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Abstract

Background: Estimating the required dose in radiotherapy is of crucial importance
since the administrated dose should be sufficient to eradicate the tumor and at the
same time should inflict minimal damage on normal cells. The probability that a given
dose and schedule of ionizing radiation eradicates all the tumor cells in a given tissue is
called the tumor control probability (TCP), and is often used to compare various
treatment strategies used in radiation therapy.

Method: In this paper, we aim to investigate the effects of including cell-cycle phase
on the TCP by analyzing a stochastic model of a tumor comprised of actively dividing
cells and quiescent cells with different radiation sensitivities. Moreover, we use a novel
numerical approach based on the method of characteristics for partial differential
equations, validated by the Gillespie algorithm, to compute the TCP as a function of
time.

Results: We derive an exact phase-diagram for the steady-state TCP of the model and
show that at high, clinically-relevant doses of radiation, the distinction between active
and quiescent tumor cells (i.e. accounting for cell-cycle effects) becomes of negligible
importance in terms of its effect on the TCP curve. However, for very low doses of
radiation, these proportions become significant determinants of the TCP. We also
present the results of TCP as a function of time for different values of asymmetric
division factor.

Conclusion: We observe that our results differ from the results in the literature using
similar existing models, even though similar parameters values are used, and the
reasons for this are discussed.

Keywords: Tumor control probability, Cell cycle, Mathematical modeling, Stochastic
birth-death process, Method of characteristics, Gillespie algorithm

Introduction
External beam radiotherapy remains one of the most common treatment options for var-
ious cancers. However, the dose distribution of radiation must be optimized to reduce the
risk of side effects of radiotoxicity and damage to healthy tissues surrounding the tumor
volume. A widely used model for radiation treatment is the linear-quadratic (LQ) model
[1,2]. This model estimates the surviving fraction of cancer cells after each treatment
based on the total dose, and has the form:

S(D) = e−αD−βD2
, (1)
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where α and β are sensitivity parameters (which depend on the tissue and the type of
the applied beam) and D is the total dose delivered during the radiation treatment. To
include stochastic effects, a binomial or Poisson model has been used to describe the
random variable representing the number of surviving cells after a treatment, centered
upon a mean value determined by the linear-quadratic model of cell survival (see, for
example, [3,4]). An iterated birth and death process has been also suggested as a model of
radiation cell survival [5]. A related quantity of interest is the tumor control probability
(TCP) which is the extinction probability of the clonogenic cell population after radiation
therapy. A model for the TCP accounting for cell proliferation dynamics was suggested
by [6]. Their model is a birth-death process for the probability distribution function
of the tumor cells, pn(t), and the corresponding master equation of such a birth-death
model is:

dpn(t)
dt

= λ(n − 1)pn−1(t) + ζ(n + 1)pn+1(t) − (λ + ζ )npn(t), (2)

where λ and ζ are the birth and death rates, respectively, and n is the population of
tumor cells. The effect of radiation is reflected as a time-dependent part in the death rate,
ζ = ζ0 + h(t), where h(t) is known as the hazard function and is related to the radio-
sensitivity parameters α and β through the LQ model (Eq. 1). From Eq. 2, Zaider and
Minerbo were able to calculate the extinction probability, p0(t), as a function of time and
dose fractions (which is encoded in the form of h(t)). Thus, in their model, the TCP is
given by:

TCP(t) =

⎡
⎢⎢⎣1 − S(t)e(λ−ζ )t

1 + λS(t)e(λ−ζ )t
∫ t

0
dz(S(z) exp (λ − ζ )z)−1

⎤
⎥⎥⎦
n0

(3)

where n0 is the initial number of tumor cells and S(t) is the exponential of the integral of
the hazard function:

S(t) = exp
∫ t

0
h(z)dz,

h(D) = (α + 2βD) dDdt , (4)

with D(t) being the dose in Gy delivered until time t and its time derivative representing
dose rate (Gy/day).
Paper [7] expanded this approach to include the effect of cell cycle sensitivity in the TCP.

