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Abstract

Background: The potential impact of an influenza pandemic can be assessed by calculating a set of transmissibility
parameters, the most important being the reproduction number (R), which is defined as the average number of
secondary cases generated per typical infectious case.

Methods: We conducted a systematic review to summarize published estimates of R for pandemic or seasonal
influenza and for novel influenza viruses (e.g. H5N1). We retained and summarized papers that estimated R for
pandemic or seasonal influenza or for human infections with novel influenza viruses.

Results: The search yielded 567 papers. Ninety-one papers were retained, and an additional twenty papers
were identified from the references of the retained papers. Twenty-four studies reported 51 R values for the
1918 pandemic. The median R value for 1918 was 1.80 (interquartile range [IQR]: 1.47–2.27). Six studies
reported seven 1957 pandemic R values. The median R value for 1957 was 1.65 (IQR: 1.53–1.70). Four studies
reported seven 1968 pandemic R values. The median R value for 1968 was 1.80 (IQR: 1.56–1.85). Fifty-seven
studies reported 78 2009 pandemic R values. The median R value for 2009 was 1.46 (IQR: 1.30–1.70) and was
similar across the two waves of illness: 1.46 for the first wave and 1.48 for the second wave. Twenty-four
studies reported 47 seasonal epidemic R values. The median R value for seasonal influenza was 1.28 (IQR:
1.19–1.37). Four studies reported six novel influenza R values. Four out of six R values were <1.

Conclusions: These R values represent the difference between epidemics that are controllable and cause
moderate illness and those causing a significant number of illnesses and requiring intensive mitigation
strategies to control. Continued monitoring of R during seasonal and novel influenza outbreaks is needed to
document its variation before the next pandemic.
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Background
Annual influenza epidemics occur worldwide and cause
substantial morbidity and mortality [1]. In the United
States between 5% and 20% of the population are in-
fected with influenza every year [2], resulting in between
3,000 and 49,000 influenza-associated deaths [3]. Influ-
enza viruses are constantly changing either through the
collection of minor point mutations or through major
antigenic shifts. These major shifts can result in the

introduction of novel influenza viruses into the human
population to which humans have little or no immunity,
causing pandemics [1]. Four influenza pandemics have
occurred since the beginning of the 20th century and
have ranged widely in transmissibility and clinical
severity [1,4].
Recognizing that the characteristics of future pande-

mics will be difficult to predict given the mutability of the
influenza virus and the range of morbidity and mortality
experienced in previous pandemics, an approach to the
early assessment of influenza pandemics has been deve-
loped relying on standardized measures of transmissibi-
lity and clinical severity [5]. An important transmissibility
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parameter identified is the reproduction number (R),
which is defined as the average number of secondary cases
generated per typical infectious case [6,7]. R describes on
average how many persons a case will infect, and a value
of R greater than 1 indicates that the infection may grow
or persist in the population while a value of R less than 1
indicates that the infection will decline in the population,
although exceptions exist [7,8]. Many methods to calculate
R have been described that allow for the use of epidemio-
logic data from different epidemic time points [7]. Some
examples include estimating R using the growth rate of
the epidemic, the epidemic curve’s size and shape, the
final attack rate, or by direct observation of disease trans-
mission from one generation to the next [7]. The popula-
tion susceptibility to the infection also affects the
interpretation of R. If R is calculated in a population en-
tirely susceptible to infection (or where an assumption
about population susceptibility to infection is made), then
R is known as the basic reproduction number (R0). In con-
trast, the effective reproduction number (RE) is calculated
in a population with underlying immunity and accounts
for a population’s reduced susceptibility to infection [9].
The value of R characterizes the final number infected

in the absence of an intervention in homogeneously
mixed populations, the herd immunity threshold, and,
when coupled with the generation time, defined as the
interval between infections in two consecutive genera-
tions, or the serial interval, defined as the interval be-
tween the onset of symptoms in two consecutive
generations), the speed with which the disease spreads
in the population [10-12]. Therefore, the magnitude of R
plays an important role in the selection and aggressive-
ness of countermeasures (e.g. social distancing, treating
ill individuals, or vaccination) required to slow transmis-
sion of the disease [10,13].
Because R is used as a measure of transmissibility and

informs the selection of different mitigation strategies, it
is important to understand the range and uncertainty of
published R values. In this paper, we investigate whether
published estimates of R differ between pandemic, sea-
sonal, and novel influenza, we compare values of R cal-
culated in differing geographic regions and settings, and
we explore the assumptions and limitations of the esti-
mation methods of R.

Methods
We performed a literature search using the PubMed
database from 1950 to January 16, 2013. The following
key terms were searched: “reproduction number and in-
fluenza”, “reproductive number and influenza”, “R0 and
influenza”, “reproduction rate and influenza”, and “re-
productive rate and influenza”. We limited our search to
articles in English. We retained articles that estimated R
for pandemic or seasonal influenza or for human

infections with non-human influenza viruses (e.g. H5N1).
For all studies retained, we abstracted the date of pub-
lication, the year, the geographic location where the data
were collected, the influenza subtype, the study popu-
lation, whether it was a confined setting, the wave of the
observation (if during a pandemic), the estimated value
of R, the method to identify influenza cases, and whe-
ther it was a R0 or RE. If multiple R values were provi-
ded, we provide the median and range. Since methods
to estimate the reproduction number often require a
value for the generation time or the serial interval, we
also report those values [14]. We classified the method
used to determine influenza-associated cases into two
categories: laboratory confirmed, which required the use
of confirmatory testing of respiratory or blood specimens,
or unconfirmed, which relied on syndromic case defini-
tions to identify cases and required no laboratory con-
firmation of illnesses.
Median R values and interquartile ranges (IQR) were

reported for each pandemic and for the group of inter-
pandemic seasonal epidemics. If a range of values was
given for an individual study instead of a point estimate,
the middle value of the range was used in the pandemic
or epidemic median calculations.

Results
The search strategy initially identified 567 papers
(Figure 1). Ninety-one papers were retained that esti-
mated R for pandemic or seasonal influenza or for human
infections with non-human influenza viruses (e.g. H5N1).
Twenty additional papers were contributed by the
references of the papers identified through the original
search. In all, 111 articles were retained that presented ori-
ginal estimates of the reproduction number (summarized
in Tables 1, 2, 3, 4, 5 and 6). Data provided in the tables
are also available as .csv files in Additional files 1, 2, 3, 4, 5
and 6.

1918 influenza pandemic
The origins of the 1918 influenza A/H1N1 pandemic are
unknown, and illnesses are thought to have occurred in
three waves [1,37]. The first wave began in the Northern
Hemisphere in the spring 1918 [1]. A second wave of
more intense transmission occurred concurrently in
North America, Europe, and Africa in fall 1918, and a
third and final wave occurred in some areas of the world
during winter 1919 [37,125]. The 1918 pandemic was
the most deadly pandemic ever recorded, and an esti-
mated 675,000 deaths occurred in the United States dur-
ing the pandemic period. In contrast to seasonal
influenza, which disproportionately affects the very
young and old, those aged 20–40 years were especially
affected [37].
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Twenty-four studies reported 51 separate 1918 pan-
demic values of R (Table 1; Figure 2). The median point
estimate of R in the community setting for all waves of
illness was 1.80 (IQR: 1.47–2.27) (Table 1). A higher me-
dian R value (R = 3.82; IQR: 2.68–4.84) was reported in
confined settings, such as ships, military camps, and
schools. The median values of R were similar between
the first and subsequent waves of illness: the median
value of R was 1.81 (IQR: 1.50–2.28) for the 1st wave,
1.73 (IQR: 1.39–2.33) for the second wave, and 1.70
(IQR: 1.55–1.76) for the third wave (Table 1).
The majority of 1918 pandemic values for R were cal-

culated for populations in Europe, which accounted for
58% of the R estimates included in this analysis. The
mean generation time or serial interval used in the cal-
culations to estimate R had a median value of 3.3 days,
and the mean ranged from 1.5–6 days. Because the in-
fluenza virus was not discovered until 1931[1], all studies
included in this review relied on reports of uncon-
firmed illness to identify those ill. A majority (65%) used
pneumonia-and-influenza-related hospitalizations and
deaths as the case ascertainment source (Table 1).

1957 influenza pandemic
The 1957 influenza A/H2N2 pandemic began in Febru-
ary 1957 in southern China and spread to Singapore and
Hong Kong in April [1]. The virus was first isolated in
the United States in June 1957 and was associated with a

first wave [1,41]. The peak of the pandemic occurred
during the second wave in the Northern Hemisphere in
October 1957 and was followed by a third wave in Janu-
ary 1958. An estimated 115,000 deaths occurred in the
United States during the pandemic period [37].
Six studies reported seven separate 1957 pandemic

values of R (Table 2; Figure 3). The median point esti-
mate of R in the community setting for the second wave
of illnesses was 1.65 (IQR: 1.53–1.70). No R values were
reported for confined settings or for the 1st or 3rd waves
of illness.
A majority (86%) of 1957 pandemic R values were cal-

culated for populations in Europe. The mean generation
time or serial interval used in the calculations to deter-
mine R had a median value of 3.5 days, and the mean
ranged from 2.6–4.1 days. All studies but one included
in this review relied on an unconfirmed illnesses to iden-
tify those ill. The other study relied on the final attack
rate as determined by serological methods (Table 2).

1968 influenza pandemic
The 1968 influenza A/H3N2 pandemic began in Hong
Kong in July 1968. Large single waves were reported in
the Northern Hemisphere between September 1968 and
April 1969 (with peaks occurring in December and Janu-
ary) and in the Southern Hemisphere between June and
September 1969. Some countries in the Northern Hemi-
sphere, such as the United Kingdom, did not have an

Figure 1 PRISMA flowchart of the article selection for the reproductive number and influenza literature review.
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Table 1 Reproduction numbers from the 1918 Influenza A/H1N1 Pandemic

Location Wavea Study
population

Mean
GT/SIb

Reproduction
Number (R)

95% CIc Basic or
effective

Case definition Reference Year
published

Australia 1st Community 2.6 1.80 1.6–2.0 Basic Unconfirmed
hospitalizations/deaths

