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Abstract
In this paper, we investigate the existence of infinitely many periodic solutions for a
class of subquadratic nonautonomous second-order Hamiltonian systems by using
the variant fountain theorem.

1 Introduction
Consider the second-order Hamiltonian systems

⎧⎨
⎩
ü(t) +∇uW (t,u) = , ∀t ∈R,

u() = u(T), u̇() = u̇(T), T > ,
(.)

whereW (t,u) is also T-periodic and satisfies the following assumption (A):
(A) W (t,u) is measurable in t for all u ∈R

N , continuously differentiable in u for a.e.
t ∈ [,T] and there exist a ∈ C(R+,R+) and b ∈ L([,T],R+) such that

∣∣W (t,u)
∣∣ ≤ a

(|u|)b(t), ∣∣∇uW (t,u)
∣∣ ≤ a

(|u|)b(t)
for all u ∈R

N and a.e. t ∈ [,T].
Here and in the sequel, 〈·, ·〉 and | · | always denote the standard inner product and the
norm in R

N respectively.
There have been many investigations on the existence and multiplicity of periodic so-

lutions for Hamiltonian systems via the variational methods (see [–] and the references
therein). In [], Zhang and Liu studied the asymptotically quadratic case of W (t,u) =

 〈U(t)u,u〉 +W(t,u) under the following assumptions:

(AQ) W(t,u) ≥  for all (t,u) ∈ [,T]×R
N , and there exist constantsμ ∈ (, ) andR > 

such that

〈∇uW(t,u),u
〉 ≤ μW(t,u), ∀t ∈ [,T] and |u| ≥ R;

(AQ) lim|u|→
W(t,u)

|u| = ∞ uniformly for t ∈ [,T], and there exist constants c,R >  such
that

W(t,u) ≤ c|u|, ∀t ∈ [,T] and |u| ≤ R;
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(AQ) lim inf|u|→∞ W(t,u)
|u| ≥ d >  uniformly for t ∈ [,T].

They obtained the existence of infinitely many periodic solutions of (.) providedW(t,u)
is even in u (see Theorem . of []).
The subquadratic condition (AQ) is widely used in the investigation of nonlinear dif-

ferential equations. This condition was weakened by some researchers; see, for example,
[] of Jiang and Tang. This paper considers the case of U(t) ≡ , then W (t,u) =W(t,u).
Motivated by [] and [], we replace (AQ) with the following condition:

(AQ′
) W (t,u)≥  for all (t,u) ∈ [,T]×R

N , and

lim|u|→∞
(〈∇uW (t,u),u

〉
– W (t,u)

)
= –∞ and

lim|u|→∞
W (t,u)

|u| =  uniformly for t ∈ [,T].

The condition (AQ′
) implies that for some constant R′

 > ,

〈∇uW (t,u),u
〉 ≤ W (t,u), ∀t ∈ [,T] and |u| ≥ R′

. (.)

By the assumption (A) and the condition (AQ′
), for any ε > , there exists a δ >  such that

W (t,u)≤ ε|u| + max
s∈[,δ]

a(s)b(t), (.)

for ∀u ∈R
N and a.e. t ∈ [,T].

Meanwhile, we weaken the condition (AQ) to (AQ′
) as follows:

(AQ′
) There exists a constant � ∈ (, ] such that

lim inf|u|→∞
W (t,u)

|u|� ≥ d >  uniformly for t ∈ [,T].

Then our main result is the following theorem.

Theorem . Assume that (AQ′
), (AQ), (AQ′

) hold and W (t,u) is even in u. Then (.)
possesses infinitely many solutions.

Remark The conditions (AQ) and (AQ) are stronger than (AQ′
) and (AQ

′
). Then The-

orem . above is different from Theorem . of [].

2 Preliminaries
In this section, we establish the variational setting for our problem and give the variant
fountain theorem. Let E =H

T be the usual Sobolev space with the inner product

〈u, v〉E =
∫ T



〈
u(t), v(t)

〉
dt +

∫ T



〈
u̇(t), v̇(t)

〉
dt.