They considered a two-compartment model for the active (M,G1, S, and G2 phases) and
the quiescent (G0 phase) cells (see also [8]). The radio-sensitivity of resting cells and active
cells are significantly different; the radio-sensitivity is typically much higher for actively
proliferating cells [9]. This model was discussed both deterministically and stochastically
in [7], but the stochastic master equation is solved under the assumption that the joint
probability distribution function of two populations, pna,nq , can be written in a factorized
form as if the two random variables na and nq are independent. However, this is clearly
not true for small tumor populations, as pointed out by [10]. Small tumor populations
can arise from a number of possible clinically relevant scenarios; for example, this would
be the case for adjuvant radiation applied after surgery or chemotherapy, irradiation of
micrometastases, as well as at the final stages of radiation therapy, when the tumor has
shrunk to a few milimeters in size. Thus, as one approaches the limit of small tumor cell
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populations, a proper stochastic approach is needed to estimate the extinction probabil-
ity, i.e. the TCP. Moreover, in previous cell cycle models of the TCP [7,10], it is assumed
that the proliferation is such that upon each cell division the daughter cells go into the
G0 (quiescent) state soon thereafter. In the following, we consider a more general situa-
tion where there is a probability f , such that one of the daughter cells goes into the resting
phase upon division [11]; the master equation is again solved with the same assumption of
independent random variables for the subpopulations of cells which breaks down in the
key limit of small cell populations. In the following, we investigate thoroughly the TCP
for such a model throughout the range of pertinent parameter values and plot a phase
diagram of the model using a generating function method (see Section ‘Stochastic two-
compartment model with (a)symmetric proliferation’). In Section ‘Numerical solutions:
final-value method’, we solve the differential equation for a probability generating func-
tion for the number of tumor cells using a novel final-value method of characteristics and
in Section ‘Gillespie solution’ we validate this with a Gillespie algorithm solution of the
master equation.

Stochastic two-compartment model with (a)symmetric proliferation
Here we consider a two compartment model of active cells (A) and quiescent cells
(Q), with the following dynamics: active cells can divide into either: (1) two qui-
escent cells or (2) one quiescent and one active, or (3) two active cells; assuming
each active offspring is born with probability f and each quiescent with probability
1 − f while the proliferation rate for active cells is μ. Note also that quiescent cells
may, after a certain time, move from the G0 to the G1 phase of the cell cycle, and
thereby become active. We assume this happens at a constant rate γ . Death rates
for the cells in the active and quiescent compartments are denoted by �a and �q,
respectively:

A → A + A : μf 2

A → A + Q : 2μf (1 − f )

A → Q + Q : μ(1 − f )2

Q → A : γ

A → ø : �a

Q → ø : �q. (5)

The deterministic ordinary differential equations (ODEs) for the above dynamics are
given by:

dna
dt

= μf 2na + γnq − �a(t)na,

dnq
dt

= 2(1 − f )(1 + f )μna − γnq − �q(t)nq, (6)

where na and nq are the population of the active and quiescent compartments. The death
rates of active and quiescent cells, �a(t) and �q(t), are dose-dependent through the LQ
formula (Eq. 1) and the given radiation protocol. Similarly, we can determine the stochas-
tic dynamics of the model Eq. 5 as follows. Denoting the joint probability distribution of



Dhawan et al. Theoretical Biology andMedical Modelling 2014, 11:49 Page 4 of 13
http://www.tbiomed.com/content/11/1/49

having a population of na active cells and nq of quiescent cells at time t by pna,nq(t), the
master equation then reads,

dpna,nq(t)
dt

= μf 2(na − 1)pna−1,nq(t) + 2μf (1 − f )napna,nq−1(t)

+ μ(1 − f )2(na + 1)pna+1,nq−2(t) + γ (nq + 1)pna−1,nq+1(t)

