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Abstract Let Mn be a complete and noncompact hyper-surface immersed in Rn+1. We
should show that if M is of finite total curvature and Ricci flat, then M turns out to be
a hyperplane. Meanwhile, the hyper-surfaces with the vanishing scalar curvature is also
considered in this paper. It can be shown that if the total curvature is sufficiently small, then
by refined Kato’s inequality, conformal flatness and flatness are equivalent in some sense.
And those results should be compared with Hartman and Nirenberg’s similar results with flat
curvature assumption.
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1 Introduction

The classical Bernstein theorem states that a minimal graph Mn(n ≤ 7) immersed in R
n+1

must be a hyperplane [3,8,19]. Basically, this beautiful theorem claims that certain elliptic
non-linear differential equation on the whole space only has standard solutions. Such result
is in the fashion of Louiville theorem for bounded harmonic functions on the whole space.
Since then, this result has been generalized to the various hyper-surfaces such as the stable

L. Yaowen
Department of Mathematics, Nanjing University, Nanjing 210093, Peoples Republic of China
e-mail: lieyauvn@263.net

X. Xingwang · Z. Jiuru (B)
Department of Mathematics, National University of Singapore, 2 Science Drive 2,
Singapore 117543, Republic of Singapore
e-mail: zhoujr.1982@yahoo.com.cn

X. Xingwang
e-mail: matxuxw@nus.edu.sg

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81267664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


402 Ann Glob Anal Geom (2013) 44:401–416

and constant mean curvature hyper-surfaces by many authors [4,5], etc., and the parametric
minimal hyper-surfaces with finite total curvature by other group of mathematicians [7,18,
20]. Notice that the mean curvature is just the trace of the second fundamental form. Hence,
it will be equally interesting to consider other elementary symmetric functions of the second
fundamental form. In particular, it is natural to ask whether hyper-surfaces with zero scalar
curvature have Bernstein type property [2,6,10,17]. However, observe that the equation for
the hyper-surfaces with zero mean curvature is elliptic, the analogy for surfaces with zero
scalar curvature is only a degenerate elliptic equation. Thus for hyper-surfaces with the zero
scalar curvature, we cannot expect the results being as nice as the ones for minimal hyper-
surfaces. On the other hand, we notice that there is another classical result given by Hartman
and Nirenberg, which says that a complete hyper-surface with zero sectional curvature is
either a hyperplane or a generalized cylinder. After we got some partial results for hyper-
surfaces with zero scalar curvature, the simple question we may ask is what happens if M is
Ricci flat. This article will report what we have got so far along this direction.

First let us fix some standard notation. Let Mn be a complete and noncompact hyper-
surface isometrically immersed in R

n+1. We denote the normalized mean curvature by H, the
second fundamental form by B or {hi j } under a local coordinate system. For convenience,

we call (
∫

M |H |ndv)
1
n the total curvature of M . In the following, we will always assume M

is orientable with a fixed orientation. Our first result is the following Bernstein type theorem:

Theorem 1.1 Let Mn(n > 2) be a complete and noncompact hyper-surface immersed in
R

n+1 with zero Ricci curvature. If the total curvature is finite, then M is a hyperplane.

Remark One should compare Theorem 1.2 with the result of Hartman and Nirenberg [9].
Notice that even M is of zero sectional curvature and M may not be a hyperplane. A typ-
ical example is the so-called generalized cylinder given by (x1, x2, . . . , xn) ∈ R

n −→
(x1, x2, . . . , xn, cosh(xn)) ∈ R

n+1. Thus our second condition is to get rid of the generalized
cylinders.

Next we consider the hyper-surfaces with the vanishing scalar curvature. Observe that
there are many examples of zero scalar curvature hyper-surfaces with finite total curvature
which are not flat. See the examples provided by Lounie and Leite [13]. Clearly the analogy
of our previous theorem with only the scalar flat assumption cannot be true. Nevertheless,
we obtain the following result:

Theorem 1.2 Let Mn(n ≥ 3) be a complete sub-manifold immersed in Rn+1 with zero scalar
curvature. There exists a sufficiently small number α which depends only on dimension n
such that if

⎛

⎝
∫

M

|H |ndv

⎞

⎠

1
n

< α, (1.1)

then the following statement are equivalent:

(a) M is locally conformally flat;
(b) |∇ B|2 = n2|∇ H |2;
(c) nH · tr(B3) = n4 H4;
(d) M is flat.

