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Abstract

The incidence of obesity has increased dramatically over the past several years, and in parallel, so has the
prevalence of type 2 diabetes (T2D). Numerous studies have demonstrated that both obesity and T2D are
associated with lower cognitive performance, cognitive decline, and dementia. Intake of dietary fructose has also
increased. In fact, high-fructose corn syrup (HFCS) accounts for as much as 40% of caloric sweeteners used in the
United States. Given the increase in the incidence of Alzheimer’s disease (AD), characterized by an age-related
decline in memory and cognitive functioning, in this report we review the effects of obesity on cognitive
performance and the impact of high fructose intake in promoting cognitive decline. The paper then considers the
effects of omega-3 fatty acids (FAs), which have been linked to promising results in cognitive function including
ameliorating the impact of a high-fructose diet.
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Background
Obesity is a global health issue that has reached epidemic
proportions. Greater than 60% of adults living in the U.S.
and Europe are obese (body mass index (BMI) ≥30 kg/m2)
[1-4]. Moreover, if obesity continues to increase at the
present rate, projections indicate that more than 2.3 mil-
lion adults will be obese by 2015 [5]. Childhood obesity
has also become a global health issue and its incidence is
increasing in both developed and developing countries.
Available estimates (1980–1990) show that the incidence
of childhood obesity increased by two to five times in de-
veloped countries, and almost four times in developing
countries (e.g., from 4% to 14% in Brazil) [6]. An estimated
18% of U.S. children and adolescents are classified as
obese [7]. In a recent study, the prevalence of overweight/
obesity among American and Hispanic elementary school
students in grade 4 was 44.5% [8].
Over the last three decades, the incidence of global

diabetes has more than doubled, with nearly 1 in 10
adults affected worldwide [9]. Among U.S. veterans aged
65–85 years, ~30% had diabetes in 2010 [10], of which
the overwhelming majority of the cases were type 2
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(T2D). The global prevalence of diabetes for all age
groups is projected to rise from 171 million in 2000 to
366 million in 2030 [11]. This is not surprising since
obesity is a major risk factor for T2D. In fact, the
diabetes epidemic appears to have gone hand-in-hand
with the increases in obesity. T2D is linked to metabolic
syndrome (MetS), defined by a cluster of symptoms includ-
ing abdominal obesity, insulin resistance, hyperglycemia,
dyslipidemia, and hypertension [12], most commonly as-
sociated with cardiovascular disease. The incidence of
MetS is also rising. According to the Centers for Disease
Control and Prevention, approximately 34% of American
adults meet the criteria for MetS [13]. Moreover, nearly
one third of overweight/obese adolescents had pediatric
MetS [14]. Thus, chronic diseases, such as T2D and MetS,
once observed solely in adulthood, are now commonly
seen among the obese in childhood and are likely to track
into adulthood.
Recent studies indicate that both obesity and T2D are

associated with cognitive decline. Not only does midlife
obesity increase the risk of developing late-life dementia
[15,16], but also lower cognitive performance earlier in
life is itself a risk factor for dementia later in life [17].
Interestingly, the fastest decline in cognitive function
occurs in those with both obesity and metabolic abnor-
malities; however, individuals who were obese without
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metabolic abnormalities, still developed a significant
cognitive decline [18]. T2D is associated with reduced
cognitive function [19] and a increased (1.5-2.5-fold) risk
of dementia [20]. Impaired cognitive function is fre-
quently exhibited by individuals with poorly controlled
diabetes [21]. Cognitive impairment is also linked to
MetS [22], and individuals with MetS in midlife are at
increased risk of later life cognitive decline and dementia
[23]. Similarly, the incidence of Alzheimer’s Disease
(AD), characterized by a progressive and debilitating
decline in memory and cognitive functioning beyond
that which is normally experience with aging is projected
to rise, increasing nearly four-fold over the next 40 years
[24]. Thus, identifying the risk factors for delaying the
onset and preventing the progression of these disorders
is of utmost importance.
Although several factors, such as a lack of exercise, are