+ �a(na + 1)pna+1,nq(t) + �q(nq + 1)pna,nq+1(t)

− (�a + μ)napna,nq(t) − (�q + γ )nqpna,nq(t). (7)

The model in [7] and [10] corresponds to f = 0 in Eq. 7, while the Zaider and Minerbo
model [6] corresponds to f = 1. We define the probability generating function for the
joint probability distribution, pna,nq ,

V (a, q, t) =
∑

na,nq≥0
pna,nq(t)anaqnq . (8)

Using Eq. 7 and Eq. 8, we obtain the following partial differential equation (PDE) for
V (a, q, t):

∂V
∂t

= [
μf 2 · a2 + 2μf (1 − f ) · aq + μ(1 − f )2 · q2 − (�a + μ)a + �a

] ∂V
∂a

+ [
γ · a − (�q + γ )q + �q

] ∂V
∂q

. (9)

Taking na,0 and nq,0 to be the initial numbers of active and quiescent cells, respec-
tively, we have the initial condition V (a, q, 0) = ana,0qnq,0 and the boundary condition
V (1, 1, t) = 1, where the boundary condition comes from the definition of the generating
function.
The TCP is defined as the extinction probability of the tumor cells after radiation

therapy, i.e. TCP(t) = pna=0,nq=0(t) = V (0, 0, t). In the steady state, TCP(∞) =
limt→∞ V (0, 0, t). In the case of a constant radiation dose, we can find an analytical solu-
tion that relates TCP to all the parameters appearing in the model, especially the values
of the death rates, �a and �q. In the limit of a large - but finite - total number of cells
N , we expect the steady state of the system to have two absorbing states of either zero
population of either active or quiescent cells or both populations together reaching their
maximum limits, Na and Nq (Na,q � 1). This means that in the steady state, the form of
the generating function V (a, q, t → ∞) is:

V (a∗, q∗) = A + B
(
a∗)Na (

q∗)Nq . (10)

The first term indicates that there is a non-zero probability for either population to
become extinct and the second term is indicative of the possibility that eventually one or
both populations reach large population limits - details to be determined by the values of
Na and Nq. The coefficients A and B are the extinction and survival probabilities of the
dynamical system, respectively, while q∗ and a∗ are the fixed points of Eq. 9, which satisfy
the following relations:

0 = γ a∗ + �q − (�q + γ )q∗

0 = μ
(
fa∗ + (1 − f )q∗)2 − (�a + μ)a∗ + �a. (11)
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One fixed point is (1, 1), and the non-trivial solutions for a∗ and q∗ are:

q∗ = γ a∗ + �q
�q + γ

,

a∗ =
−c2 ±

√
c22 − 4c1c3
2c1

, (12)

where the coefficients c1, c2, and c3 are defined as

c1 = μ

(�q + γ )2
[
f · (�q + γ ) + (1 − f )γ

]2 ,

c2 = 2μ�q(1 − f )
(�q + γ )2

[
f · (�q + γ ) + (1 − f )γ

] − (�a + μ),

c3 = μ(1 − f )2�2
q

(�q + γ )2
+ �a. (13)

Using the initial and boundary conditions mentioned above, we can obtain the values
of A and B. We are interested in the value of A, which is the extinction probability in the
long run. This is the TCP in the steady state (TCP∞):

TCP∞ = (
a∗)na,0 (

q∗)nq ,0 . (14)