[15] 2008

Brazil 1st Community 4 2.68 Basic Unconfirmed illness [16] 2007

Canada 1st Community 3 1.50 1.5–1.5 Basic Unconfirmed deaths [17] 2011

Canada 1st Community 6 2.1 2.1–2.1 Basic Unconfirmed deaths [17] 2011

Colombia 1st Community 3 1.4–1.5 Effective Unconfirmed deaths [18] 2012

Colombia 1st Community 4 1.5–1.7 Effective Unconfirmed deaths [18] 2012

Denmark 1st Community 2.6 2.2–2.4 Effective Unconfirmed illness [19] 2008

Denmark 1st Community 4 2.8–3.0 Effective Unconfirmed illness [19] 2008

Denmark 1st Community 2.6 2.8–4.0 Effective Unconfirmed
hospitalizations

[19] 2008

Denmark 1st Community 4 3.6–5.4 Effective Unconfirmed
hospitalizations

[19] 2008

Italy 1st Community 3 1.03 1.00–1.08 Basic Unconfirmed
hospitalizations

[20] 2011

Mexico 1st Community 3 1.30 Effective Unconfirmed deaths [21] 2010

Peru 1st Community 3 1.38 1.37–1.40 Effective Unconfirmed deaths [22] 2011

Switzerland 1st Community 3.11 1.49 1.45–1.53 Basic Unconfirmed
hospitalizations

[23] 2006

Switzerland 1st Community 3.4 1.50 Basic Unconfirmed deaths [24] 2009

United
Kingdom

1st Community 2.6 1.7 Basic Unconfirmed deaths [10] 2006

United
Kingdom

1st Community 4.1 2.10 Effective Unconfirmed illness [25] 2006

United
Kingdom

1st Community 6 2.00 Basic Unconfirmed illness [26] 2005

United
Kingdom

1st Community NR 1.16–2.94 Effective Unconfirmed illness [27] 2010

United
Kingdom

1st Students NR 1.43–5.36 Effective Unconfirmed illness [27] 2010

USA 1st Community 4 1.34–3.21 Effective Unconfirmed illness [28] 2008

Various 1st Community 4 1.2–3.0 Effective Unconfirmed illness [29] 2007

Various 1st Community 4 2.1–7.5 Effective Unconfirmed illness [29] 2007

1st Sailors 4 4.97 Effective Unconfirmed illness [28] 2008

Canada 2nd Community 3.6 2.26 1.95–2.63 Basic Unconfirmed illness [30] 2010

Canada 2nd Community 3.6 1.49 1.42–1.55 Basic Unconfirmed illness [30] 2010

Canada 2nd Community 3 2.40 2.4–2.5 Basic Unconfirmed deaths [17] 2011

Canada 2nd Community 6 4.3 4.2–4.4 Basic Unconfirmed deaths [17] 2011

Denmark 2nd Community 2.6 1.22–1.24 Effective Unconfirmed illness [19] 2008

Denmark 2nd Community 4 1.29–1.33 Effective Unconfirmed illness [19] 2008

Denmark 2nd Community 2.6 1.2–1.3 Effective Unconfirmed
hospitalizations

[19] 2008

Denmark 2nd Community 4 1.3–1.4 Effective Unconfirmed
hospitalizations

[19] 2008

Germany 2nd Community 1 1.58 0.03–10.3 Basic Unconfirmed deaths [31] 2007

Germany 2nd Community 3 2.52 0.75–5.85 Basic Unconfirmed deaths [31] 2007

Germany 2nd Community 5 3.41 1.91–5.57 Basic Unconfirmed deaths [31] 2007
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outbreak of H3N2 until the winter of 1969–70. In all, an
estimated 110,000 deaths occurred in the United States
during the pandemic period [37].
Four studies reported seven separate 1968 pandemic

values of R (Table 3; Figure 3). The median point esti-
mate of R in the community setting for all waves of ill-
ness was 1.80 (IQR: 1.56–1.85) (Table 3). Only two
values for R in confined settings were reported, and the
median value was 1.39. Two values of R were reported
in a community setting during the first wave and three
during the second wave. The median value of R during
the 1st wave was 1.56 and 1.68 during the 2nd wave
(Table 3).
The 1968 pandemic values for R were calculated

among populations in diverse geographic locations,
mainly because of one study that calculated separate
values for over 25 locations, such as Africa, Asia, and
South America (the overall estimate for R is included in

Table 3) [43]. The mean generation time or serial in-
terval used in the calculations to determine R had a me-
dian value of 4 days with little variation. The studies for
the 1968 pandemic included in this review relied on a
mix of laboratory-confirmed, unconfirmed illnesses, or
serologically-confirmed infections to identify those ill
(Table 3).

The 2009 influenza pandemic
The 2009 influenza A/H1N1 pandemic began in Mexico
in the late winter or early spring 2009 [44]. The United
States and the United Kingdom experienced a first wave
of illnesses in the spring followed by a second wave dur-
ing the fall [4]. However, a number of other countries,
especially in the Southern Hemisphere, only experienced
a single wave of illnesses [100]. In all, an estimated
12,000 deaths occurred in the United States during the
first year of pandemic circulation [126].

Table 1 Reproduction numbers from the 1918 Influenza A/H1N1 Pandemic (Continued)

Italy 2nd Community 3 1.38 1.3–1.5 Basic Unconfirmed
hospitalizations

[20] 2011

Mexico 2nd Community 3 1.30 Effective Unconfirmed deaths [21] 2010

New
Zealand

2nd Military >1.5 1.3–3.1 Basic Unconfirmed
hospitalizations

[32] 2006

Switzerland 2nd Community 2.28 3.75 3.6–3.9 Effective Unconfirmed
hospitalizations

[23] 2006

Switzerland 2nd Community 3.4 2.40 Basic Unconfirmed deaths [24] 2009

United
Kingdom

2nd Community 3 1.39 1.36–1.43 Effective Unconfirmed deaths [33] 2008

United
Kingdom

2nd Community 6 1.84 1.75–1.92 Effective Unconfirmed deaths [33] 2008

United
Kingdom

2nd Community 6 1.55 Basic Unconfirmed illness [26] 2005

United
Kingdom

2nd Community 2.6 1.50 Basic Unconfirmed deaths [10] 2006

USA 2nd Community 2.5 2.14 Basic Unconfirmed deaths [34] 2009

USA 2nd Community NR 2.20 1.55–2.84 Effective Unconfirmed illness [35] 2007

USA 2nd Community 4 2.00 1.7–2.3 Effective Unconfirmed deaths [36] 2004

USA 2nd Community 2.85 1.73 Effective Unconfirmed deaths [14] 2007

United
Kingdom

3rd Community 3 1.39 1.29–1.49 Effective Unconfirmed deaths [33] 2008

United
Kingdom

3rd Community 6 1.82 1.61–2.05 Effective Unconfirmed deaths [33] 2008

United
Kingdom

3rd Community 6 1.70 Basic Unconfirmed illness [26] 2005

Median reproduction number for the 1918 pandemic: 1.80; Interquartile range 1.47–2.27
aThe first wave of illnesses began in the Northern Hemisphere in the spring 1918 [1]. A second wave of more intense transmission occurred concurrently in North
America, Europe, and Africa in the Fall of 1918 while a third and final wave of activity occurred in some areas of the world during the winter of 1919 [37].
bThe generation time (GT) or serial interval (SI) assumed in the reproduction number estimation.
cConfidence interval.
NR = Not reported.
This table is also available as a .csv file as Additional file 1.
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Fifty-seven studies reported 78 separate 2009 pan-
demic values of R (Table 4; Figure 4). The median point
estimate of R in the community setting for all waves of
illness was 1.46 (IQR: 1.30–1.70) while a higher median
R value (R = 1.96; IQR: 1.50–2.23) was reported in con-
fined settings, such as military or summer camps,

schools, and night clubs. The value of R was similar
across the two distinct waves of illness: the median value
of R was 1.47 (IQR: 1.31–1.71) for the first wave and
1.48 (IQR: 1.30–1.66) for the second wave (Table 4).
A majority of 2009 pandemic values for R were calcu-

lated for populations in North America (30%) and Asia

Table 2 Reproduction numbers from the 1957 influenza A/H2N2 pandemic

Location Wavea Study
population

Mean
GT/SIb

Reproduction
number (R)

95% CIc Basic or
effective

Case definition Reference Year
published

Netherlands 2nd Community 3 1.39 Basic Unconfirmed deaths [38] 2010

United
Kingdom

2nd Community 2.6 1.70 Basic Unconfirmed deaths [10] 2006

United
Kingdom

2nd Community 3 1.5–1.6 Basic Unconfirmed illness [39] 2008

United
Kingdom

2nd Community 4 1.7–1.8 Basic Unconfirmed illness [39] 2008

United
Kingdom

2nd Community 4.1 1.50 Effective Unconfirmed illness [25] 2006

United
Kingdom

2nd Community NR 1.65 Basic Serology confirmed
infection

[26] 2005

USA 2nd Community 4 1.70 Basic Unconfirmed illness [40] 2004

Median reproduction number for the 1957 pandemic: 1.65; Interquartile range 1.53–1.70
aThe 1957 influenza A/H2N2 pandemic began in February 1957 in southern China and spread to Singapore and Hong Kong in April [1]. The virus was first isolated
in the United States in June 1957 and was associated with a mild first wave of illnesses [1,41]. The peak of the pandemic occurred during the second wave in the
Northern Hemisphere in October 1957 and was followed by a third wave in January 1958.
bThe generation time (GT) or serial interval (SI) assumed in the reproduction number estimation.
cConfidence interval.
NR = Not reported.
This table is also available as a .csv file as Additional file 2.

Table 3 Reproduction numbers from the 1968 influenza A/H3N2 pandemic

Location Wavea Study
population

Mean
GT/SIb

Reproduction
number (R)

95% CIc Basic or
effective

Case definition Reference Year
published

Hong
Kong

1st Community 2.95 1.89 Basic Unconfirmed illness [42] 1986

various 1st Community 4 1.06–2.06 Basic Serology; laboratory confirmed
illness; unconfirmed illness

[43] 2010

various 1st Confined
settings

4 1.08–1.62 Basic Serology; laboratory confirmed
illness; unconfirmed illness

[43] 2010

United
Kingdom

1st Community 4.1 1.80 Effective Unconfirmed illness [25] 2006

United
Kingdom

2nd Community NR 1.85 Effective Serology confirmed infection [26] 2005

various 2nd Community 4 1.08–2.02 Effective Serology; laboratory confirmed
illness; unconfirmed illness

[43] 2010

various 2nd Confined
settings

4 1.43 1.23–1.63 Effective Serology; laboratory confirmed
illness; unconfirmed illness

[43] 2010

Median reproduction number for the 1968 pandemic: 1.80; Interquartile range 1.56–1.85.
aThe 1968 influenza A/H3N2 pandemic began in Hong Kong in July 1968. Large single waves of illness were reported in the Northern Hemisphere between
September 1968 and April 1969 (with peaks occurring in December 1968–January 1969). Large single waves of illnesses were reported in the Southern
Hemisphere between June and September 1969. Some countries in the Northern Hemisphere, such as the United Kingdom, did not have an outbreak of H3N2
until the winter of 1969–70.
bThe generation time (GT) or serial interval (SI) assumed in the reproduction number estimation.
cConfidence interval.
NR = Not reported.
This table is also available as a .csv file as Additional file 3.