We define the functional on E by

�(u) =



∫ T


|u̇| dt –�(u),
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where �(u) =
∫ T
 W (t,u(t))dt. Then � and � are continuously differentiable and

〈
�′(u), v

〉
=

∫ T


〈u̇, v̇〉dt –

∫ T



〈∇uW (t,u), v
〉
dt.

Define a self-adjoint linear operator B : L([,T];RN ) → L([,T];RN ) by

∫ T


〈Bu, v〉dt =

∫ T



〈
u̇(t), v̇(t)

〉
dt

with the domainD(B) = E. ThenB has a sequence of eigenvalues σk = kπ

T (k = , , , . . .).
Let {ej}+∞

j= be the systemof eigenfunctions corresponding to {σj}+∞
j= , it forms an orthogonal

basis in L. Denote by E+ = {u ∈ E| ∫ T
 u(t)dt = }, E =R

N , it is well known that

E = kerB = span{e},
E+ = span{ej|j = , , . . .},

and E possesses orthogonal decomposition E = E ⊕ E+. For u ∈ E, we have

u = u + u+ ∈ E ⊕ E+.

We can define on E a new inner product and the associated norm by

〈u, v〉 =
〈
Bu+, v+

〉
L +

〈
u, v

〉
L ,

and

‖u‖ = 〈u,u〉 

 .

Therefore, � can be written as

�(u) =


∥∥u+∥∥ –�(u). (.)

Direct computation shows that

〈
� ′(u), v

〉
=

∫ T



〈∇uW (t,u), v
〉
dt,

〈
�′(u), v

〉
=

〈
u+, v+

〉
 –

〈
� ′(u), v

〉 (.)

for all u, v ∈ E with u = u + u+ and v = v + v+ respectively. It is known that � ′ : E → E is
compact.
Denote by | · |p the usual norm of LP , then there exists a τp >  such that

|u|p ≤ τp‖u‖, ∀u ∈ E. (.)

http://www.boundaryvalueproblems.com/content/2013/1/16


Gu and An Boundary Value Problems 2013, 2013:16 Page 4 of 8
http://www.boundaryvalueproblems.com/content/2013/1/16

We state an abstract critical point theorem founded in []. Let E be a Banach space
with the norm ‖ · ‖ and E =

⊕
j∈NXj with dimXj < ∞ for any j ∈ N. Set Yk =

⊕k
j=Xj and

Zk =
⊕∞

j=k Xj . Consider the following C-functional �λ : E →R defined by

�λ(u) := A(u) – λB(u), λ ∈ [, ].

Theorem . [, Theorem .] Assume that the functional �λ defined above satisfies the
following:

(T) �λ maps bounded sets to bounded sets uniformly for λ ∈ [, ], and�λ(–u) = �λ(u) for
all (λ,u) ∈ [, ]× E;

(T) B(u) ≥  for all u ∈ E, and B(u) → ∞ as ‖u‖ → ∞ on any finite-dimensional subspace
of E;

(T) There exist ρk > rk >  such that

αk(λ) := inf
u∈Zk ,‖u‖=ρk

�λ(u)≥  > βk(λ) := max
u∈Yk ,‖u‖=rk

�λ(u), ∀λ ∈ [, ]

and

ξk(λ) := inf
u∈Zk ,‖u‖≤ρk

�λ(u) →  as k → ∞ uniformly for λ ∈ [, ].

Then there exist λn → , uλn ∈ Yn such that

�′
λn |Yn (uλn ) = , �λn (uλn ) → ηk ∈ [

ξk(),βk()
]

as n → ∞.

Particularly, if {uλn} has a convergent subsequence for every k, then � has infinitely many
nontrivial critical points {uk} ⊂ E \ {} satisfying �(uk) → – as k → ∞.