In parameter space, the phase boundary can be defined in the parameter space in terms
of the model parameters such as �a,q, γ , and μ, when these parameters are such that
(a∗, q∗) = (1, 1). For the region of the phase diagram where TCP∞ = 0, the (a∗, q∗) fixed
point is attractive while the (1, 1) fixed point is a saddle-point. As the parameters such
as death rates �a,q increase, one moves into the TCP∞ = 1 regime where now the fixed-
point (a∗, q∗) vanishes and the only fixed point is (1, 1) which is globally attractive. The
phase boundary for variable death rates is plotted in Figure 1. To provide a comparison
between the results of [7], we use identical parameter values, namely a constant radiation
dose rate of 2.75 Gy/day, and the division rate μ and the conversion rate γ were taken to
be 0.065 day−1 [12] and 0.047 day−1 [13], respectively. Death rates, which were effectively
derived from a limit of the LQ model, are given by: �q = 0.4/Day and �a = 1.5/Day.
The death rates were derived by using the dose-dependent survival fraction given by
the LQ model, creating a hazard function from that, and substituting in values for the
radiosensitivity parameters αa = 0.487Gy−1, αq = 0.155Gy−1, βa = βq = 0.055Gy−2

taken from [9], where the subscript a or q indicates active cells or quiescent cells,
respsectively. Also, note that a constant radiation dose is not necessarily a clinical possi-
bility for treatment, but is used in order to facilitate direct comparison with the results
of [7].
Our plots in Figure 1 for the phase boundary between TCP = 0 and TCP = 1.0 regimes

show the interesting evolution of the two regimes of the one-compartment model of [6]
into the two-compartment model of [7]. It can be noted that the two ends of the phase
boundary at the �a-axis and �q-axis are in fact μ and γ for the fully two-compartment
model ( f = 0), i.e. the values for the cutoff death rates are determined by the proliferation
and conversion potentials μ and γ . For values of �a,q’s in these regions one expects to get
an unsuccessful therapy or TCP∞ = 0. The implication of this is the fact that the values
of �a,q estimated for real irradiation protocols lie deep inside the TCP∞ = 1 phase for all
the values of the asymmetric proliferation factor, f , and thus the division of the population
into different compartments based on the cell-cycle has a negligible effect on the TCP,
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Figure 1 Phase boundaries for the death rates. Phase boundaries for �a and �q with the active-cell
division rate μ = 0.065/day and quiescent conversion rate γ = 0.05/day. Phase boundaries are plotted for
various values of the asymmetric division factor, f = 0.0, 0.5, 0.7 and 1.0.

given that the single and two compartment models utilize identical parameters. That is,
given a real treatment schedule, the effect of f on the TCP curve itself becomes negligible.
We have also plotted the phase boundary for TCP∞ = 0, 1 for different values of

the division and conversion rates μ and γ in Figure 2. A similar evolution between a
one-compartment and two-compartment model can be observed in this case. The phase
boundaries for the TCP = 0 and TCP = 1 regimes can be used to determine a crude
cutoff dose below which treatments will not work, and above which treatments will
work in finite time. However, we note that for clinical treatments, parameter values must
be deep inside the TCP = 1 regime to succeed within a reasonable timescale. In the
next two sections we will focus on the time-dependence of the TCP via two different
approaches.

Numerical solutions: final-valuemethod
In the previous section, we discussed the steady-state behavior and the fixed points of
Eq. 9. In this section, we derive the time dependence of the TCP as it approaches unity
for a given radiation protocol. Solving (Eq. 9), i.e. the PDE for the generating function,
with a combination of initial and boundary conditions is a difficult task. We approach the
problem by a novel application of the method of characteristics. Consider a PDE of the
form:

dV
dt

= ∂V
∂x1

fx1(x1, · · · , xn, t) + · · · + ∂V
∂xn

fxn(x1, · · · , xn, t). (15)

Recall that the method of characteristics relies upon finding a set of characteristic
curves t(s), x1(s), · · · , xn(s) such that f (s) = V (x1(s), x2(s), · · · , xn(s), t(s)) is a constant.
Then, by the chain rule:

df
ds

= ∂V
∂x1

dx1
ds

+ ∂V
∂x2

dx2
ds

+ · · · + ∂V
∂xn

dxn
ds

+ ∂V
∂t

dt
ds

= 0. (16)
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Figure 2 Phase boundaries in theμ − γ plane. The death rates are fixed by the values used in [7]. Phase
diagrams are plotted for various values of asymmetric division factor, f = 0.0, 0.5, 0.7, 0.9, 1.0.