Biggerstaff et al. BMC Infectious Diseases 2014, 14:480 Page 6 of 20
http://www.biomedcentral.com/1471-2334/14/480



Table 4 Reproduction numbers from the 2009 influenza A/H1N1 pandemic

Location Wavea Study
population

Mean
GT/SIb

Reproduction
number (R)

95% CIc Basic or
effective

Case definition Reference Year
published

Mexico 0 Community 1.91 1.25 0.76–1.74 Basic Laboratory confirmed illness [44] 2011

Australia 1st Community 2.8 1.50 1.50–2.70 Effective Laboratory confirmed illness [45] 2010

Australia 1st Community 2.8 1.20 1.0–1.4 Effective Laboratory confirmed illness [45] 2010

Australia 1st Community 2.9 2.40 2.3–2.4 Effective Laboratory confirmed illness [46] 2009

Australia, rural 1st Community 2.9 1.28 1.26–1.30 Effective Laboratory confirmed illness [47] 2011

Australia, urban 1st Community 2.9 1.26 1.22–1.30 Effective Laboratory confirmed illness [47] 2011

Canada 1st Community 1.91 1.30 1.12–1.47 Basic Laboratory confirmed illness [48] 2010

Canada 1st Community 2.78 2.21 1.98–2.50 Basic Laboratory confirmed illness [49] 2012

Canada 1st Community 3.6 1.63 1.31–1.96 Basic Laboratory confirmed illness [48] 2010

Canada 1st Community 4.31 1.31 1.25–1.38 Basic Laboratory confirmed illness [50] 2010

Chile 1st Community 2.5 1.80 1.6–2.0 Effective Unconfirmed emergency room visits [51] 2010

Chile, central 1st Community 3 1.32 1.27–1.37 Effective Unconfirmed hospitalizations [52] 2012

Chile, northern 1st Community 3 1.19 1.13–1.24 Effective Unconfirmed hospitalizations [52] 2012

Chile, southern 1st Community 3 1.58 1.45–1.72 Effective Unconfirmed hospitalizations [52] 2012

China 1st Community 2.6 1.25 1.22–1.28 Effective Laboratory confirmed illness [53] 2012

China 1st Community 4.31 1.53 1.45–1.60 Basic Laboratory confirmed illness [54] 2012

China 1st Community NR 1.68 Basic Laboratory confirmed illness [55] 2011

Hong Kong 1st Community 3 1.70 1.6–1.8 Effective Laboratory confirmed illness [56] 2010

Hong Kong 1st Community 3.2 1.45 1.4–1.5 Effective Laboratory confirmed illness [57] 2010

Israel 1st Community 2.92 1.06 0.97–1.16 Effective Laboratory confirmed illness [58] 2011

Italy 1st Community 2.6 1.30 1.23–1.32 Effective Unconfirmed illness [59] 2012

Japan 1st School 1.9 2.30 2.0–2.6 Effective Laboratory confirmed illness [60] 2009

Japan 1st Community 2.7 1.28 1.23–1.33 Effective Laboratory confirmed illness [60] 2009

Mexico 1st Community 1.91 1.58 1.34–2.04 Basic Unconfirmed illness [61] 2009

Mexico 1st Community 1.96 1.42 Basic Unconfirmed illness [62] 2010

Mexico 1st Community 2.6 1.40 1.2–1.9 Basic Laboratory confirmed illness [61] 2009

Mexico 1st Community 2.6 1.22 1.05–1.60 Basic Laboratory confirmed illness [61] 2009

Mexico 1st Community 3 1.80 1.78–1.81 Effective Unconfirmed illness [63] 2011

Mexico 1st Community 3 1.43 1.29–1.57 Effective Laboratory confirmed illness [64] 2009

Mexico 1st Community 3.1 2.20 2.1–2.4 Effective Laboratory confirmed illness [65] 2009

Mexico 1st Community 3.5 2.30 2.1–2.5 Basic Laboratory confirmed illness [11] 2009

Mexico 1st Community 3.6 1.75 1.6–1.9 Basic Seeding from Mexico [66] 2009

Mexico 1st Community 4.1 3.10 2.9–3.5 Effective Laboratory confirmed illness [65] 2009

Mexico City 1st Community 3 1.72 Basic Laboratory confirmed illness [67] 2009

Morocco 1st Community 2.3 1.44 1.32–1.56 Basic Laboratory confirmed illness [68] 2012

Morocco 1st Community 2.7 1.40 1.34–1.48 Basic Laboratory confirmed illness [68] 2012

Netherlands 1st Community 3 0.50 Effective Laboratory confirmed illness [69] 2009

New Zealand 1st Community 2.7 1.25 1.07–1.47 Effective Laboratory confirmed illness [70] 2011

New Zealand 1st Community 2.8 1.96 1.80–2.15 Effective Laboratory confirmed illness [71] 2009

New Zealand 1st Community 2.8 1.55 1.16–1.86 Effective Laboratory confirmed illness;
unconfirmed illness

[72] 2010

North America 1st Community 2.7 1.3–2.1 Basic Laboratory confirmed illness [73] 2010

Peru 1st Community 2.8 1.37 1.33–1.41 Effective Laboratory confirmed illness [74] 2009

Peru 1st Community 3 1.30 1.3–1.3 Effective Unconfirmed illness [75] 2011
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Table 4 Reproduction numbers from the 2009 influenza A/H1N1 pandemic (Continued)

Peru, Lima 1st Community 3 1.70 1.6–1.7 Effective Unconfirmed illness [75] 2011

Singapore 1st Dance club 1.91 1.9–2.1 Basic Laboratory confirmed illness [76] 2010

Singapore 1st Military NR 1.91 1.50–2.36 Effective Laboratory confirmed and
unconfirmed illness

[77] 2010

South Africa 1st Community 2.3 1.43 1.38–1.49 Effective Laboratory confirmed illness [78] 2012

South Africa 1st Community 2.78 1.47 1.30–1.72 Effective Laboratory confirmed illness [78] 2012

South Africa 1st Community 2.78 1.42 1.20–1.71 Effective Laboratory confirmed illness [78] 2012

Southern
Hemisphere

1st Community 1.9 1.16–1.53 Effective Laboratory confirmed illness [79] 2010

Southern
Hemisphere

1st Community 2.60 1.33 1.28–1.45 Basic Laboratory confirmed and
unconfirmed illness

[80] 2011

Taiwan 1st Community 1.91 1.14 1.04–1.25 Effective Laboratory confirmed illness [81] 2011

Taiwan 1st Community NR 1.16 0.98–1.34 Effective Serology confirmed infection [82] 2011

Thailand 1st Community 1.9 1.78 1.67–1.89 Basic Laboratory confirmed illness [83] 2009

Thailand 1st Community 2.6 2.07 1.92–2.22 Basic Laboratory confirmed illness [83] 2009

United
Kingdom

1st School 2.2 1.33 1.11–1.56 Effective Laboratory confirmed illness [84] 2012

United
Kingdom

1st Community 2.5 1.44 1.27–1.63 Effective Laboratory confirmed illness [85] 2009

USA 1st Community 2.2 1.70 1.4–2.1 Basic Laboratory confirmed illness [86] 2009

USA 1st Community 2.6 2.20 1.4–2.5 Basic Laboratory confirmed illness [86] 2009

USA 1st School 2.7 3.30 3.0–3.6 Effective Unconfirmed illness [87] 2009

USA 1st Community 3.5 1.3–2.0 1.0–2.2 Basic Laboratory confirmed illness [11] 2009

USA 1st Camp
attendees

7 2.20 1.4–3.3 Effective Unconfirmed illness [88] 2011

Vietnam 1st Community 1.9 1.50 1.5–1.6 Basic Laboratory confirmed illness [89] 2010

Vietnam 1st Community 3.6 2.00 1.9–2.2 Basic Laboratory confirmed illness [89] 2010

worldwide 1st Community 2.67 1–2 Effective Laboratory confirmed illness [90] 2011

China 2nd Community 4 1.66 1.27–2.05 Effective confirmed hospitalizations [91] 2012

China 2nd Community 4.3 1.70 1.4–1.9 Effective Laboratory confirmed illness [92] 2010

France 2nd Military 2.9 1.5–1.6 Effective Unconfirmed illness [93] 2012

Iran 2nd school NR 1.28 1.05–1.54 Basic Unconfirmed illness [94] 2012

Italy 2nd Community 2.5 1.33 Effective Unconfirmed illness [95] 2011

Japan 2nd Community 3 1.48 1.41–1.56 Effective Unconfirmed illness [96] 2012

Mexico 2nd Community 3 1.62 1.61–1.63 Effective Unconfirmed illness [63] 2011

Reunion Island 2nd Community 2.8 1.26 1.08–1.49 Effective Unconfirmed illness [97] 2010

Taiwan 2nd Community 1.91 1.02 1.01–1.02 Effective Laboratory confirmed illness [81] 2011

Taiwan 2nd Community NR 1.87 1.68–2.06 Effective Serology confirmed infection [82] 2011

United
Kingdom

2nd Community 2.5 1.30 1.2–1.5 Effective Laboratory confirmed illness [98] 2010

Mexico 3rd Community 3 1.24 1.23–1.24 Effective Unconfirmed illness [63] 2011

various Community NR 1.30 1.1–1.4 Effective Serology confirmed infection [99] 2012

Median reproduction number for the 2009 pandemic: 1.46; Interquartile range 1.30–1.70
aThe 2009 influenza A/H1N1 pandemic began in Mexico in the late winter or early spring of 2009 [44]. The United States and the United Kingdom experienced a
first wave of illnesses in the Spring of 2009 followed by a second wave during the Fall of 2009 [4]. However, unlike these three countries, a number of countries,
especially in the Southern Hemisphere, only experienced a single wave of illnesses [100].
bThe generation time (GT) or serial interval (SI) assumed in the reproduction number estimation.
cConfidence interval.
NR = Not reported.
This table is also available as a .csv file as Additional file 4.
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Table 5 Reproduction numbers from seasonal influenza epidemics

Year(s) Type/
Subtype

Study
population

Mean
GT/SIa

Reproduction
number (R)

95% CIb Basic or
effective

Case definition Reference Year
published

1889–
1890

H3N8? USA & Europe 2.6 2.10 1.9–2.4 Basic Unconfirmed deaths [101] 2010

1948–
1949

H1N1 Canada 4.1 1.30 Effective Unconfirmed illness [25] 2006

1949–
1950

H1N1 Canada 4.1 1.50 Effective Unconfirmed illness [25] 2006

1950–
1951

H1N1 Canada & UK 4.1 2.00 1.9–2.5 Effective Unconfirmed deaths [25] 2006

1958–
1973

H2N2;
H3N2; B

United
Kingdom

4.48 3.9–7.1 Effective Unconfirmed illness [102] 1979

1972–
2002

H1N1/
H3N2/B

Australia 5.5 1.30 Effective Unconfirmed deaths [103] 2008

1972–
2002

H1N1/
H3N2/B

France 5.5 1.30 Effective Unconfirmed deaths [103] 2008

1972–
2002

H1N1/
H3N2/B

USA 5.5 1.30 Effective Unconfirmed deaths [103] 2008

1972–
2002

H1N1/
H3N2/B

USA; France;
Australia

5.5 1.30 1.2–1.4 Effective Unconfirmed deaths [103] 2008

1975–
2004

H1N1/
H3N2/B

Norway 6 1.06–1.69 Effective Unconfirmed deaths [104] 2010

1976–
1981

H1N1/
H3N2/B

USA 2.6 1.70 Basic Serology confirmed
infection

[10] 2006

1976–
1981

H1N1/
H3N2/B

USA 4.1 1.16 Basic Serology confirmed
infection

[105] 2000

1977–
1978

H1N1 United
Kingdom

2.2 4.38 Basic Unconfirmed illness [106] 2005

1977–
1978

H1N1 United
Kingdom

3 21.00 Basic Unconfirmed illness [13] 2004

1977–
1978

H1N1 United
Kingdom

4.70 16.90 Basic Unconfirmed illness [106] 2005

1984–
1985

H1N1/
H3N2

France 2.49 1.37 Effective Unconfirmed illness [107] 1988

1985–
2005

H1N1/
H3N2/B

United
Kingdom

2.2 1.6–2.1 Basic Unconfirmed illness [108] 2010

1985–
2005

H1N1/
H3N2/B

United
Kingdom

2.7 1.6–2.5 Basic Unconfirmed illness [109] 2012

1985–
2006

H1N1/
H3N2/B

France 2.4 1.4–1.7 1.3–1.8 Basic Unconfirmed illness [110] 2008

1996–
2006

H1N1/
H3N2/B

Brazil 3 1.03 1.02–1.04 Effective Unconfirmed deaths [111] 2010

1998–
1999

H3N2 Israel 3 1.14 Effective Unconfirmed illness [112] 2011

1998–
1999

H3N2 Israel 3 1.16 Effective Unconfirmed illness [112] 2011

1998–
1999

H3N2 USA 3 1.18 1.05–1.25 Effective Laboratory confirmed
illness

[113] 2009

1998–
2009

H1N1/
H3N2/B

Israel 2.5 1.17–1.62 Effective Unconfirmed illness [114] 2012

1999–
2000

H3N2 Israel 3 1.16 Effective Unconfirmed illness [112] 2011

1999–
2000

H3N2 Israel 3 1.18 Effective Unconfirmed illness [112] 2011
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(26%). The mean generation time or serial interval used in
the calculations to determine R had a median value of
2.8 days, and the mean ranged from 1.9–7 days (Table 4).
A majority of the studies included for the 2009 pandemic
relied on either laboratory-confirmed illnesses (71%) or
unconfirmed illnesses (24%) to identify those ill (Table 4).