Notice that the curvature tensor can be decomposed into the Weyl tensor, Ricci tensor and
scalar part. The flatness assumption means all Weyl, Ricci and scalar part vanish and Ricci
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flatness just simply means both Ricci and scalar part vanish. Clearly, the vanishing condition
on sole one of three tensors in this decomposition is not enough to conclude the flatness.
Thus it seems our above assumptions are reasonable to conclude the flatness. On the other
hand, the flat hyper-surface has only one end while the circled cylinder (S1 × R

n−1) has two
ends. In fact, with just concern of the number of ends, we have the following:

Theorem 1.3 Let Mn(n ≥ 3) be a complete sub-manifold immersed in Rn+1 with zero
scalar curvature. There exists a positive constant C2 > 0 such that if

⎛

⎝
∫

M

|H |ndv

⎞

⎠

1
n

< C2, (1.2)

then M has only one end.

The organizing of paper is as follows: in section two, we will list several useful Lemmas
which will be used in the rest of paper. In section three, we will give a proof of our first result,
i.e. Theorem 1.1. We should point out that what we really proved in this section is that if M
is Ricci flat, then M is flat. Hence a famous result of Hartman and Nirenberg implies that
M is either hyperplanes or generalized cylinders. And in section four, we prove our second
result, i.e. Theorem 1.2. The main observation here is to fully use the assumption that the
scalar curvature is zero. This condition implies a differential identity for mean curvature and
the second fundamental form. Together with our assumption, this identity implies that M is
flat hyper-surface and hence the conclusion follows as before. In the final section, we make
several comments on number of ends of the hyper-surfaces under various assumptions and
prove Theorem 1.3. This is motivated by similar result for either minimal hyper-surfaces or
constant mean curvature hyper-surfaces. The key assumption is that the dimension is of at
least three.

2 Several useful lemmas

First the main fact we should use for zero scalar curvature hyper-surfaces is the following
Lemma:

Lemma 2.1 Let Mn be a hyper-surface immersed in R
n+1 with scalar curvature R. Then

we have

R = n2 H2 − |B|2. (2.1)

Proof This is well known and can be found in any Riemannian geometry book. ��
Based on this identity, we have

Lemma 2.2 Let Mn be a hyper-surface isometrically immersed in Rn+1 with constant scalar
curvature R. Then the following identity holds true:

n(nHδi j − hi j )Hi j = |∇ B|2 − n2|∇ H |2 + nHtr(B3)− (n2 H2 − R)2. (2.2)

Thus if R ≡ 0, then

|∇ B|2 ≥ n2|∇ H |2,
as shown in [1].
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Proof Recall that for such hyper-surfaces, the curvature tensor is given by

Ri jkl = hikh jl − hil h jk .

Hence differentiate the identity (2.1) to get

n∑

i, j=1

hi j hi j,k = n2 H Hk . (2.3)

And differentiate once again in the direction ek and sum them to get

|∇ B|2 +
n∑

i, j,k=1

hi j hik, jk = n2|∇ H |2 + n2 H�H. (2.4)

Here we have used the fact that hi j,k = hik, j for all i, j, k. Now Ricci identity and Lemma
2.1 give

n∑

k=1

hik, jk =
n∑

k=1

hik,k j +
n∑

k,l=1

hlk(hl j hik − hlkhi j )+
n∑

k,l=1

hil(hl j nH − hlkh jk)

= nH,i j + nH
n∑

l=1

hil hl j − (n2 H2 − R)hi j .

Multiply hi j to both sides of above identity and sum up for i, j from 1 to n and rearrange the
terms to get the identity (2.2).

To get the last inequality, we square both sides of the Eq. (2.3) and sum up with respect
to k to get

n4 H2|∇ H |2 =
n∑

k=1

⎛

⎝
n∑

i, j=1

hi j hi j,k

⎞

⎠

2

.

Notice that Cauchy–Schwartz inequality shows that

n∑

k=1

⎛

⎝
n∑

i, j=1

hi j hi j,k

⎞

⎠

2

≤
n∑

k=1

⎛

⎝
∑

i j

h2
i j

⎞

⎠

⎛

⎝
∑

i j

h2
i j,k

⎞

⎠

= n2 H2|∇ B|2.
Hence if H 
= 0, then |∇ B|2 ≥ n2|∇ H |2. If H = 0 at some point, then hi j = 0 at that
point. Hence the Eq. (2.2) shows that |∇ B|2 = n2|∇ H |2 at that point. Therefore, the desired
inequality holds at all points. ��
Lemma 2.3 Let ai , i = 1, 2, . . . , n, be real numbers satisfying

n∑

i=1

ai = 0,
n∑

i=1

a2
i = |μ|2.