By comparing the form of this differential equation with the form of the equation we
wish to solve, we observe that to find these characteristic curves, the following set of
ordinary differential equations must be solved:

dx1
ds

= fx1(x1(s), x2(s), · · · , xn(s), t(s))
dx2
ds

= fx2(x1(s), x2(s), · · · , xn(s), t(s))
...

dxn
ds

= fxn(x1(s), x2(s), · · · , xn(s), t(s))
dt
ds

= −1.

Note that we constrain t(0) = 0, so that the initial conditions of the system can be
used in the calculation of f (0). The last equation in the system, given the initial condition
t(0) = 0, can be solved. Thus we obtain the following system:

dx1
dt

= fx1(x1(t), x2(t), · · · , xn(t), t)
dx2
dt

= fx2(x1(t), x2(t), · · · , xn(t), t)
...

dxn
dt

= fxn(x1(t), x2(t), · · · , xn(t), t). (17)

We also notice that for this particular set of characteristic curves,

f (s) = V (x1(s), x2(s), · · · , xn(s), t(s)) = f (0)

= V (x1(0), x2(0), · · · , xn(0), 0). (18)
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We define f0 as the function relating the initial values of the characteristic functions to
the initial conditions for the PDE. From the given initial condition for our PDE, we have

V (x1(0), x2(0), · · · , xn(0), 0) = f0(x1(0), x2(0), · · · , xn(0)). (19)

This gives f (s) = f0(x1(0), x2(0), · · · , xn(0)).
Recall that we are only interested in the function g(t) = V (0, · · · , 0, t), and not the

entire solution to the PDE since g(t) represents the extinction probability of the tumor
at the time t, which is exactly the TCP. Thus, to compute g at a fixed t = t∗, the only
characteristic curve that needs to be considered is such as x1(t∗) = x2(t∗) = · · · =
xn(t∗) = 0. We denote these characteristic curves x̄1, x̄2, · · · , x̄n. Moreover, based on the
above discussion, we observe that

g(t∗) = f0(x̄1(0), x̄2(0), · · · , x̄n(0)). (20)

The values x̄i(0) are determined by the set of ODEs in (17), with the final value condition
that x1(t∗) = x2(t∗) = · · · = xn(t∗) = 0. Thus, to obtain g(t), at any set of time points,
the final value problem must be solved independently to obtain the initial values of the
characteristic curve, whichmust then be substituted into the initial condition for the PDE.
We note that taking t → t∗ − t will transform the aforementioned final value

problem into an initial value problem, where the desired values become x̄i(t∗). In
this case, notice that the computation of the function g(t) can be vastly simplified
if the functions fi(x1(t), x2(t), · · · , xn(t), t) do not depend explicitly on t. That is, if
fi(x1(t), x2(t), · · · , xn(t), t) = f̂i(x1, x2, · · · , xn), then observe that for every t∗, the set of
ODEs that must be solved is the same, and all have the same initial condition that x̄i = 0.
Thus, in this case, computation of the function g(t) can be done for all t in a given inter-
val, by solving the set of coupled ODEs once. If this simplification cannot be made, then
the method will still solve the PDE, but for each time point, the set of ODEs that must be
solved will be different.