Seasonal influenza
Seasonal influenza causes sustained epidemics in the non-
tropical areas of the Northern Hemisphere and Southern
Hemisphere during their respective late fall to early spring
months. Epidemics in the tropical regions occur sporadically
but can be associated with the rainy season [1]. The

Table 5 Reproduction numbers from seasonal influenza epidemics (Continued)

1999–
2006

Seasonal
H1N1

Taiwan 2 1.19 0.76–1.86 Basic Confirmed and
unconfirmed illness

[115] 2010

1999–
2006

H3N2 Taiwan 3 1.41 0.92–2.19 Basic Confirmed and
unconfirmed illness

[115] 2010

1999–
2006

B Taiwan 3 1.07 0.69–1.69 Basic Confirmed and
unconfirmed illness

[115] 2010

2000–
2001

H1N1 Israel 3 1.12 Effective Unconfirmed illness [112] 2011

2000–
2009

H1N1/
H3N2/B

Italy 4 1.17–1.36 Effective Unconfirmed illness [116] 2012

2001–
2002

H3N2 Israel 3 1.25 Effective Unconfirmed illness [112] 2011

2001–
2002

H3N2 Israel 3 1.27 Effective Unconfirmed illness [112] 2011

2003–
2004

H3N2 Israel 3 1.19 Effective Unconfirmed illness [112] 2011

2003–
2004

H3N2 Israel 3 1.21 Effective Unconfirmed illness [112] 2011

2003–
2004

H3N2 Switzerland 2.6 1.2–1.3 Effective Unconfirmed illness [117] 2011

2004–
2005

H3N2 Israel 3 1.25 Effective Unconfirmed illness [112] 2011

2004–
2005

H3N2 Israel 3 1.25 Effective Unconfirmed illness [112] 2011

2004–
2005

unspecified Taiwan 4.1 1.00 Effective Unconfirmed deaths [118] 2010

2004–
2005

H3N2 USA 7 1.20 1.1–1.3 Effective Laboratory confirmed
illness

[119] 2008

2006–
2007

H3N2 Israel 3 1.28 Effective Unconfirmed illness [112] 2011

2006–
2007

H3N2 Israel 3 1.33 Effective Unconfirmed illness [112] 2011

2007–
2008

H3N2 Israel 3 1.25 Effective Unconfirmed illness [112] 2011

2007–
2008

H3N2 Israel 3 1.29 Effective Unconfirmed illness [112] 2011

2011/12 H1N1 Mexico 3 1.20 Effective Laboratory confirmed
hospitalizations

[120] 2012

2011/12 H1N1 Mexico 3 1.20 Effective Laboratory confirmed
hospitalizations

[121] 2012

2011/12 H1N1 Mexico 4 1.30 Effective Laboratory confirmed
hospitalizations

[121] 2012

Median reproduction number for seasonal influenza: 1.28; Interquartile range 1.19–1.37
aThe generation time (GT) or serial interval (SI) assumed in the reproduction number estimation
bConfidence interval
NR = Not reported
This table is also available as a .csv file as Additional file 5.
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Table 6 Reproduction numbers from novel influenza outbreaks

Year(s) Subtype Study
Population

Mean
GT/SIa

Reproduction
number (R)

95% CIb Basic or
Effective

Case definition Reference Year
Published

1976 H1N1 New Jersey 1.9 1.20 1.1–1.4 Basic Serologically confirmed
illness

[122] 2007

2004–
2006

H5N1 Vietnam 7 0.00 0–0.42 Effective Laboratory confirmed
illness

[119] 2008

2004–
2006

H5N1 Indonesia 7 0.00 0–0 Effective Laboratory confirmed
illness

[119] 2008

2005 H5N1 Turkey 9.5 <1 Basic Laboratory confirmed
illness

[123] 2007

2005–
2009

H5N1 Indonesia 6 0.1–0.25 0–0.4 Effective Laboratory confirmed
illness

[124] 2012

2006 H5N1 Indonesia 9.5 1.14 0.61–2.14 Basic Laboratory confirmed
illness

[123] 2007

Median reproduction number for novel influenza outbreaks: 0.34; Interquartile range 0.05–0.98
aThe generation time (GT) or serial interval (SI) assumed in the reproduction number estimation.
NR = Not reported.
bConfidence interval.
This table is also available as a .csv file as Additional file 6.

Figure 2 Estimates of the reproduction number for the 1918 influenza A/H1N1 pandemic according to location, wave of illness,
setting, and the serial interval or generation time assumed in the estimation method. For individual studies, the single estimate or median
of multiple estimates is shown as a circle for basic reproduction numbers or a square for effective reproduction numbers, and the range or
confidence interval is denoted by brackets. Estimates of the reproduction number are color coded based on the generation time or serial interval
used in calculations: red (<3 days), blue (≥3 days), or black (not reported or not used).
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mortality burden from influenza varies by season, and from
1976–2007, estimates of annual influenza-associated deaths
in the United States from respiratory and circulatory causes
ranged from 3,000 to 49,000 [3].
Twenty-four studies reported 47 separate seasonal epi-

demic values of R (Table 5; Figure 5). The median point
estimate of R in the community setting for seasonal in-
fluenza was 1.27 (IQR: 1.19–1.37) while a higher median
R value (R = 16.9) was reported in a British boarding
school during the 1977–78 influenza season (Table 5). R
values for seasons where H3N2 (R = 1.25; IQR: 1.18–
1.27) or H1N1 (R = 1.25; IQR: 1.18–1.35) predominated
were equivalent (Table 5).
A majority of seasonal influenza values for R were cal-

culated for populations in Israel (35%), Europe (25%),
and North America (21%). The mean generation time or
serial interval used in the calculations to determine R
had a median value of 3.0 days, and the mean ranged

from 2.0–7.0 days (Table 5). A majority of the studies in-
cluded for seasonal influenza relied on unconfirmed ill-
nesses or deaths (79%); the reminder relied on either
laboratory-confirmed illnesses or hospitalizations or
serologically-confirmed infections (Table 5).

Human infections with non-human influenza viruses
Human infections with novel or non-human influenza
viruses (also known as zoonotic influenza viruses) are
rare but can result in a pandemic if sustained person-
to-person transmission occurs and the population has
little or no pre-existing population immunity to the
virus. Therefore, instances of infection with non-
human influenza viruses are investigated thoroughly to
assess the transmissibility of the virus. The largest
number of novel influenza cases at the time of this re-
view was from the ongoing influenza A/H5N1 out-
break centered in Southeast Asia and the Middle

Figure 3 Estimates of the reproduction number for the 1957 influenza A/H2N2 and the 1968 influenza A/H3N2 pandemics according
to location, wave of illness, setting, and the serial interval or generation time assumed in the estimation method. For individual studies,
the single estimate or median of multiple estimates is shown as a circle for basic reproduction numbers or a square for effective reproduction
numbers, and the range or confidence interval is denoted by brackets. Estimates of the reproduction number are color coded based on the
generation time or serial interval used in calculations: red (<3 days), blue (≥3 days), or black (not reported or not used).
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East. From January, 1, 2003 to February 15, 2013, 620
laboratory-confirmed cases have been reported to the
WHO, of which 367 have died [127]. Another large
outbreak of novel influenza occurred in 1976 in Fort
Dix, New Jersey, which was caused by an influenza
A/H1N1 virus similar to those found circulating in
swine [122].
Four studies estimated the values of R for the A/H5N1

and A/H1N1 outbreaks (Table 6). Four out of six esti-
mates (67%) of R were less than one, and the highest
R estimate (R = 1.2) was for the 1976 A/H1N1 out-
break in a New Jersey military camp (a confined setting)
(Table 6).
A majority of novel A virus R values were calculated for

populations in Southeast Asia (67%), indicative of where
the bulk of A/H5N1 bird-to-human transmission occurs.
The mean generation time or serial interval used in the
calculations to determine R had a median value of 7.0 days,

and the mean ranged from 1.9–9.5 days (Table 6). All
studies relied on either laboratory-confirmed illness or
serological-confirmed infection (Table 6).

Discussion
In this review, the median R values reported for the four
pandemics and seasonal influenza varied between 1.27–
1.8 while R values for novel influenza were generally
below 1. We found the highest median reproduction
number associated with the 1918 and the 1968 influenza
pandemics (both 1.8), followed by the 1957 pandemic
(1.65), the 2009 pandemic (1.46), seasonal influenza epi-
demics (1.27), and novel influenza outbreaks. A majority
of R values published were for either the 1918 pandemic
or the 2009 pandemic; the 1957 and 1968 pandemics
had the fewest published studies. Researchers calculated
values for R for a variety of locations and utilized many

Figure 4 Estimates of the reproduction number for the 2009 Influenza A/H1N1 pandemic according to location, wave of illness,
setting, and the serial interval or generation time assumed in the estimation method. For individual studies, the single estimate or median
of multiple estimates is shown as a circle for basic reproduction numbers or a square for effective reproduction numbers, and the range or
confidence interval is denoted by brackets. Estimates of the reproduction number are color coded based on the generation time or serial interval
used in calculations: red (<3 days), blue (≥3 days), or black (not reported or not used).
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different case definitions, ascertainment methods, and
assumptions about the generation time or serial interval.
The approximate basic reproductive numbers for some

common infectious diseases range from 12–18 for mea-
sles, 12–17 for pertussis, and 4–7 for mumps, polio, ru-
bella, and smallpox [12]. These values are much higher
than what has been reported for influenza, and most R
values reported in this review ranged from 1.0–2.0.
However, the overall clinical attack rate and peak daily
incidence of an outbreak, which measures the potential
burden on healthcare services and school and workplace
absenteeism, are very sensitive to changes in the value of
R within this range. Past research utilizing a number of
assumptions on the symptomatic ratio, contact patterns,
and seeding has estimated that the cumulative clinical
attack rates for a pandemic when R = 1.3 ranged from
15%–21% and increased to 34%–42% for R = 2.0 [10,11].
Similarly, the peak daily attack rate is 0.5% for R = 1.3

and 2.2% for R = 2.0 [10]. Therefore, with only an abso-
lute difference in R of 0.7, the clinical attack rates in
these studies more than doubled and the peak daily inci-
dence more than quadrupled.
Differences in the value of R within this range also

affect the evaluation of potential mitigation strategies (e.
g., school closures, vaccination, household isolation) for
influenza pandemics. Analysis of strategies to mitigate
an influenza pandemic have found that the effectiveness
of non-travel-related control policies, such as school clo-
sures, household quarantine, and vaccination, would de-
crease as the value of R increases from 1.0 to 2.0 [10].
The success of various vaccination strategies would also
be more likely for values of R < 1.7 [10,11]. Therefore,
the small variations in pandemic R estimates found in
this analysis can have important implications for the
overall impact and success of mitigation efforts for an in-
fluenza pandemic. This finding highlights the importance