Then we have
∣
∣
∣
∣
∣

n∑

i=1

a3
i

∣
∣
∣
∣
∣
≤ n − 2√

n(n − 1)
|μ|3.

The equality holds if and only if n − 1 terms of {ai }n
i=1 are equal.
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Proof This is also well known. It follows from Lagrange multiplier method. For the detail,
we refer readers to [15]. ��
Lemma 2.4 Let Mn be a sub-manifold immersed in R

n+p. Then for any function h ∈ C1
0 (M),

we have
⎛

⎝
∫

M

|h| n
n−1 dM

⎞

⎠

n−1
n

≤ C1

⎛

⎝
∫

M

|∇h|dM + n
∫

M

|Hh|dM

⎞

⎠ .

Proof This is proved by Michael and Simon [14] or Hoffman and Spruck [11], respectively.
��

We only need its following corollary:

Lemma 2.5 Let Mn be a sub-manifold immersed in R
n+p. Suppose that n‖H‖nC1 < 1

where C1 is a constant in Lemma 2.4. Then for any f ∈ C1
0(M), we have

⎛

⎝
∫

M

| f | 2n
n−2 dM

⎞

⎠

n−2
n

≤ Cs

∫

M

|∇ f |2dM, (2.5)

where Cs =
(

C1
1−n‖H‖nC1

2(n−1)
n−2

)2
.

Proof For a function h as in Lemma 2.4, by Hölder inequality, one has

∫

M

|h H |dM ≤
⎛

⎝
∫

M

h
n

n−1 dM

⎞

⎠

n−1
n

‖H‖n .

Hence, this inequality and Lemma 2.4 imply

⎛

⎝
∫

M

h
n

n−1 dM

⎞

⎠

n−1
n

≤ C1

1 − n‖H‖nC1

∫

M

|∇h|dM. (2.6)

Now for any ϕ ∈ C1
0 , we set h = ϕ

2(n−1)
n−2 . Thus we get:

⎛

⎝
∫

M

ϕ
2n

n−2 dM

⎞

⎠

n−1
n

≤ C1

1 − n‖H‖nC1

2(n − 1)

n − 2

∫

M

|ϕ n
n−2 ∇ϕ|dM

≤ C1

1 − n‖H‖nC1

2(n − 1)

n − 2

⎛

⎝
∫

M

|ϕ| 2n
n−2

⎞

⎠

1
2
⎛

⎝
∫

M

|∇ϕ|2dM

⎞

⎠

1
2

.

Thus the lemma is proved. ��
The next lemma is to get the volume control from below which will be useful in the course

of proof of our main results:

Lemma 2.6 Let Mn(n ≥ 3) be a complete noncompact immersed hyper-surface in R
n+1.

Assume that nC1‖H‖n < 1 where C1 is again the constant given in Lemma 2.4. Then there
exists a constant C2 > 0 depending only upon C1 so that

Vol (B(q, s)) ≥ sn(1−nC1‖H‖n), (2.7)
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for any q ∈ M, and all s ≥ 0.

Proof Take an arbitrary point p ∈ M ; without loss of generality, we may assume p = 0. In
the following, we let d(·, ·) be the distance function of R

n+1, and r(·, ·) the distance function
of M with respect to the induced metric. We will write d(x), r(x) if the base point is 0.
Obviously d ≤ r for any two points in M . Let γ be a minimal geodesic from 0; then,

∂d

∂r
= lim

t→0

d(γ (s + t))− d(γ (s))

t

≤ lim
t→0

d(γ (s + t), γ (s))

t
( by the triangle inequality)

≤ 1. (since d ≤ r). (2.8)

By a direct computation, one can show that

�M d2(x) = 2n(1 + H〈η, x〉),
where η is out unit normal to the hyper-surface M and x is the position vector in R

n+1. In
particular, |〈η, x〉| ≤ d(x) ≤ r(x).

Let B(s) be the geodesic ball of M , of radius s centered at 0. Integrating the above equation
over B(s) and using (2.8) and Hölder inequality, we obtain

2n vol(B(s)) ≤ 2s vol(∂B(s))+ 2n

⎛

⎜
⎝

∫

B(s)

|H |ndμ

⎞

⎟
⎠

1
n

s(vol(B(s)))
n−1

n .