Gillespie solution
In order to simulate the stochastic process representing the cellular dynamics within the
model framework, Gillespie’s algorithm for stochastic simulation was implemented. This
algorithm simulates one realization of the time evolution of the system by first computing
propensities for the events that can occur at any time step (i.e. the set of cell births/deaths
in the above model). Subsequently, the time before the next event occurs is computed
via an exponential distribution, and the event that occurs at this time step is chosen by
a distribution weighted by the total propensity of all events (i.e. the likelihood that any
reaction would occur). Thus, the events occur individually, with a likelihood proportional
to their individual propensity, and the times between the individual events is based on an
exponential distribution of waiting times, weighted by the total propensity of all events.
Each simulation describes one specific time course for the system. This is then repeated a
large number of times, typically 105 in our simulations, and for each, an indicator function
known as the treatment success indicator is defined: TSi(t) = 1 if at time t, the tumor
is controlled (i.e. there are zero cells remaining), and 0 otherwise. Then, after M such
simulations, the TCP function is defined to be:

TCP(t) = 1
M

M∑
i=1

TSi(t). (21)
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The process to calculate TSi(t) is: (1) Compute likelihood of each cellular reaction
occurring (Li for reaction Ri). (2) Sum together all likelihoods into quantity TL = ∑

i Li.
(3) Compute uniformly distributed random numbers p1 and p2 in the interval (0, 1).
(4) Compute the next time step of a likelihood reaction, assuming exponentially dis-
tributed times dT = − ln(p1)/TL. (5) Update time variable by adding time step computed
t = t + dT . (6) Determine which reaction to carry out: if Li−1/TL ≤ p1 ≤ Li/TL, carry
out reaction Ri. (7) Update the cellular population variables, assuming reaction Ri was
carried out. (8) If number of stem cells is zero, treatment success is one and terminate
program, else treatment success is zero and repeat step 1. (9) If time is greater than the
max simulation time, treatment success is zero and terminate program.
We illustrate the effectiveness of the numerical method presented in solving for the

TCP for the active quiescent model that was outlined previously. To do this, we compare
the TCP as computed by a high number of Gillespie simulation runs with the TCP as
computed by the output of the numerical method.
To obtain a proper stochastic limit, we use a small number of each type of cell, letting

a0 = 102 = q0. Using these and the rest of the parameter values mentioned in Section
‘Stochastic two-compartment model with (a)symmetric proliferation’, we obtain the TCP
plot depicted in Figure 3. In this plot, both the numerical solution, computed by an imple-
mentation of the method presented above, as well as the Gillespie solution are plotted, to
highlight the high degree of similarity between the curves. In order to quantify the degree
to which these curves agree, we sample both curves at the nine time points corresponding
to t = 0, 3, 6, ·, 24 and compute a root-mean-square distance between the two vectors rep-
resenting the TCP values of the Gillespie and numerical solutions to obtain 0.022, which
is indeed very small.
Next, to check the relevance of the two-compartment model, we plot the TCP vs. time

for different values of asymmetric division, f . As discussed in Section ‘Stochastic two-

Figure 3 Numerical results. A plot of the TCP computed by the numerical method outlined above, and by
Gillepsie’s algorithm.
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compartment model with (a)symmetric proliferation’, we do not expect any difference
as the physical parameters estimated from clinical data indicate a high-death rate for
both the active and quiescent cells which lie deep inside the overlap region of the one-
compartment and two-compartment models. As shown in Figure 4, this is in fact the case
and the TCP(t; f ) plots are almost indistinguishable.
However, if one decreases both death rates, from the values in the phase diagram in

Figure 1, one should expect any difference between the TCP(t; f ) to reveal itself. One
example is plotted in Figure 5, with death rates �a = 0.08/Gy and �a = 0.1/Gy. Using the
phase diagram, we can see that these values correspond to a point in the �a − �q plane
very close to the f = 1 phase-boundary. This explains why the TCP graph for f = 1 in
Figure 1 appears to approach unity on a much longer time scale than the other graphs.
Similarly, one can expect the characteristic saturation time of the TCP (i.e. the time to
reach unity) to tend to infinity as we choose death rates (by varying the dose of radiation)
that cross the phase boundary corresponding to that asymmetric proliferation factor f .