Figure 5 Estimates of the reproduction number in the community for seasonal influenza epidemics according to location, wave of
illness, and the serial interval or generation time assumed in the estimation method. For individual studies, the single estimate or median
of multiple estimates is shown as a circle for basic reproduction numbers or a square for effective reproduction numbers, and the range or
confidence interval is denoted by brackets. Estimates of the reproduction number are color coded based on the generation time or serial interval
used in calculations: red (<3 days), blue (≥3 days), or black (not reported or not used).
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of making precise estimates of R early in a pandemic.
Further research should focus on refining methods that
allow for early, robust estimates of R.
The results of this analysis reinforce the idea that R is a

measure that captures the transmissibility of an influenza
virus in the population under study and is not an intrinsic
value. The inputs for its calculation can include the popu-
lation contact rate, the probability of infection per contact,
the duration of illness, and the percentage of the popula-
tion that is susceptible which is affected by the character-
istics of the population under study. Therefore, the
variations in the value for R for the same pandemic or sea-
sonal outbreak are expected and may be due to the under-
lying social and socio-demographic factors of the
population studied, public health interventions, and geo-
graphical or climatic factors of the location. These varia-
tions include the percentage of the source’s population
under 18 years old; differences in contact patterns be-
tween age groups, which vary by country [128,129]; and
differences in population susceptibility profiles, which var-
ied by age group for the 2009 pandemic [130]. Another
important factor that may contribute to the variation is
the season from which data used to estimate R is col-
lected. While the effect of weather on the transmissibility
of influenza has not been fully explored, some studies have
shown that the level of absolute humidity is inversely cor-
related with influenza transmissibility [131,132]. There-
fore, estimates of R should be interpreted in the context of
the population under study and the season in which data
was collected and direct comparisons of R between popu-
lations should be undertaken with caution.
Variations in the estimated values of R may also be

driven by changes in surveillance intensity in the same
country over time. If a country suddenly improves its
surveillance system in response to a pandemic and is
better able to identify cases, then the number of cases
being reported will increase, even though the actual
number of cases occurring will not have changed. This
increase in the reported number of cases may increase
the estimated R as the growth rate of the outbreak will
increase [86]. Conversely, the value of R could be artifi-
cially lowered if countries implement changes in surveil-
lance practices that result in a lower number of
identified cases, such as reducing screening recommen-
dations, or have their surveillance systems overwhelmed.
This effect was seen in the United States during the
2009 pandemic, when influenza testing for every case
became unfeasible and testing recommendations were
changed [4].
One of the more important methodological assump-

tions that can have a large impact on the estimated value
of R is the length of the serial interval or generation time
used during the estimation of R. Longer serial intervals
have previously been associated with higher estimates of

R when compared to estimates from the same dataset
using shorter serial intervals [9]. In this analysis, esti-
mates of R from the 1918, 1957, and 1968 pandemics
utilized higher serial interval values than were used for
the 2009 pandemic or for seasonal influenza. Addition-
ally, higher values of R from the 2009 pandemic often
were estimated using a generation time or serial interval
of 3 days or more (Figure 4). Therefore, the estimates of
R included in this analysis should be interpreted in the
context of the serial intervals or generation times used
in the estimation method. Like R, the values for the gen-
eration time or the serial interval can vary by the source
population. Therefore, researchers estimating the values
of R should strive to use standard estimates of the serial
interval or generation time for influenza or at least in-
clude common values in a sensitivity analysis. This will
help with the comparability of R values across studies
and may aid in the correct interpretation of R estimates.
An additional way in which estimates of R may be biased
up or down lies in the choice of estimation procedure it-
self. Chowell et al. showed that estimates of R obtained
using simple epidemic mathematical models varied con-
siderably as the model increased in complexity (e.g. the
addition of a period of infection latency or an age-
structured population) [35].
Although we found no difference in the value of R for

studies using confirmed cases versus unconfirmed cases
in the estimation method, the trade-off between the accur-
acy of the less specific but more efficient and cost effective
syndromic data compared to laboratory-confirmed influ-
enza infections is unknown. The incubation periods of
non-influenza respiratory pathogens that co-circulate with
influenza (e.g. respiratory syncytial virus or rhinovirus)
range from a median of 1.9–5.6 days; estimates of R for in-
fluenza could either be overestimated or underestimated
during periods of co-circulation, depending on the in-
tensity and identity of the co-circulating respiratory pa-
thogen [87]. Future research should focus on estimation
of R using laboratory-confirmed cases and hospitaliza-
tions and should provide estimates from syndromic data
for comparison.
Most studies included in this analysis focused on 1918

or the 2009 pandemic. Only a small number of estimates
of the reproduction number have been reported for the
two other pandemics of the 20th century (1957 and
1968). As a consequence, there is still insufficient infor-
mation to fully clarify the transmission dynamics of the
1957 and 1968 pandemics. Because historical data are
available for these pandemics, future research should
focus on estimations of R for the 1957 and 1968 pan-
demics to better understand the characteristics of these
pandemics.
This study generally found higher reproduction num-

bers for confined settings, such as schools, military
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bases, or night clubs, except for estimates from the 1968
pandemic. Because confined settings increase the inten-
sity of transmission by increasing contact rates among
those ill and well, the values of R presented for out-
breaks in confined settings are likely to be much higher
than values of R estimated for the community and
should be interpreted accordingly. While the estimation
of R in confined settings may be useful for the assess-
ment of the upper bounds of transmissibility, its value is
not directly comparable to estimates of R made in the
community setting.
This review found, with one exception, a high degree

of consistency in the estimated values of R for seasonal
influenza epidemics. The only notable exception was the
extremely high R values estimated for an outbreak of in-
fluenza A (H1N1) in 1978 at a small British boarding
school with 763 male students aged 10–18 who were
mostly full boarders [133]. The results of this analysis
suggest that the extreme R values reported for this out-
break are not typical of seasonal or pandemic influenza
and instead may be the result of the lack of pre-existing
immunity among the students to the strain of influenza
A (H1N1) that caused the outbreak, the extremely high
contact rates likely among a group of boarded students,
or a study artifact related to the small number of stu-
dents in the study population [13,106,133]. Additionally,
the median R value of seasonal influenza (R = 1.27) is
well below the median values seen during the four pan-
demics examined in this report. The consistency of sea-
sonal R values is even more remarkable given the wide
variety of estimation methods, data sources, and as-
sumptions used in the studies included here. However,
the majorities of seasonal influenza estimates were from
a small number of countries. Estimates of R from coun-
tries in Africa, Asia, and South America are also needed
to determine if values of R for seasonal influenza epi-
demics are affected by geographic and social factors.
This systematic review is subject to at least three limi-

tations. First, we combined estimates for the basic and
effective reproductive numbers when presenting the me-
dian estimates in this study. Even though these values
measure transmission in populations with differing levels
of underlying population immunity, some papers in-
cluded in this review did not clearly differentiate be-
tween basic and effective reproductive numbers or state
the required population immunity assumptions when
reporting basic reproductive numbers. Therefore, we
choose to present summary values for the basic and ef-
fective reproductive numbers together to simplify the re-
sults. The tables include whether the reproductive
number estimate was reported as basic or effective for
each study. Second, we did not assess included studies
for the type or quality of their methodology or the risk
of study bias. Finally, we only included published

estimates of the reproductive number, which may not be
representative of unpublished reproductive number
values.

Conclusions
In this review, we explored the ranges and uncertainty of
the values of R estimated for seasonal, pandemic, and
novel influenza. We found that values of R changed over
the course of a pandemic but the effect of the waves var-
ied. The value of R is not constant and may be affected
by mitigation strategies, the season, and the population
under study. The values of R found in this analysis rep-
resent the difference between a pandemic that is con-
trollable with less intensive mitigation strategies and
would cause moderate amounts of illness to a pandemic
that would require very intensive mitigation strategies
and would cause greater amounts of illness. Continued
monitoring of R during outbreaks of human infections
with non-human influenza viruses and in various set-
tings throughout future pandemics will be required to
fully understand the effects of mitigation, geography,
and season.

Additional files

Additional file 1: Reproduction Numbers from the 1918 Influenza
A/H1N1 Pandemic.

Additional file 2: Reproduction Numbers from the 1957 Influenza
A/H2N2 Pandemic.

Additional file 3: Reproduction Numbers from the 1968 Influenza
A/H3N2 Pandemic.

Additional file 4: Reproduction Numbers from the 2009 Influenza
A/H1N1 Pandemic.

Additional file 5: Reproduction Numbers from Seasonal Influenza
Epidemics.

Additional file 6: Reproduction Numbers from Novel Influenza
Outbreaks.

Competing interest
The authors declare that they have no financial or non-financial competing
interests with the publication of this manuscript.

Authors’ contributions
MB led the data collection, analysis, and the writing of the article. SC led the
editing of the article and assisted with data interpretation. CR and MG
contributed significantly to data interpretation and reviewed multiple drafts
of the article. LF contributed to the design of the study, data interpretation,
and reviewed multiple drafts of the article. All authors read and approved
the final manuscript.

Acknowledgements
We are particularly grateful for the assistance in the preparation and editing
of the manuscript given by Alejandro Perez and Dr. Claudia Campbell.

Disclaimer
The findings and conclusions in this report are those of the authors and do
not necessarily represent the official position of the Centers for Disease
Control and Prevention.

Biggerstaff et al. BMC Infectious Diseases 2014, 14:480 Page 16 of 20
http://www.biomedcentral.com/1471-2334/14/480



Author details
1Epidemiology and Prevention Branch, Influenza Division, National Center for
Immunization and Respiratory Diseases, Centers for Disease Control and
Prevention, 1600 Clifton Road NE MS A-32, Atlanta 30333, Georgia.
2Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris,
France. 3National Center for Immunization and Respiratory Diseases, CDC,
Atlanta, Georgia.

Received: 11 April 2014 Accepted: 28 August 2014
Published: 4 September 2014

References
1. Cox NJ, Subbarao K: Global epidemiology of influenza: past and present.

Annu Rev Med 2000, 51:407–421.
2. Sullivan KM, Monto AS, Longini IM Jr: Estimates of the US health impact of

influenza. Am J Public Health 1993, 83(12):1712–1716.
3. Centers for Disease Control and Prevention: Estimates of deaths associated

with seasonal influenza –- United States, 1976–2007. MMWR Morb Mortal
Wkly Rep 2010, 59(33):1057–1062.