likely contributors to the rising trend in obesity, increases
in its prevalence are directly attributable to excessive cal-
oric intake [25]. In addition, there is now strong evidence
that excessive consumption of added sugars (sucrose and
high-fructose corn syrup (HFCS)), contributes to rising
obesity and diabetes rates [9,26]. There has been a sub-
stantial increase in the amount of HFCS found in the
North American diet, primarily in soft drinks and fruit
drinks [27]. Moreover, findings from large cross-sectional
and prospective studies show that increased consumption
of sugar-sweetened beverages is positively associated with
obesity in both children and adults [28]. Thus, consump-
tion of sugar-sweetened beverages appears to be a key
contributor to the epidemic of overweight and obesity. In
fact, countries with higher availability of HFCS have a
higher prevalence of T2D compared to countries with low
availability [29,30]. Since this difference was retained or
strengthened after adjusting for BMI, the data suggest that
countries with higher availability of HFCS have a higher
prevalence of T2D independent of obesity [30]. Abundant
consumption of fructose is also an important contributor
to the MetS [31]. This raises concerns regarding the short
and long-term effects of fructose in humans, and the
possibility that fructose intake in childhood is associated
with poorer academic performance and impaired cognitive
function as an adult.
In this paper we review the association of obesity with

cognitive performance. Since high fructose intake appears
to be related to the current obesity epidemic, we also re-
view the impact of added sugars on cognitive function and
the beneficial effects of dietary supplementation of omega-
3 fatty acids (FAs) [32-34].

Proper nutrition is essential for cognitive function
There is no doubt that proper nutrition is essential for
cognitive function. Data suggest that the influence of
nutrition on cognitive function begins during fetal life
[35,36]. A negative cognitive effect of prenatal caloric re-
striction has been shown in animals, and studies in humans
demonstrate prenatal diet variation in micronutrients
negatively affecting childhood cognitive function [37-41].
Prenatal under nutrition also negatively influences
cognitive function in later life [36]. de Rooij et al. [36]
showed that individuals experiencing famine during the
early stage of gestation performed worse on a selective
attention task. Since performance on this task usually
declines with increasing age, the researchers hypothe-
sized that this decline may be attributed to an increased
cognitive aging process [36].
In contrast to the detrimental effects of inadequate

nutrition on cognitive function, pre- and postnatal nutri-
tional supplementation enhances cognitive development.
In a longitudinal investigation of nutrition and mental
development, Freeman et al. [42] found an association
between nutritional status and cognitive measures, inde-
pendent of social factors. Language scores in 3- and 4-
year-old children in rural Guatemalan villages were
higher in the offspring of mothers who received a high-
protein calorie supplement during pregnancy and lactation
than in the offspring of mothers who did not. Mothers
supplemented with a high calorie diet consumed at least
twice as many calories as mothers supplement with a
low calorie diet, which may have also contributed to the
results.
Even skipping breakfast, which occurs at a rate of 10-

30% among children and adolescents in the U.S and
Europe [43-45], affects cognitive functioning [46,47].
Skipping breakfast has been shown to negatively affect
performance on measures of IQ, the Hagen Central
Incidental Test, and the Matching Familiar Figure Test
[48]. In contrast, breakfast has beneficial effects on
cognitive function. In an internet based study involving
children aged 6-16 years, children who ate breakfast
performed better on tests of attention and memory than
children who skipped breakfast, indicating that breakfast
exerts a beneficial effect in maintaining cognitive function
during the morning [49]. A very recent cross-sectional
study of children aged 6 years showed that children who
regularly have breakfast had significantly higher verbal
and IQ test scores compared to children who “sometimes”
have breakfast [50]. In addition, in a randomized, cross-
over trial involving high school students (13-20-years-old),
breakfast had positive short-term effects on visual-spatial
memory and self-reported alertness; however, breakfast
had no effect on sustained attention [51].
Obesity and cognition
There is no doubt that nutrition is critical for cognition
and academic performance; however, food intake in excess
of energy needs is linked to the development of obesity
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[52] and obesity has been associated with poorer cognitive
function [53,54].
In 2005, Jeong et al. [55] examined the association be-

