order parameter: at critical B̂phys
crit the condensate jumps to a non-zero

value and increases thereafter. From the numerics we also infer, that for large B̂,

〈Oq〉
N
∼ T 2B̂(3−b)/2 ∼ B ·

(
T√
B

)γm
, B̂ � 1 . (4.4)

This behavior conforms with the T = 0 result (2.47) at m = 0 (recall the relation (2.56)).

4.2.2 Non-zero bare mass

To complete the investigation of the phase diagram, let us turn on a non-zero bare mass

at non-zero temperature. Recall that the bare mass µq is given by [19]

µq

T
√
λ

=
25/6π

3
m . (4.5)
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Figure 4. Plot of the condensate c (left) and the free energy (right) versus m at ε̂ = 0. The

solid curves are for B̂ = 20 and the dashed curves are for B̂ = 15. The blue color stands for MN

embeddings and black for BH embeddings. The phase transition for m = 0 is between these two

cases, around B̂crit(ε̂ = 0) ∼ 17.8, above this critical value the chiral symmetry is always broken.
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Figure 5. On the left we plot the phase diagram for m = 0 in the (ε̂, B̂)-plane. Above the curve,

the chiral symmetry is spontaneously broken whereas below the curve the condensate is zero. We

note that the critical magnetic field needed, at fixed temperature, to break the chiral symmetry

decreases with the number of flavors, leading to the decrease of the condensate (and asymptotically

vanishing due to the screening function σ), as depicted on the right.

Given the relation (4.5), instead of directly fixing the bare mass to some value, we can fix

m (for any flavor deformation parameter ε̂). We just need to keep in mind that larger m

will then correspond to smaller temperatures, and vice versa.

We anticipate that there are essentially two different cases, depending on whether m

is small or large. In figure 7 we depict the condensate as a function of B̂ for various m at

ε̂ = 0; the ε̂ > 0 is qualitatively the same with smaller B̂crit’s. We find that for any given

ε̂ there exists a large enough m such that the system is always in the chirally broken MN

phase for any B̂. For small values of m, there can be a phase transition from the chirally

symmetric BH phase to a broken MN phase at some critical B̂crit.

5 Conclusions

Let us shortly recap the main results of our work. We studied the ABJM Chern-Simons

matter model with dynamical flavors, added as smeared flavor D6-branes. Our black hole
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Figure 6. The condensate versus the magnetic field B̂ at µq = 0. The solid blue curve is for ε̂ = 0

and the dashed blue curve is for ε̂ = 10. On the left of the curves the condensate is zero. Notice that

at critical magnetic field B̂crit(ε̂) there is a first order phase transition (from the chirally symmetric

BH phase) where the condensate jumps to a non-zero value, thus acting as an order parameter for

the transition (to the chirally broken MN phase).
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Figure 7. The condensate versus the magnetic field B̂ at various fixed bare masses at quenched

case ε̂ = 0. The critical magnetic field B̂crit, whose values correspond to the dotted vertical line

segments, decreases as m increases, and the respective curves read m = 0.1 (blue), m = 0.5 (red),

m = 1 (brown), and m = 5 (continuous black).

geometry includes the backreaction of dynamical massless flavors at fully non-linear order

in the flavor deformation parameter (2.7). We investigated the effect of the inclusion of an

external magnetic field on the worldvolume of an (additional) probe D6-brane and focused

on the flavor effects from the smeared D6-branes of the background. We obtained the

different thermodynamic functions for the probe and explored the corresponding phase

diagram. In some corners of this phase space we were able to obtain analytic results.
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At zero temperature, for any magnetic field strength, the system was always in the chi-

rally broken MN phase; a phenomenon called magnetic catalysis. At large (small) magnetic

field strength, at non-vanishing bare quark mass, the condensate was found decreasing (in-

creasing) with the number of flavors. In other words, for small masses the magnetic catalysis

is suppressed whereas for large values of the mass it is enhanced given more flavors in the

background. This behavior could morally be thought of as inverse magnetic catalysis in

the sense of [28, 29], although is technically different.

At non-zero temperature there was a critical magnetic field above which the magnetic

catalysis took place. The condensate acted as an order parameter for the first order phase

transition between the transition from the chirally symmetric BH phase to the broken MN

phase. We found that the critical magnetic field was smaller for more flavors, which we

interpret as an enhancement of the magnetic catalysis.

Let us finally discuss some possible extensions of our work. First of all, we could

analyze the effects of having unquenched massive flavors. The corresponding background

for the ABJM theory at zero temperature has been recently constructed in [20]. It would be

interesting to explore in this setup how the flavor effects on the condensate are enhanced or

suppressed as the mass of the unquenched quarks is varied, and to compare with the results

found here in section 4.1.2. Also, one could try to include the effect of the magnetic field on

the unquenched quarks. For this purpose a new non-supersymmetric background must be

constructed first (see [13, 14] for a similar analysis in the D3-D7 setup). To complete the

phase structure of the model we must explore it at non-zero chemical potential. This would

require introducing a non-vanishing charge density by exciting additional components of

the worldvolume gauge field.
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A Zero temperature dictionary

The relation between the mass and the parameter m̃0 has been worked out in detail in

section 2.5. In this appendix we work out the dictionary for the condensate at T = 0,

which we will denote by 〈Oq〉0. A similar analysis at non-zero temperature was presented

in appendix D of [19]. For simplicity, in this appendix we use units in which α′ = 1.

Let µ0q be the bare quark mass at zero temperature, whose explicit expression in terms

of m̃0 and B has been derived in section 2.5 (eq. (2.46)). The expectation value 〈Oq〉0 is
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obtained as the derivative with respect to µ0q of the zero temperature free energy:

〈Oq〉0 =
∂F

∂µ0q
. (A.1)

To compute the derivative in (A.1) we apply the chain rule:

∂F

∂µ0q
=

∂F

∂m̃0

∂m̃0

∂µ0q
, (A.2)

and use [19]:
∂F

∂m̃0
= −3− 2b

b2
B

3
2 c̃0Nr , (A.3)

where c̃0 = B
b−3
2 c0. We get:

〈Oq〉0 = −3− 2b

b2
B

3
2 c̃0

m̃0

µ0q
Nr . (A.4)

Using (2.46) and the expression of Nr, we find:

m̃0

µ0q
Nr =

(2− b) b2 σ
4π

N B−
1
2 . (A.5)

Therefore, we have the following relation between 〈Oq〉0 and c̃0:

−
〈Oq〉0
N

=
(3− 2b)(2− b)σ

4π
B c̃0 , (A.6)

which, after including the appropriate power of α′, coincides with the expression written

in (2.47). Let us finally write (A.6) in terms of the physical magnetic field Bphys given

by (2.15). We find

−
〈Oq〉0
N

=
(3− 2b)(2− b)

4π2
√

2

Bphys√
λ

c̃0 . (A.7)
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