4. Jhung MA, Swerdlow D, Olsen SJ, Jernigan D, Biggerstaff M, Kamimoto L,
Kniss K, Reed C, Fry A, Brammer L, Gindler J, Gregg WJ, Bresee J, Finelli L:
Epidemiology of 2009 pandemic influenza A (H1N1) in the United
States. Clin Infect Dis 2011, 52(Suppl 1):S13–S26.

5. Reed C, Biggerstaff M, Finelli L, Koonin LM, Beauvais D, Uzicanin A, Plummer
A, Bresee J, Redd SC, Jernigan DB: Novel framework for assessing
epidemiologic effects of influenza epidemics and pandemics. Emerg
Infect Dis 2013, 19(1):85–91.

6. Anderson RM, May RM: Infectious diseases of humans : dynamics and
control. Oxford. New York: Oxford University Press; 1991.

7. Heffernan JM, Smith RJ, Wahl LM: Perspectives on the basic reproductive
ratio. Journal of the Royal Society, Interface / the Royal Society 2005,
2(4):281–293.

8. Li J, Blakeley D, Smith RJ: The failure of R0. Computational and
mathematical methods in medicine 2011, 2011:527610.

9. Boelle PY, Ansart S, Cori A, Valleron AJ: Transmission parameters of the
A/H1N1 (2009) influenza virus pandemic: a review. Influenza Other Respi
Viruses 2011, 5(5):306–316.

10. Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS:
Strategies for mitigating an influenza pandemic. Nature 2006,
442(7101):448–452.

11. Yang Y, Sugimoto JD, Halloran ME, Basta NE, Chao DL, Matrajt L, Potter G,
Kenah E, Longini IM Jr: The transmissibility and control of pandemic
influenza A (H1N1) virus. Science (New York, NY) 2009, 326(5953):729–733.

12. Fine PE: Herd immunity: history, theory, practice. Epidemiol Rev 1993,
15(2):265–302.

13. Fraser C, Riley S, Anderson RM, Ferguson NM: Factors that make an
infectious disease outbreak controllable. Proc Natl Acad Sci U S A 2004,
101(16):6146–6151.

14. Wallinga J, Lipsitch M: How generation intervals shape the relationship
between growth rates and reproductive numbers. Proc Biol Sci 2007,
274(1609):599–604.

15. Caley P, Philp DJ, McCracken K: Quantifying social distancing arising from
pandemic influenza. Journal of the Royal Society, Interface / the Royal Society
2008, 5 (23):631–639.

16. Massad E, Burattini MN, Coutinho FA, Lopez LF: The 1918 influenza A
epidemic in the city of Sao Paulo, Brazil. Med Hypotheses 2007,
68(2):442–445.

17. Sattenspiel L: Regional patterns of mortality during the 1918 influenza
pandemic in Newfoundland. Vaccine 2011, 29(Suppl 2):B33–B37.

18. Chowell G, Viboud C, Simonsen L, Miller MA, Acuna-Soto R, Diaz JM,
Martinez-Martin AF: The 1918–19 influenza pandemic in Boyaca,
Colombia. Emerg Infect Dis 2012, 18(1):48–56.

19. Andreasen V, Viboud C, Simonsen L: Epidemiologic characterization of the
1918 influenza pandemic summer wave in Copenhagen: implications for
pandemic control strategies. J Infect Dis 2008, 197(2):270–278.

20. Rizzo C, Ajelli M, Merler S, Pugliese A, Barbetta I, Salmaso S, Manfredi P:
Epidemiology and transmission dynamics of the 1918–19 pandemic
influenza in Florence, Italy. Vaccine 2011, 29(Suppl 2):B27–B32.

21. Chowell G, Viboud C, Simonsen L, Miller MA, Acuna-Soto R: Mortality
patterns associated with the 1918 influenza pandemic in Mexico:

evidence for a spring herald wave and lack of preexisting immunity in
older populations. J Infect Dis 2010, 202(4):567–575.

22. Chowell G, Viboud C, Simonsen L, Miller MA, Hurtado J, Soto G, Vargas R,
Guzman MA, Ulloa M, Munayco CV: The 1918–1920 influenza pandemic in
Peru. Vaccine 2011, 29 (Suppl 2):B21–B26.

23. Chowell G, Ammon CE, Hengartner NW, Hyman JM: Estimation of the
reproductive number of the Spanish flu epidemic in Geneva,
Switzerland. Vaccine 2006, 24(44–46):6747–6750.

24. Rios-Doria D, Chowell G: Qualitative analysis of the level of cross-protection
between epidemic waves of the 1918–1919 influenza pandemic.
J Theor Biol 2009, 261(4):584–592.

25. Viboud C, Tam T, Fleming D, Handel A, Miller MA, Simonsen L:
Transmissibility and mortality impact of epidemic and pandemic
influenza, with emphasis on the unusually deadly 1951 epidemic.
Vaccine 2006, 24(44–46):6701–6707.

26. Gani R, Hughes H, Fleming D, Griffin T, Medlock J, Leach S: Potential
impact of antiviral drug use during influenza pandemic. Emerg Infect
Dis 2005, 11(9):1355–1362.

27. Mathews JD, McBryde ES, McVernon J, Pallaghy PK, McCaw JM: Prior
immunity helps to explain wave-like behaviour of pandemic influenza
in 1918–9. BMC Infect Dis 2010, 10:128.

28. White LF, Pagano M: Transmissibility of the influenza virus in the 1918
pandemic. PLoS One 2008, 3(1):e1498.

29. Vynnycky E, Trindall A, Mangtani P: Estimates of the reproduction
numbers of Spanish influenza using morbidity data. Int J Epidemiol 2007,
36(4):881–889.

30. Zhang S, Yan P, Winchester B, Wang J: Transmissibility of the 1918
pandemic influenza in Montreal and Winnipeg of Canada. Influenza Other
Respi Viruses 2010, 4(1):27–31.

31. Nishiura H: Time variations in the transmissibility of pandemic
influenza in Prussia, Germany, from 1918–19. Theor Biol Med Model
2007, 4:20.

32. Sertsou G, Wilson N, Baker M, Nelson P, Roberts MG: Key transmission
parameters of an institutional outbreak during the 1918 influenza
pandemic estimated by mathematical modelling. Theor Biol Med Model
2006, 3:38.

33. Chowell G, Bettencourt LM, Johnson N, Alonso WJ, Viboud C: The
1918–1919 influenza pandemic in England and Wales: spatial patterns
in transmissibility and mortality impact. Proc Biol Sci 2008,
275(1634):501–509.

34. Goldstein E, Dushoff J, Ma J, Plotkin JB, Earn DJ, Lipsitch M: Reconstructing
influenza incidence by deconvolution of daily mortality time series.
Proc Natl Acad Sci U S A 2009, 106(51):21825–21829.

35. Chowell G, Nishiura H, Bettencourt LM: Comparative estimation of the
reproduction number for pandemic influenza from daily case
notification data. Journal of the Royal Society, Interface / the Royal Society
2007, 4(12):155–166.

36. Mills CE, Robins JM, Lipsitch M: Transmissibility of 1918 pandemic
influenza. Nature 2004, 432(7019):904–906.

37. Glezen WP: Emerging infections: pandemic influenza. Epidemiol Rev 1996,
18(1):64–76.

38. Nishiura H: Time variations in the generation time of an infectious
disease: implications for sampling to appropriately quantify transmission
potential. Mathematical biosciences and engineering : MBE 2010,
7(4):851–869.

39. Vynnycky E, Edmunds WJ: Analyses of the 1957 (Asian) influenza
pandemic in the United Kingdom and the impact of school closures.
Epidemiol Infect 2008, 136(2):166–179.

40. Longini IM Jr, Halloran ME, Nizam A, Yang Y: Containing pandemic
influenza with antiviral agents. Am J Epidemiol 2004, 159(7):623–633.

41. Langmuir AD: Epidemiology of Asian influenza. With special emphasis
on the United States. Am Rev Respir Dis 1961, 83(2):2–14. Pt 2.

42. Longini IM Jr, Fine PE, Thacker SB: Predicting the global spread of new
infectious agents. Am J Epidemiol 1986, 123(3):383–391.

43. Jackson C, Vynnycky E, Mangtani P: Estimates of the transmissibility of
the 1968 (Hong Kong) influenza pandemic: evidence of increased
transmissibility between successive waves. Am J Epidemiol 2010,
171(4):465–478.

44. Hsieh YH, Ma S, Velasco Hernandez JX, Lee VJ, Lim WY: Early
outbreak of 2009 influenza A (H1N1) in Mexico prior to
identification of pH1N1 virus. PLoS One 2011, 6(8):e23853.

Biggerstaff et al. BMC Infectious Diseases 2014, 14:480 Page 17 of 20
http://www.biomedcentral.com/1471-2334/14/480



45. Kelly HA, Mercer GN, Fielding JE, Dowse GK, Glass K, Carcione D, Grant KA,
Effler PV, Lester RA: Pandemic (H1N1) 2009 influenza community
transmission was established in one Australian state when the virus was
first identified in North America. PLoS One 2010, 5(6):e11341.

46. McBryde E, Bergeri I, van Gemert C, Rotty J, Headley E, Simpson K, Lester R,
Hellard M, Fielding J: Early transmission characteristics of influenza A
(H1N1)v in Australia: Victorian state, 16 May - 3 June 2009. Euro Surveill
2009, 14(42).

47. Buckley D, Bulger D: Estimation of the reproductive number for the 2009
pandemic H1N1 influenza in rural and metropolitan New South Wales.
The Australian journal of rural health 2011, 19(2):59–63.

48. Hsieh YH, Fisman DN, Wu J: On epidemic modeling in real time: an
application to the 2009 novel A (H1N1) influenza outbreak in Canada.
BMC research notes 2010, 3:283.

49. Mostaco-Guidolin LC, Bowman CS, Greer AL, Fisman DN, Moghadas SM:
Transmissibility of the: H1N1 pandemic in remote and isolated Canadian
communities: a modelling study. BMJ open 2009, 2012:2(5).

50. Tuite AR, Greer AL, Whelan M, Winter AL, Lee B, Yan P, Wu J, Moghadas S,
Buckeridge D, Pourbohloul B, Fisman DN: Estimated epidemiologic
parameters and morbidity associated with pandemic H1N1 influenza.
CMAJ 2010, 182(2):131–136.

51. Chilean Task Force for study of Pandemic Influenza A, Pedroni E, Garcia M,
Espinola V, Guerrero A, Gonzalez C, Olea A, Calvo M, Martorell B, Winkler M,
Carrasco M, Vergara J, Ulloa J, Carrazana A, Mujica O, Villarroel J, Labrana M,
Vargas M, Gonzalez P, Caceres L, Zamorano C, Momberg R, Munoz G, Rocco
J, Bosque V, Gallardo A, Elgueta J, Vega J: Outbreak of 2009 pandemic
influenza A(H1N1), Los Lagos, Chile, April-June 2009. Euro Surveill 2010,
15(1).

52. Chowell G, Towers S, Viboud C, Fuentes R, Sotomayor V, Simonsen L, Miller
MA, Lima M, Villarroel C, Chiu M, Villarroel JE, Olea A, Villarroel JE, Olea A:
The influence of climatic conditions on the transmission dynamics of the
2009 A/H1N1 influenza pandemic in Chile. BMC Infect Dis 2012, 12:298.