In order to apply this theorem to prove our main result, we define the functionals A, B
and �λ on our working space E by

A(u) =


∥∥u+∥∥, B(u) =

∫ T


W (t,u)dt (.)

and

�λ(u) = A(u) – λB(u) =


∥∥u+∥∥ – λ

∫ T


W (t,u)dt (.)

for all u = u + u+ ∈ E = E + E+ and λ ∈ [, ]. Then �λ ∈ C(E,R) for all λ ∈ [, ]. Let
Xj = span{ej}, j = , , , . . . . Note that � = �, where � is the functional defined in (.).

3 Proof of Theorem 1.1
We firstly establish the following lemmas.

Lemma . Assume that (AQ′
) and (AQ′

) hold. Then B(u) ≥  for all u ∈ E and
B(u)→ ∞ as ‖u‖ → ∞ on any finite-dimensional subspace of E.

http://www.boundaryvalueproblems.com/content/2013/1/16
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Proof SinceW (t,u) ≥ , by (.), it is obvious that B(u) ≥  for all u ∈ E.
By the proof of Lemma . of [], for any finite-dimensional subspace Y ⊂ E, there exists

a constant ε >  such that

m
({
t ∈ [,T] : |u| ≥ ε‖u‖}) ≥ ε, ∀u ∈ Y \ {}, (.)

wherem(·) is the Lebesgue measure.
For the ε given in (.), let

�u =
{
t ∈ [,T] : |u| ≥ ε‖u‖}, ∀u ∈ Y \ {}.

Then m(�u) ≥ ε. By (AQ′
), there exists a constant R > R′

 such that

W (t,u)≥ d|u|�/, ∀t ∈ [,T] and |u| ≥ R, (.)

where R′
 is the constant given in (.). Note that

∣∣u(t)∣∣ ≥ R, ∀t ∈ �u (.)

for any u ∈ Y with ‖u‖ ≥ R/ε. Thus,

B(u) =
∫ T


W (t,u)dt ≥

∫
�u

W (t,u)dt ≥
∫

�u

d|u|�/dt

≥ dε�‖u‖� ·m(�u)/≥ dε�+‖u‖�/

for any u ∈ Y with ‖u‖ ≥ R/ε. This implies B(u)→ ∞ as ‖u‖ → ∞ on Y . �

Lemma . Assume that (AQ′
), (AQ) and (AQ′

) hold. Then there exist a positive integer
k and two sequences  < rk < ρk →  as k → ∞ such that

αk(λ) := inf
u∈Zk ,‖u‖=ρk

�λ(u) > , ∀k ≥ k, (.)

ξk(λ) := inf
u∈Zk ,‖u‖≤ρk

�λ(u) →  as k → ∞ uniformly for λ ∈ [, ], (.)

and

βk(λ) := max
u∈Yk ,‖u‖=rk

�λ(u) < , ∀k ∈N, (.)

where Yk =
⊕k

j=Xj = span{e, e, . . . , ek} and Zk =
⊕∞

j=k Xj = span{ek , ek+, . . .} for all k ∈N.

Proof Comparing this lemma with Lemma . of [], we find that these two lemmas have
the same condition (AQ) which is the key in the proof of Lemma . of []. We can prove
our lemma by using the same method of [], so the details are omitted. �

Now it is the time to prove our main result Theorem ..

http://www.boundaryvalueproblems.com/content/2013/1/16
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Proof of Theorem . By virtue of (.), (.) and (.), �λ maps bounded sets to bounded
sets uniformly for λ ∈ [, ]. Obviously, �λ(–u) = �λ(u) for all (λ,u) ∈ [, ] × E since
W (t,u) is even in u. Consequently, the condition (T) of Theorem . holds. Lemma .
shows that the condition (T) holds, whereas Lemma . implies that the condition (T)
holds for all k ≥ k, where k is given there. Therefore, by Theorem ., for each k ≥ k,
there exist λn →  and uλn ∈ Yn such that

�′
λn |Yn (uλn ) = , �λn (uλn ) → ηk ∈ [

ξk(),βk()
]

as n→ ∞. (.)