Since the Sobolev inequality (2.6) holds on M , we have the iso-perimetric inequality, namely

1 − n‖H‖nC1

C1
(vol(B(s)))

n−1
n ≤ vol(∂B(s)). (2.9)

And also note that in any manifold,

vol(∂B(s)) = ∂

∂r
vol(B(r)) |r=s .

We thus obtain

∂

∂r
|r=s ln(vol(B(r)))− n(1 − nC1‖H‖n)

s(1 − nC1(‖H‖n − (
∫

B(s) |H |ndμ)
1
n ))

≥ 0.

Therefore, by integrating it over the interval (0, s) and taking the exponential to get

vol(B(s)) ≥ sn(1−nC1‖H‖n),

by observing that ‖H‖n − (
∫

B(s) |H |ndμ)
1
n ≥ 0. ��

3 Proof Of Theorem 1.1

The proof of Theorem 1.1 is relatively easy. Observe that if Ricci curvature is zero, then we
have

hi j h jk = nHhik . (3.1)
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Therefore, we have

Tr(B3) = hi j h jkhik = nH
n∑

i,k=1

(hik)
2. (3.2)

Thus by Lemma 2.1 , since R = 0, we got

Tr(B3) = n3 H3.

Now one sets μi j := hi j − Hδi j . Then by simple calculation, we have

|μ|2 = (n − 1)nH2

and

Tr(B3) = Tr(μ3)+ 3HTr(μ2)+ nH3

= Tr(μ3)+ 3H |B|2 − 2nH3. (3.3)

Therefore, we have

|Tr(μ3)| = n(n − 1)(n − 2)|H3| = n − 2√
n(n − 1)

|μ|3.

By Lemma 2.3, at any point p ∈ M, (μi j ) = diag{ν1, . . . , ν1, ν2}. Thus, we got at point p,

hi j = diag{ν1 + H, . . . , ν1 + H, ν2 + H}.
By Eq. (3.1) with i = k = 1, we get

(ν1 + H)2 = ((n − 1)(ν1 + H)+ (ν2 + H))(ν1 + H);
and with i = k = n

(ν2 + H)2 = ((n − 1)(ν1 + H)+ (ν2 + H))(ν2 + H).

Hence if n = 2, we have (ν1 + H)(ν2 + H) = 0, which means the sectional curvature is
zero.

If n ≥ 3, we conclude that (ν1 + H) = 0 which also implies that the sectional curvature of
M vanishes. By Hartman and Nirenberg’s theorem, we know that M is either R

n or S1×R
n−1.

Then we see that the total curvature of second case is not finite. Hence we complete the proof
of Theorem 1.1. ��

4 Proof of Theorem 1.2

This section is devoted to the argument for our Theorem 1.2.
If n = 2, by well-known result of Hartman and Nirenberg, any complete surfaces in R3

with zero Gaussian curvature are either plane or cylinder. The later has infinity volume and
non-zero constant mean curvature which cannot satisfy our finiteness assumption on the total
integration of the square of the mean curvature. Therefore, this case follows. Thus in what
follows, we assume n ≥ 3:

Proof of Theorem 1.2 (d) ⇒ (a) is clear.
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(a)⇒ (b): M is locally conformally flat; then Ri j,k = Rik, j since R ≡ 0. By the second
Bianchi identity, one has

Ri j,ll

= Ril, jl

= Ril,l j + Rkl Rk
i jl + Rik Rk

l jl

= 2

n − 2
[Rkl(Rkj gil + Ril gk j − Rkl gi j − Ri j gkl)] + Rik Rk j

= 2

n − 2
[Rki Rk j + R jl Ril − (R2

kl)gi j − Ri j · 0] + Rik Rk j

= 2

n − 2
[2Rki Rk j − (R2

αl)gi j ] + Rik Rk j .

Therefore,

Ri j�Ri j = n + 2

n − 2
Ri j Rki Rk j .

It is well known that the following identity holds:

Ri j�Ri j + |∇ Ri j |2 = |Ri j |�|Ri j | + |∇|Ri j ||2.
Combining with previous calculation, one obtains

|Ri j |�|Ri j | = Ri j�Ri j + |∇ Ri j |2 − |∇|Ri j ||2

= n + 2

n − 2
Ri j Rki Rk j + |∇ Ri j |2 − |∇|Ri j ||2.

Let f be a cut-off function supported in a ball B(o, R) with o ∈ M such that |∇ f | ≤
C
R , |� f | ≤ C

R2 . Multiplying both sides of above identity by f 2|Ri j |q with q > −1, one
reaches

f 2|Ri j |q+1�|Ri j | = n + 2

n − 2
f 2 Ri j Rαi Rα j |Ri j |q + (|∇ Ri j |2 − |∇|Ri j ||2) f 2|Ri j |q .