53. Yu H, Cauchemez S, Donnelly CA, Zhou L, Feng L, Xiang N, Zheng J, Ye M,
Huai Y, Liao Q, Peng Z, Feng Y, Jiang H, Yang W, Wang Y, Ferguson NM,
Feng Z: Transmission dynamics, border entry screening, and school
holidays during the 2009 influenza A (H1N1) pandemic. China Emerg
Infect Dis 2012, 18(5):758–766.

54. Tan X, Yuan L, Zhou J, Zheng Y, Yang F: Modeling the initial transmission
dynamics of influenza A H1N1 in Guangdong Province, China.
International journal of infectious diseases : IJID : official publication of the
International Society for Infectious Diseases 2012.

55. Jin Z, Zhang J, Song LP, Sun GQ, Kan J, Zhu H: Modelling and analysis of
influenza A (H1N1) on networks. BMC Public Health 2011, 11(Suppl 1):S9.

56. Wu JT, Cowling BJ, Lau EH, Ip DK, Ho LM, Tsang T, Chuang SK, Leung PY, Lo
SV, Liu SH, Riley S: School closure and mitigation of pandemic (H1N1)
2009, Hong Kong. Emerg Infect Dis 2010, 16(3):538–541.

57. Cowling BJ, Lau MS, Ho LM, Chuang SK, Tsang T, Liu SH, Leung PY, Lo SV,
Lau EH: The effective reproduction number of pandemic influenza:
prospective estimation. Epidemiology (Cambridge, Mass) 2010,
21(6):842–846.

58. Katriel G, Yaari R, Huppert A, Roll U, Stone L: Modelling the initial phase of
an epidemic using incidence and infection network data: 2009 H1N1
pandemic in Israel as a case study. Journal of the Royal Society,
Interface / the Royal Society 2011, 8(59):856–867.

59. Dorigatti I, Cauchemez S, Pugliese A, Ferguson NM: A new approach to
characterising infectious disease transmission dynamics from sentinel
surveillance: application to the Italian 2009–2010 A/H1N1 influenza
pandemic. Epidemics 2012, 4(1):9–21.

60. Nishiura H, Castillo-Chavez C, Safan M, Chowell G: Transmission potential
of the new influenza A(H1N1) virus and its age-specificity in Japan.
Euro Surveill 2009, 14(22).

61. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD,
Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart T,
Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM, Rambaut A,
Pybus OG, Lopez-Gatell H, Alpuche-Aranda CM, Chapela IB, Zavala EP,
Guevara DM, Checchi F, Garcia E, Hugonnet S, Roth C, WHO Rapid Pandemic
Assessment Collaboration: Pandemic potential of a strain of influenza A
(H1N1): early findings. Science (New York, NY) 2009, 324(5934):1557–1561.

62. White LF, Pagano M: Reporting errors in infectious disease outbreaks,
with an application to Pandemic Influenza A/H1N1. Epidemiologic
perspectives & innovations : EP+I 2010, 7:12.

63. Chowell G, Echevarria-Zuno S, Viboud C, Simonsen L, Tamerius J, Miller MA,
Borja-Aburto VH: Characterizing the epidemiology of the 2009 influenza
A/H1N1 pandemic in Mexico. PLoS Med 2011, 8(5):e1000436.

64. Pourbohloul B, Ahued A, Davoudi B, Meza R, Meyers LA, Skowronski DM,
Villasenor I, Galvan F, Cravioto P, Earn DJ, Dushoff J, Fisman D, Edmunds WJ,
Hupert N, Scarpino SV, Trujillo J, Lutzow M, Morales J, Contreras A, Chávez
C, Patrick DM, Brunham RC: Initial human transmission dynamics of the
pandemic (H1N1) 2009 virus in North America. Influenza Other Respi
Viruses 2009, 3(5):215–222.

65. Boelle PY, Bernillon P, Desenclos JC: A preliminary estimation of the
reproduction ratio for new influenza A(H1N1) from the outbreak in
Mexico, March-April 2009. Euro Surveill 2009, 14(19).

66. Balcan D, Hu H, Goncalves B, Bajardi P, Poletto C, Ramasco JJ, Paolotti D,
Perra N, Tizzoni M, Van den Broeck W, Colizza V, Vespignani A: Seasonal
transmission potential and activity peaks of the new influenza A(H1N1):
a Monte Carlo likelihood analysis based on human mobility. BMC
medicine 2009, 7:45.

67. Cruz-Pacheco G, Duran L, Esteva L, Minzoni A, Lopez-Cervantes M, Panayotaros
P, Ahued Ortega A, Villasenor Ruiz I: Modelling of the influenza A(H1N1)v
outbreak in Mexico City, April-May 2009, with control sanitary measures.
Euro Surveill 2009, 14(26).

68. Barakat A, Ihazmad H, El Falaki F, Tempia S, Cherkaoui I, El Aouad R:
Pandemic influenza A virus subtype H1N1 in Morocco, 2009–2010:
epidemiology, transmissibility, and factors associated with fatal cases.
J Infect Dis 2009, 2012(206 Suppl 1):S94–S100.

69. Hahne S, Donker T, Meijer A, Timen A, van Steenbergen J, Osterhaus A, van
der Sande M, Koopmans M, Wallinga J, Coutinho R, Dutch New Influenza A
(H1N1)v Investigation Team: Epidemiology and control of influenza A
(H1N1)v in the Netherlands: the first 115 cases. Euro Surveill 2009, 14(27).

70. Roberts MG, Nishiura H: Early estimation of the reproduction number in
the presence of imported cases: pandemic influenza H1N1-2009 in New
Zealand. PLoS One 2011, 6(5):e17835.

71. Nishiura H, Wilson N, Baker MG: Estimating the reproduction number of
the novel influenza A virus (H1N1) in a Southern Hemisphere setting:
preliminary estimate in New Zealand. The New Zealand medical journal
2009, 122(1299):73–77.

72. Paine S, Mercer GN, Kelly PM, Bandaranayake D, Baker MG, Huang QS,
Mackereth G, Bissielo A, Glass K, Hope V: Transmissibility of 2009
pandemic influenza A(H1N1) in New Zealand: effective reproduction
number and influence of age, ethnicity and importations. Euro Surveill
2010, 15(24).

73. Lessler J, dos Santos T, Aguilera X, Brookmeyer R, Group PITW, Cummings
DA: H1N1pdm in the Americas. Epidemics 2010, 2(3):132–138.

74. Munayco CV, Gomez J, Laguna-Torres VA, Arrasco J, Kochel TJ, Fiestas V, Garcia J,
Perez J, Torres I, Condori F, Nishiura H, Chowell G: and transmissibility analysis of
influenza A(H1N1)v in a southern hemisphere setting: Peru Euro Surveill 2009, 14(32).

75. Chowell G, Viboud C, Munayco CV, Gomez J, Simonsen L, Miller MA,
Tamerius J, Fiestas V, Halsey ES, Laguna-Torres VA: Spatial and temporal
characteristics of the 2009 A/H1N1 influenza pandemic in Peru.
PLoS One 2011, 6(6):e21287.

76. Chan PP, Subramony H, Lai FY, Tien WS, Tan BH, Solhan S, Han HK, Foong
BH, James L, Ooi PL: Outbreak of novel influenza A (H1N1-2009) linked to
a dance club. Ann Acad Med Singap 2010, 39(4):299–294.

77. Lee VJ, Yap J, Cook AR, Chen MI, Tay JK, Tan BH, Loh JP, Chew SW, Koh WH,
Lin R, Cui L, Lee CW, Sung WK, Wong CW, Hibberd ML, Kang WL, Seet B,
Tambyah PA: Oseltamivir ring prophylaxis for containment of 2009 H1N1
influenza outbreaks. N Engl J Med 2010, 362(23):2166–2174.

78. Archer BN, Tempia S, White LF, Pagano M, Cohen C: Reproductive number
and serial interval of the first wave of influenza A(H1N1)pdm09 virus in
South Africa. PLoS One 2012, 7(11):e49482.

79. Hsieh YH: Pandemic influenza A (H1N1) during winter influenza
season in the southern hemisphere. Influenza Other Respi Viruses 2010,
4(4):187–197.

80. Opatowski L, Fraser C, Griffin J, de Silva E, Van Kerkhove MD, Lyons EJ,
Cauchemez S, Ferguson NM: Transmission characteristics of the 2009
H1N1 influenza pandemic: comparison of 8 Southern hemisphere
countries. PLoS Pathog 2011, 7(9):e1002225.

81. Hsieh YH, Cheng KF, Wu TN, Li TC, Chen CY, Chen JH, Lin MH, Center for
Infectious E, Research T: Transmissibility and temporal changes of 2009
pH1N1 pandemic during summer and fall/winter waves. BMC Infect Dis
2011, 11:332.

Biggerstaff et al. BMC Infectious Diseases 2014, 14:480 Page 18 of 20
http://www.biomedcentral.com/1471-2334/14/480



82. Chao DY, Cheng KF, Li TC, Wu TN, Chen CY, Tsai CA, Chen JH, Chiu HT, Lu
JJ, Su MC, Liao YH, Chan WC, Hsieh YH: Serological evidence of subclinical
transmission of the 2009 pandemic H1N1 influenza virus outside of
Mexico. PLoS One 2011, 6(1):e14555.

83. de Silva UC, Warachit J, Waicharoen S, Chittaganpitch M: A preliminary
analysis of the epidemiology of influenza A(H1N1)v virus infection in
Thailand from early outbreak data, June-July 2009. Euro Surveill 2009,
14(31).

84. Hens N, Calatayud L, Kurkela S, Tamme T, Wallinga J: Robust reconstruction
and analysis of outbreak data: influenza A(H1N1)v transmission in a
school-based population. Am J Epidemiol 2012, 176(3):196–203.

85. Ghani A, Baguelin M, Griffin J, Flasche S, van Hoek AJ, Cauchemez S,
Donnelly C, Robertson C, White M, Truscott J, Fraser C, Garske T, White P,
Leach S, Hall I, Jenkins H, Ferguson N, Cooper B: The early transmission
dynamics of H1N1pdm influenza in the United Kingdom. PLoS currents
2009, 1, RRN1130.

86. White LF, Wallinga J, Finelli L, Reed C, Riley S, Lipsitch M, Pagano M:
Estimation of the reproductive number and the serial interval in early
phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza
Other Respi Viruses 2009, 3(6):267–276.

87. Lessler J, Reich NG, Cummings DA, New York City Department of H, Mental
Hygiene Swine Influenza Investigation T, Nair HP, Jordan HT, Thompson N:
Outbreak of 2009 pandemic influenza A (H1N1) at a New York City
school. N Engl J Med 2009, 361(27):2628–2636.

88. Sugimoto JD, Borse NN, Ta ML, Stockman LJ, Fischer GE, Yang Y, Halloran
ME, Longini IM Jr, Duchin JS: The effect of age on transmission of 2009
pandemic influenza A (H1N1) in a camp and associated households.
Epidemiology (Cambridge, Mass) 2011, 22(2):180–187.