Discussion
In this work, we have investigated a two-compartment stochastic model for the tumor
control probability by including the asymmetric nature of division of active cells into
either quiescent cells or active cells. We argue that the method suggested by [11] does
not properly address the coupled nature of the joint probability distribution of the active
and quiescent populations and have presented an alternative consistent approach. We

Figure 4 TCP vs. time, case 1. A plot of TCP vs. time for different values of asymmetric division factor, f . As
was predicted in Section ‘Stochastic two-compartment model with (a)symmetric proliferation’, all the graphs
coincide. The parameter values are from [7]. The value for the dose delivery rate, (2.75 Gy/day), is so high that
the differences between different TCP plots are indistinguishable.
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Figure 5 TCP vs. time, case 2. A plot of TCP vs. time for different values of asymmetric division factor, f . The
values for death rates are chosen to be �a = 0.08 and �q = 0.1. These values give distinct TCP graphs and
particularly TCP∞(f = 1) almost not reaching unity.

have analytically derived all regimes of the phase diagram of TCP = 0, 1 in steady-
state, for variable division and conversion rates and also separately the phase diagram of
TCP = 0, 1 for varying death rates. From the phase diagram, we may conclude that the
two-compartment model diminishes the effects of the original birth-death model of [6]
while the significantly lower death rates (dose delivery rates and radio-sensitivities) can
be addressed with a two-compartment model which includes cell cycle effects. The phase
boundaries obtained for the TCP = 0 and TCP = 1 regimes can be used to crudely
determine a dose cutoff suitable for tumor control for tumors comprised of different
populations of active and quiescent cells, when death rates are low enough between treat-
ments being compared so that parameters such as f become significant. We note that the
time to achieve tumor control depends on the distance from the phase boundary, and
those parameters within the TCP = 1 regime but very close to the phase boundary may
not be able to achieve tumor control in a realistic time frame.
We also note now that there is a significant difference in the results computed via the

method presented here and the results presented in [10] using similar parameter values.
In [10], the computed TCP curve shows that the time to cure for a population of 1000
cells in total is approximately 20 hours, which is much less than the 20 days predicted by
the model presented here (for a smaller population of 100 cells).
To complete the analysis we have presented a comprehensive numerical approach to

compute the TCP as a function of time. The numerical method (which we call the Final
Value Method), when implemented to solve the TCP problem for the above case and
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parameter set, can be seen to solve the PDE, producing nearly identical solutions to that
of the Gillespie algorithm, which is a good approximation to the true solution. Based on
the work presented here, we may conclude that the final value method is a new way to
numerically solve any PDE with an initial condition that is of a form appropriate for the
method of characteristics. In the case presented above, this method has been utilized to
solve the real-world problem of computing the TCP for a model based on incorporat-
ing cell-cycle effects into radiotherapy treatment planning, by using a two-compartment
model for the active and quiescent cells.
To compare the analytical and numerical results, we used a constant dose of radiation,

which might be useful (for example) for in vitro experiments. However, our numeri-
cal methods are robust enough to account for the time dependent cases, and thus can
be applied to compare the TCP for various fractionation protocols. There are several
assumptions that can be improved in future works. For instance, it is experimentally
known that radiation may induce cell quiescence. Thus, an extension of our model is to
include a transition from survived active cells to a quiescent state, as a function of radia-
tion administered. In addition, we considered a minimal two-compartment model to take
into account the effects of the cell cycle. Thus, a significant generalization of the model
is to include the details of cell cycle phases and duration. Finally, one should note that
the death rates described in this paper are dose-dependent death rates for radiotherapy,
but could easily be interpreted as death rates from chemotherapy for instance. In fact, it
is well-known that the cytotoxic effects of chemotherapy primarily impact cells actively
proliferating within the cell cycle, so here the division between active and quiescent cell
populations become important. Thus, one may anticipate that the framework presented
in this paper can be extended to study the effects of other treatments for tumor control,
such as chemotherapy.
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