For the sake of notational simplicity, in the following we always set un = uλn for all n ∈N.
Step . We firstly prove that {un} is bounded in E.
Since {un} satisfies (.), one has

lim
n→∞

(〈
�′

λn |Yn (un),un
〉
– �λn (un)

)
= –ηk .

More precisely,

lim
n→∞

∫ T



(〈∇uW (t,un),un
〉
– W (t,un)

)
dt = ηk . (.)

Now, we prove that {un} is bounded. Otherwise, without loss of generality, we may as-
sume that

‖un‖ → ∞ as n→ ∞.

Put zn = un
‖un‖ , we have ‖zn‖ = . Going to a subsequence if necessary, we may assume that

zn ⇀ z in E, zn → z in L and zn(t)→ z(t) for a.e. t ∈ [,T].

By (.), we have

�λn (un) =


∥∥u+n∥∥ – λn

∫ T


W (t,un)dt

≥ 

‖un‖ – 


∥∥un∥∥ – λn

(
ε

∫ T


|un| dt + max

s∈[,δ]
a(s)

∫ T


b(t)dt

)

≥ 

‖un‖ –

(


+ λnε

)∫ T


|un| dt – λnc,

where c =maxs∈[,δ] a(s)
∫ T
 b(t)dt. Therefore, one obtains

�λn (un)
‖un‖ ≥ 


–

(


+ λnε

)∫ T



( |un|
‖un‖

)

dt –
λnc
‖un‖

=


–

(


+ λnε

)
‖zn‖ –

λnc
‖un‖ .
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Passing to the limit in the inequality, by using �λn (un) → ηk and λn →  as n → ∞, we
obtain



–

(


+ ε

)
‖z‖ ≤ .

Thus, z �=  on a subset � of [,T] with positive measure.
By (.), we have

〈∇uW (t,u),u
〉
– W (t,u)≤ , ∀t ∈ [,T] and |u| ≥ R′

,

and by the assumption (A), we obtain

〈∇uW (t,u),u
〉
– W (t,u)≤ cb(t), for all |u| ≤ R′

 and a.e. t ∈ [,T],

where c = ( + R′
)max[,R′

] a(s). So, we get

〈∇uW (t,u),u
〉
– W (t,u)≤ cb(t)

for all u ∈R
N and a.e. t ∈ [,T]. Hence,

∫ T



(〈∇uW (t,un),un
〉
– W (t,un)

)
dt

=
∫

�

(〈∇uW (t,un),un
〉
– W (t,un)

)
dt +

∫
[,T]\�

(〈∇uW (t,un),un
〉
– W (t,un)

)
dt

≤
∫

�

(〈∇uW (t,un),un
〉
– W (t,un)

)
dt +

∫
[,T]\�

cb(t)dt.

An application of Fatou’s lemma yields

∫
�

(〈∇uW (t,un),un
〉
– W (t,un)

)
dt → –∞ as n→ ∞,

which is a contradiction to (.).
Step . We prove that {un} has a convergent subsequence in E.
Since {un} is bounded in E, E is reflexible and dimE < ∞, without loss of generality, we

assume

un → u, u+n ⇀ u+ and un ⇀ u as n→ ∞ (.)

for some u = u + u+ ∈ E = E ⊕ E+.
Note that

 =�′
λn |Yn (un) = u+n – λnPn�

′(un), ∀n ∈ N,

where Pn : E → Yn is the orthogonal projection for all n ∈ N, that is,

u+n = λnPn�
′(un), ∀n ∈ N. (.)

http://www.boundaryvalueproblems.com/content/2013/1/16
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In view of the compactness of� ′ and (.), the right-hand side of (.) converges strongly
in E and hence u+n → u+ in E. Together with (.), we have un → u in E.
Now, from the last assertion of Theorem ., we know that � = � has infinitely many

nontrivial critical points. The proof is completed. �
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