89. Hien TT, Boni MF, Bryant JE, Ngan TT, Wolbers M, Nguyen TD, Truong NT,
Dung NT, Ha do Q, Hien VM, Thanh TT, le NT N, le TT U, Nhien PT, Chinh
NT, Chau NV, Farrar J, van Doorn HR: Early pandemic influenza
(2009 H1N1) in Ho Chi Minh City, Vietnam: a clinical virological and
epidemiological analysis. PLoS Med 2010, 7(5):e1000277.

90. Hens N, Van Ranst M, Aerts M, Robesyn E, Van Damme P, Beutels P:
Estimating the effective reproduction number for pandemic influenza
from notification data made publicly available in real time: a
multi-country analysis for influenza A/H1N1v 2009. Vaccine 2011,
29(5):896–904.

91. Tang S, Xiao Y, Yuan L, Cheke RA, Wu J: Campus quarantine (Fengxiao) for
curbing emergent infectious diseases: lessons from mitigating A/H1N1
in Xi'an, China. J Theor Biol 2012, 295:47–58.

92. Tang S, Xiao Y, Yang Y, Zhou Y, Wu J, Ma Z: Community-based measures
for mitigating the 2009 H1N1 pandemic in China. PLoS One 2010,
5(6):e10911.

93. Trichereau J, Verret C, Mayet A, Manet G, Decam C, Meynard JB, Deparis X,
Migliani R: Estimation of the reproductive number for A(H1N1)pdm09
influenza among the French armed forces, September 2009-March 2010.
The Journal of infection 2012, 64(6):628–630.

94. Haghdoost A, Baneshi MR, Zolala F, Farvahari S, Safizadeh H: Estimation
of basic reproductive number of Flu-like syndrome in a primary
school in Iran. International journal of preventive medicine 2012,
3(6):408–413.

95. Poletti P, Ajelli M, Merler S: The effect of risk perception on the 2009
H1N1 pandemic influenza dynamics. PLoS One 2011, 6(2):e16460.

96. Tsukui S: Case-Based Surveillance of Pandemic (H1N1) 2009 in Maebashi
City, Japan. Jpn J Infect Dis 2012, 65(2):132–137.

97. Renault P, D'Ortenzio E, Kermarec F, Filleul L: Pandemic influenza 2009 on
reunion island: a mild wave linked to a low reproduction number.
PLoS currents 2010, 2, RRN1145.

98. Baguelin M, Hoek AJ, Jit M, Flasche S, White PJ, Edmunds WJ: Vaccination
against pandemic influenza A/H1N1v in England: a real-time economic
evaluation. Vaccine 2010, 28(12):2370–2384.

99. Glass K, Kelly H, Mercer GN: Pandemic influenza H1N1: reconciling
serosurvey data with estimates of the reproduction number.
Epidemiology (Cambridge, Mass) 2012, 23(1):86–94.

100. Van Kerkhove MD, Mounts AW, Mall S, Vandemaele KA, Chamberland M,
dos Santos T, Fitzner J, Widdowson MA, Michalove J, Bresee J, et al:
Epidemiologic and virologic assessment of the 2009 influenza A (H1N1)
pandemic on selected temperate countries in the Southern Hemisphere:
Argentina, Australia, Chile, New Zealand and South Africa. Influenza Other
Respi Viruses 2011, 5(6):e487–e498.

101. Valleron AJ, Cori A, Valtat S, Meurisse S, Carrat F, Boelle PY: Transmissibility
and geographic spread of the 1889 influenza pandemic. Proc Natl Acad
Sci U S A 2010, 107(19):8778–8781.

102. Spicer CC: The mathematical modelling of influenza epidemics. Br Med
Bull 1979, 35(1):23–28.

103. Chowell G, Miller MA, Viboud C: Seasonal influenza in the United States,
France, and Australia: transmission and prospects for control. Epidemiol
Infect 2008, 136(6):852–864.

104. Gran JM, Iversen B, Hungnes O, Aalen OO: Estimating influenza-related
excess mortality and reproduction numbers for seasonal influenza in
Norway, 1975–2004. Epidemiol Infect 2010, 138(11):1559–1568.

105. Britton T, Becker NG: Estimating the immunity coverage required to
prevent epidemics in a community of households. Biostatistics (Oxford,
England) 2000, 1(4):389–402.

106. Wearing HJ, Rohani P, Keeling MJ: Appropriate models for the
management of infectious diseases. PLoS Med 2005, 2(7):e174.

107. Flahault A, Letrait S, Blin P, Hazout S, Menares J, Valleron AJ: Modelling the
1985 influenza epidemic in France. Stat Med 1988, 7(11):1147–1155.

108. Truscott J, Fraser C, Hinsley W, Cauchemez S, Donnelly C, Ghani A, Ferguson
N, Meeyai A: Quantifying the transmissibility of human influenza and its
seasonal variation in temperate regions. PLoS currents 2009, 1, RRN1125.

109. Truscott J, Fraser C, Cauchemez S, Meeyai A, Hinsley W, Donnelly CA, Ghani
A, Ferguson N: Essential epidemiological mechanisms underpinning the
transmission dynamics of seasonal influenza. Journal of the Royal Society,
Interface / the Royal Society 2012, 9(67):304–312.

110. Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM: Estimating
the impact of school closure on influenza transmission from Sentinel
data. Nature 2008, 452(7188):750–754.

111. Chowell G, Viboud C, Simonsen L, Miller M, Alonso WJ: The reproduction
number of seasonal influenza epidemics in Brazil, 1996–2006. Proc Biol
Sci 2010, 277(1689):1857–1866.

112. Barnea O, Yaari R, Katriel G, Stone L: Modelling seasonal influenza in Israel.
Mathematical biosciences and engineering : MBE 2011, 8(2):561–573.

113. Cintron-Arias A, Castillo-Chavez C, Bettencourt LM, Lloyd AL, Banks HT: The
estimation of the effective reproductive number from disease outbreak
data. Mathematical biosciences and engineering : MBE 2009, 6(2):261–282.

114. Huppert A, Barnea O, Katriel G, Yaari R, Roll U, Stone L: Modeling and
statistical analysis of the spatio-temporal patterns of seasonal influenza
in Israel. PLoS One 2012, 7(10):e45107.

115. Chen SC, Liao CM: Probabilistic indoor transmission modeling for
influenza (sub)type viruses. The Journal of infection 2010, 60(1):26–35.

116. Lunelli A, Rizzo C, Puzelli S, Bella A, Montomoli E, Rota MC, Donatelli I,
Pugliese A: Understanding the dynamics of seasonal influenza in Italy:
incidence, transmissibility and population susceptibility in a 9-year
period. Influenza Other Respi Viruses 2013, 7(2):286–295.

117. Smieszek T, Balmer M, Hattendorf J, Axhausen KW, Zinsstag J, Scholz RW:
Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland
with a spatially explicit, individual-based model. BMC Infect Dis 2011,
11:115.

118. Hsieh YH: Age groups and spread of influenza: implications for
vaccination strategy. BMC Infect Dis 2010, 10:106.

119. Bettencourt LM, Ribeiro RM: Real time bayesian estimation of the
epidemic potential of emerging infectious diseases. PLoS One 2008,
3(5):e2185.

120. Borja-Aburto VH, Chowell G, Viboud C, Simonsen L, Miller MA, Grajales-
Muniz C, Gonzalez-Bonilla CR, Diaz-Quinonez JA, Echevarria-Zuno S: Epi-
demiological characterization of a fourth wave of pandemic A/H1N1
influenza in Mexico, winter 2011–2012: age shift and severity. Arch Med
Res 2012, 43(7):563–570.

121. Chowell G, Echevarria-Zuno S, Viboud C, Simonsen L, Grajales Muniz C,
Rascon Pacheco RA, Gonzalez Leon M, Borja Aburto VH: Recrudescent wave
of pandemic A/H1N1 influenza in Mexico, winter 2011–2012: Age shift
and severity. PLoS currents 2012, 4, RRN1306.

122. Lessler J, Cummings DA, Fishman S, Vora A, Burke DS: Transmissibility of
swine flu at Fort Dix, 1976. Journal of the Royal Society, Interface / the Royal
Society 2007, 4(15):755–762.

123. Yang Y, Halloran ME, Sugimoto JD, Longini IM Jr: Detecting human-to-
human transmission of avian influenza A (H5N1). Emerg Infect Dis 2007,
13(9):1348–1353.

124. Aditama TY, Samaan G, Kusriastuti R, Sampurno OD, Purba W, Misriyah,
Santoso H, Bratasena A, Maruf A, Sariwati E, Setiawaty V, Glass K, Lokuge K,

Biggerstaff et al. BMC Infectious Diseases 2014, 14:480 Page 19 of 20
http://www.biomedcentral.com/1471-2334/14/480



Kelly PM, Kandun IN: Avian influenza H5N1 transmission in households,
Indonesia. PLoS One 2012, 7(1):e29971.

125. Frost WH: The epidemiology of influenza. J Am Med Assoc 1919,
73(5):313–318.

126. Shrestha SS, Swerdlow DL, Borse RH, Prabhu VS, Finelli L, Atkins CY,
Owusu-Edusei K, Bell B, Mead PS, Biggerstaff M, Brammer L, Davidson H,
Jernigan D, Jhung MA, Kamimoto LA, Merlin TL, Nowell M, Redd SC, Reed C,
Schuchat A, Meltzer MI: Estimating the burden of 2009 pandemic
influenza A (H1N1) in the United States (April 2009-April 2010). Clin Infect
Dis 2011, 52(Suppl 1):S75–S82.

127. Cumulative number of confirmed human cases of avian influenza A(H5N1)
reported to WHO. [http://www.who.int/influenza/human_animal_interface/
EN_GIP_20130215CumulativeNumberH5N1cases.pdf]

128. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M,
Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M,
Edmunds WJ: Social contacts and mixing patterns relevant to the spread
of infectious diseases. PLoS Med 2008, 5(3):e74.

129. The world factbook. [https://www.cia.gov/library/publications/the-world-
factbook/]

130. Nishiura H, Chowell G, Castillo-Chavez C: Did modeling overestimate the
transmission potential of pandemic (H1N1-2009)? Sample size estimation
for post-epidemic seroepidemiological studies. PLoS One 2011,
6(3):e17908.

131. Shaman J, Kohn M: Absolute humidity modulates influenza survival,
transmission, and seasonality. Proc Natl Acad Sci U S A 2009,
106(9):3243–3248.

132. Shaman J, Pitzer V, Viboud C, Lipsitch M, Grenfell B: Absolute humidity and
the seasonal onset of influenza in the continental US. PLoS currents 2009,
2, RRN1138.

133. Influenza in a boarding school: News and Notes. BMJ 1978, 1:587.

doi:10.1186/1471-2334-14-480
Cite this article as: Biggerstaff et al.: Estimates of the reproduction
number for seasonal, pandemic, and zoonotic influenza: a systematic
review of the literature. BMC Infectious Diseases 2014 14:480.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Biggerstaff et al. BMC Infectious Diseases 2014, 14:480 Page 20 of 20
http://www.biomedcentral.com/1471-2334/14/480


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Results
	1918 influenza pandemic
	1957 influenza pandemic
	1968 influenza pandemic
	The 2009 influenza pandemic
	Seasonal influenza
	Human infections with non-human influenza viruses

	Discussion
	Conclusions
	Additional files
	Competing interest
	Authors’ contributions
	Disclaimer
	Author details
	References