Integrate it and use integration by parts to get
∫

M

∇( f 2|Ri j |q+1)∇|Ri j | + n + 2

n − 2

∫

M

f 2 Ri j Rki Rk j |Ri j |q

+
∫

M

(|∇ Ri j |2 − |∇|Ri j ||2) f 2|Ri j |q = 0,

which can be rewritten as

0 ≥ 2
∫

M

f ∇ f |Ri j |q+1∇|Ri j | + (q + 1)
∫

M

f 2|Ri j |q |∇|Ri j ||2

+n + 2

n − 2

∫

M

f 2 Ri j Rki Rk j |Ri j |q + 2

n

∫

M

|∇|Ri j ||2 f 2|Ri j |q .

Here we have used the refined Kato’s inequality:

|∇|Ri j ||2 ≤ n

n + 2
|∇ Ri j |2.
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This is well known since Ri j is symmetric, trace free and Ri j,k = Rik, j for all i, j and k.
Choose q = n−4

2 . Notice that by Gauss formula,

∑
R2

i j = (nHhi j − hikhk j )
2

= n4 H4 − 2nHtr(B3)+
∑

i, j

(
∑

k

hikhk j

)2

≤ 4n4 H4.

It follows that
∫

M |Ri j |q+2 = ∫
M |Ri j |n/2 < (4n4)

n
4
∫

M |H |n < (4n4)
n
4 αn < +∞. Thus

− 2

q + 2

∫

M

∇( f ∇ f )|Ri j |q+2 + n + 2

n − 2

∫

M

f 2 Ri j Rki Rk j |Ri j |q

+(q + 1 + 2

n
)

∫

M

f 2|Ri j |q |∇|Ri j ||2 ≤ 0. (4.1)

We can estimate the last term on the right-hand side as follows:
∣
∣
∣
∣
∣
∣

∫

M

f 2 Ri j Rki Rk j |Ri j |q
∣
∣
∣
∣
∣
∣
≤

∫

M

f 2|R ji |q+3

=
∫

M

|R ji |( f |R ji | q
2 +1)2

≤
⎛

⎝
∫

M

( f |R ji |
q
2 +1)

2n
n−2 dv

⎞

⎠

n−2
n

⎛

⎝
∫

M

|R ji | n
2 dv

⎞

⎠

2
n

≤
⎛

⎝
∫

M

|R ji | n
2

⎞

⎠

2
n

· Cs

∫

M

|∇( f |R ji | q
2 +1)|2

≤ 2

⎛

⎝
∫

M

|R ji | n
2

⎞

⎠

2
n

· Cs

⎡

⎣
∫

M

|∇ f |2|Ri j |q+2

+
(q

2
+ 1

)2
∫

M

f 2|Ri j |q |∇|Ri j ||2
⎤

⎦ ,

where Cs is Sobolev constant given in (2.5). Combine this estimate and the Eq. (4.1) to get
⎡

⎢
⎣

(

q + 1 + 2

n

)

− 2
n + 2

n − 2

(n

4

)2

⎛

⎝
∫

M

|R ji | n
2

⎞

⎠

2
n

· Cs

⎤

⎥
⎦

∫

M

f 2|Ri j |q |∇|Ri j ||2

≤ 2
n + 2

n − 2

⎛

⎝
∫

M

|R ji | n
2

⎞

⎠

2
n

· Cs

∫

M

|∇ f |2|Ri j |q+2 + 2

q + 2

∫

M

∇( f ∇ f )|Ri j |q+2.
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Therefore, if we choose

α = 1

C1

√
(n2 − 2n + 4)(n − 2)3

n
√
(n2 − 2n + 4)(n − 2)3 + √

2n5(n + 2)(n − 1)2
, (4.2)

where C1 is the constant given in Lemma 2.4, then we have

(

q + 1 + 2

n

)

− 2
n + 2

n − 2

(n

4

)2

⎛

⎝
∫

M

|R ji | n
2

⎞

⎠

2
n

· Cs > 0.

Thus let R → +∞ in the previous inequality; we obtain

∇|R ji |q/2+1 = 0.

Hence, |R ji | = const. But the facts that |R ji | n
2 ∈ L1 and M has infinite volume imply that

|R ji | = 0.
Then by Theorem 1.1, hi j = 0. Therefore,

|∇h|2 = n2|∇ H |2.
(b) ⇒ (c): Observe that (|∇h|2 − n2|∇ H |2)|H |2n2 = 1

2

∑
(hi j hkl,t − hi j,t hkl)

2. Hence, the
assumption (b) implies that hi j hkl,t = hi j,t hkl for all i, j, k, l and t .

Now Gauss equation implies Ri j = nHhi j − hikhk j . Thus we have

Ri j,l = nHl hi j + nHhi j,l − hik,l hk j − hkj,l hik

= nHhi j,l + nHhil, j − hil,khk j − h jl,khik

= 2nHhi j,l − hil hk j,k − h jl hik,k

= 2nHhil, j − nHhil, j − nHh jl,i

= 0.

Therefore, |Ri j | is a constant, since |d|Ri j || ≤ |∇ Ri j | = 0. Hence, the integrability of
|Ri j |n/2 implies that Ri j = 0 which in turn implies that hi j = 0 by Theorem 1.1. Of course,
the identity nHtr(B3) = n4 H4 holds for hi j = 0.

(c) ⇒ (d): Note that

R2
i j = n4 H4 − 2nHtr(B3)+

∑
(

∑

k

hikhk j

)2

≤ 2n4 H4 − 2nHtr(B3)

= 0.

Hence, Ri j = 0. By Theorem 1.1, M is flat. ��

5 Proof Of Theorem 1.3

In this section, we employ some methods due to Cao, Shen and Zhu to study hyper-surfaces
with zero scalar curvature. We first have lower volume growth estimate as given in Lemma
2.6. Thus we can show that there exist bounded harmonic functions on such hyper-surfaces.
We state it as a lemma.
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Lemma 5.1 Let M be a complete and noncompact n-dimensional immersed hyper-surfaces
in R

n+1 satisfying n‖H‖nC1 < 1 where again C1 is a constant given in Lemma 2.4. If M
has at least two ends , then M admits a nonconstant bounded harmonic function with finite
energy.

Proof The proof is analogy to the proof of Lemma 2 in [7]. We will provide the argument
here for completeness of the paper. We first prove that for each compact set K ⊂ M , every
noncompact component F of M \ K has infinite volume. Suppose Vol(F) were finite. By
the fact that lim

s→∞ sn(1−n‖H‖nC1) = ∞ , there would exist a sufficiently large s0 such that

sn(1−n‖H‖nC1)
0 > Vol(F).

Choosing a point x0 ∈ F so that r(x0, ∂F) > s0 would lead to

Vol(F) ≥ Vol(Bx0(s0)) ≥ sn(1−nC1‖H‖n)
0

which is a contradiction. Hence Vol(F) = ∞.

Next let M be covered by an exhaustion {Di }, a collection of relatively compact sub-
manifolds with boundary, for example, take Di = B(0, i) ∩ M where B(0, i) is the ball in
Rn+1 with radial i and center 0. Let M \ Di = ∪s

j=1 F (i)j be the disjoint union of connected

components with s ≥ 2. Fix an i0 and let F (i0)
1 and F (i0)

2 be any two ends; then each has
infinite volume. For each i ≥ i0, let ui : Di → R be the minimizer of the energy functional
1

2

∫

Di

|dui |2dv among all functions u such that u|
∂F (i)1

= 1 and u|
∂F (i)k

= 0 for each k ≥ 2.

Then by the maximum principle for harmonic functions, 0 ≤ ui ≤ 1. For any j < i , we
extend u j to u j : Di → R continuously such that u j = 1 or 0 on the complement Di − D j .
Then u j has the same boundary condition as ui on ∂Di . Hence by the minimality of the
energy E(ui ) of ui over Di , one has the following monotonicity:

∫

Di

|∇ui |2dv ≤
∫

Di

|∇u j |2dv =
∫

D j

|∇u j |2dv for i > j.

Thus there exists a constant c1 > 0 such that
∫

Di

|∇ui |2dv ≤ c1 for i > i0.

Therefore, we can find a harmonic function u on M such that

lim
i→∞ ui (x) = u(x), ∀x ∈ M,

0 ≤ u ≤ 1 and
∫

M
|∇u|2dv ≤ c1.

Since n > 2, we substitute f = ui (1 − ui ), in the inequality (2.5)

⎛

⎜
⎝

∫

Di

(ui (1 − ui ))
2n

n−2 dv

⎞

⎟
⎠

n−2
n

≤ Cs

∫

Di

2|∇ui |2(1 − ui )
2 + 2u2

i |∇ui |2dv

≤ 4Cs

∫

Di

|∇ui |2 ≤ 4C2
s c1. (5.1)
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Since Vol(Di ) → ∞, by letting i → ∞, we find that if u is a constant, then u ≡ 0 or u ≡ 1.
If u ≡ 1, we choose φ = uiψ where

ψ =
{

1, on F (i0)
2 ,

0, on F (i0)
k , k 
= 2,

|∇ψ | ≤ c2, 0 ≤ ψ ≤ 1, and |∇ψ | vanishes outside Di0 , then inequality (2.5) implies that

⎛

⎜
⎝

∫

Di

(uiψ)
2n

n−2 dv

⎞

⎟
⎠

n−2
n

≤ Cs

∫

Di

2ψ2|∇ui |2 + 2u2
i |∇ψ |2dv ≤ c3, (5.2)

where the constant c3 = 2C2
s c1 + 2c2

s c2
2 · Vol(Di0). It follows that

⎛

⎜
⎜
⎝

∫

F
(i0)
2 ∩Di

u
2n

n−2
i dv

⎞

⎟
⎟
⎠

n−2
n

≤ c3.

As i → ∞, we find that Vol(F (i0)
2 )

n−2
n =

⎛

⎜
⎜
⎝

∫

F
(i0)
2

u
2n

n−2 dv

⎞

⎟
⎟
⎠

n−2
n

≤ c3, a contradiction. Simi-

larly, u ≡ 0 cannot happen by replacing u and ui by 1 − u and 1 − ui , respectively, in same
argument. Consequently, u is not a constant. This completes the proof of Lemma 2. ��

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 We argue by contradiction. By the construction of Lemma 5.1, we
know that if M is of more than one end, then there exists a nontrivial bounded harmonic
function u(x) on M which has finite total energy.

For such a harmonic function u, let f (x) = |∇u|. By Bochner formula, we obtain

1

2
� f 2 = |Hess u|2 + Ric(∇u,∇u). (5.3)

Next we prove the following inequality:

|Hess u|2 ≥
(

1 + 1

n − 1

)

|∇ f |2. (5.4)

If |∇u| = 0, the above inequality of course holds. If |∇u| 
= 0, for any p ∈ M we choose
a normal coordinate around p such that ui (p) = 0 (i ≥ 2) and u1(p) = |∇u|(p). Since u is
harmonic, we have
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u11 = −
⎛

⎝
∑

i 
=1

uii

⎞

⎠ .

Then at p,

f j = ui j ui

|∇u| = u1 j u1

u1
= u1 j .

Hence,

|∇ f |2 = u2
1 j .

We can calculate that

|Hess u|2 − |∇ f |2 = u2
i j − u2

1 j

≥
∑

i 
=1

u2
i1 +

∑

i 
=1

u2
i i

≥
∑

i 
=1

u2
i1 + 1

n − 1

⎛

⎝
∑

i 
=1

uii

⎞

⎠

2

=
∑

i 
=1

u2
i1 + 1

n − 1
u2

11

≥ 1

n − 1

n∑

i=1

u2
i1

= 1

n − 1
|∇ f |2,

since Hessian is symmetric. Therefore, we have proved (5.4).
Apply Leung’s curvature estimate [12] with k = 0 to get

Ricmin ≥ 1

n2 {2(n − 1)n2 H2 − n(n − 1)|B|2

−(n − 2)n|H |
√
(n − 1)(n|B|2 − n2 H2)}.

Since the scalar curvature of the hyper-surface in our case is zero, by Lemma 2.1, we obtain

Ricmin ≥ −2(n − 1)(n − 2)H2.

With help of this estimate, Bochner formula takes the form,

f� f + 2(n − 1)(n − 2)H2 f 2 ≥ 1

n − 1
|∇ f |2. (5.5)

Now let ϕ be a cut-off function such that

ϕ(x) =
{

1, if x ∈ Bp(r),
0, if x ∈ M \ Bp(2r),

and

|∇ϕ| ≤ C

r
with C = 2.

Multiplying ϕ2 on both sides of the above inequality (5.5) and integrating by parts we can
write it as
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2(n − 1)(n − 2)
∫

M

H2 f 2ϕ2dσ − 2
∫

M

〈∇ f,∇ϕ〉 f ϕdσ ≥ n

n − 1

∫

M

|∇ f |2ϕ2dσ.

Using Schwartz inequality, for any positive number δ1 > 0, we have

2(n − 1)(n − 2)
∫

M

H2 f 2ϕ2dv + 1

δ1

∫

M

f 2|∇ϕ|2dv ≥
(

n

n − 1
− δ1

) ∫

M

|∇ f |2ϕ2dv.

(5.6)

On the other hand, Sobolev inequality yields

∫

M

|∇( f ϕ)|2dv ≥ C−1
s

⎛

⎝
∫

M

( f ϕ)
2n

n−2 dv

⎞

⎠

n−2
n

.

Simple calculation, together with Schwartz inequality, yields

(δ2 + 1)
∫

M

|∇ f |2ϕ2dv ≥ C−1
s

⎛

⎝
∫

M

( f ϕ)
2n

n−2 dv

⎞

⎠

n−2
n

−
(

1 + 1

δ2

) ∫

M

f 2|∇ϕ|2dv,

(5.7)

where δ2 is a positive real number which will be chosen later. Combining (5.6) and (5.7), we
have

2(n − 1)(n − 2)
∫

M

H2 f 2ϕ2dv ≥ ( n
n−1 − δ1)C−1

s

δ2 + 1

⎛

⎝
∫

M

( f ϕ)
2n

n−2 dv

⎞

⎠

n−2
n

−
(

1

δ1
+

n
n−1 − δ1

δ2

) ∫
f 2|∇ϕ|2dv.

Now applying Hölder inequality to the left-hand side of the above inequality we can have

2(n − 1)(n − 2)

⎛

⎝
∫

M

|H |ndv

⎞

⎠

2
n

⎛

⎝
∫

M

( f ϕ)
2n

n−2 dv

⎞

⎠

n−2
n

≥ ( n
n−1 − δ1)C−1

s

δ2 + 1

⎛

⎝
∫

M

( f ϕ)
2n

n−2 dv

⎞

⎠

n−2
n

−
(

1

δ1
+

n
n−1 − δ1

δ2

)∫

M

f 2|∇ϕ|2dv.

Finally, we have

(
1

δ1
+

n
n−1 − δ1

δ2

) ∫

M

f 2|∇ϕ|2dv ≥
(
( n

n−1 − δ1)C−1
s

δ2 + 1
− 2(n − 1)(n − 2)‖H‖2

n

)

×
⎛

⎝
∫

M

( f ϕ)
2n

n−2 dv

⎞

⎠

n−2
n

.

Recall that Cs =
(

C1
1−n‖H‖nC1

2(n−1)
n−2

)2
; thus if we choose
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C2 = 1

C1

( √
n(n − 2)

2
√

2(n − 1)2 + n
√

n(n − 2)

)

, (5.8)

then it is easy to see that if ‖H‖n < C2, then ‖H‖2
nCs <

n
2(n−1)2(n−2)

. Thus we can choose
δ1 > 0 and δ2 > 0 small enough such that

(
( n

n−1 − δ1)C−1
s

δ2 + 1
− 2(n − 1)(n − 2)‖H‖2

n

)

≥ ε > 0.

Then we have

(
1

δ1
+

n
n−1 − δ1

δ2

) ∫

M

f 2|∇ϕ|2dv ≥ ε

⎛

⎝
∫

M

( f ϕ)
2n

n−2 dv

⎞

⎠

n−2
n

.

Letting r → ∞ we will have
∫

M

f
2n

n−2 dv ≤ 0,

which implies that f ≡ 0 and, therefore, u is a constant function. The contradiction here
shows that M has at most one end. ��
Remark 1. The zero scalar curvature equation for a graph has been derived by Reilly [16]. It

is given by:
∑

i, j
∂
∂xi
( 1

W T i
j f j ) = 0, where the function f is a function such that xn+1 =

f (x1, x2, . . . , xn+1), and W = 1 +|D f |2, T i
j = ∑

k
∂
∂xk
( fk/W )δi j − fi j

W +∑
k

f jk fk fi

W 3 .

It also can be written as follows: (1 + ∑
f 2
i )[(

∑
fii )

2 − ∑
f 2

jk] + 2
∑

f jk f j i fk fi −
2

∑
fii f jk f j fk = 0,where the sums are taken over all the repeated indices, respectively,

and

fi = ∂

∂xi
f, f jk = ∂2

∂x j∂xk
f.

Therefore, we may express the zero scalar curvature equation as the following:

0 = (1 + |∇ f |2)[(� f )2 − |Hess( f )|2]
+2|∇ f |2|∇|∇ f ||2 − 2� f · Hess( f )(∇ f,∇ f ). (5.9)

2. Our Theorem 1.2 says that under suitable condition on div
(∇ f

W

)
, Eq. (5.9) has only

linear solutions.
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