tween obesity and cognition using data from a commu-
nity study of South Korean adults (≥ 65 years).
Cognitive function was examined using the Korean
Mini-Mental State Examination, and obesity using BMI
and waist circumference, as measured at the level mid-
way between the lower rib margin and the iliac crest
[56]. Obesity (BMI ≥ 25 kg/m2) and poor cognitive per-
formance were associated with above normal waist circum-
ference, and poor cognitive performance was negatively
associated with overweight (BMI, 23-25 kg/m2) and normal
waist circumference. Recently, Benito-Leon et al. [57]
assessed cognitive function in a large population-based
sample of overweight (BMI 25-29 kg/m2) and obese
(BMI ≥ 30 kg/m2) elderly (≥ 65 years) participants com-
pared with normal weight controls living in the same
community in central Spain (the Neurological Diseases
in Central Spain study (NEDICES)). Subjects underwent
assessment of cognitive function, which included the
37-item Mini-Mental State Examination (37-MMSE), a
test that measures global cognition, tests of psycho-
motor speed, verbal fluency, memory and pre-morbid
intelligence. The study found that obese/overweight
status was associated with the lowest quartiles of the
37-MMSE, the Trail Making Test-A, verbal fluency, de-
layed free recall, and immediate logical memory and
pre-morbid intelligence, indicating that overweight and
obese participants performed poorer on cognitive tests
than their normal weight counterparts. In other studies
different aspects of cognition have been found to be
negatively associated with BMI including memory
[58,59], vocabulary [60], speed processing and reasoning
[60]. These results support the association of obesity
and impaired cognition in the elderly.
There is also evidence to support the association of

obesity with poorer cognitive performance in midlife. A
higher BMI in midlife was found to be associated with
lower cognitive scores both in cross-sectional [58] and
longitudinal [61] analyses. For example, in a prospective
cohort study, Cournot et al. [58] analyzed data from
healthy, non-demented, middle-aged men and women at
baseline (32 to 62 years) and at follow-up, five years
later, to assess the association between BMI and cognitive
function. After adjustment for co-variables, including age,
sex, educational level, blood pressure, diabetes, and other
psychosocial factors, a higher BMI at baseline was associ-
ated with lower cognitive scores. Moreover, a higher BMI
at baseline was associated with lower cognitive scores at
follow-up, 5 years later. The association of BMI with
decreased cognitive performance was significant for word-
list learning (4 recalls). Several other investigators have
reported similar results [54,58,60,62]. A higher BMI was
associated with lower cognitive function scores in healthy,
black and non-black adults (≥ 65 years); however, greater
BMI was not predictive of cognitive decline as measured
by the MMSE at an average follow-up of 6.4 years [62].
Thus, in this study, greater BMI in old age was not
predictive of cognitive decline at follow-up.
There is also data to suggest that obesity is associated

with impaired cognitive function in children [63]. Obesity
has been linked to poorer academic achievement in school
age children as well as greater destruction of brain archi-
tecture and function during aging [64]. Decreased ampli-
tude and prolonged latency of P300 auditory event-related
potentials were observed in children with obesity com-
pared to that of healthy controls [65]. This difference in
recordings of P300 auditory event-related potentials in
obese children suggests impairment in cognitive functions
[66]. Obese children in kindergarten up until the end of
third grade, exhibit lower academic test scores [67].
Additionally, severely obese children have been reported
to have lower IQs, display poorer school performance, and
lower test scores than their overweight classmates [67]. In
addition, adolescents with MetS had significantly lower
spelling, attention, arithmetic, and overall mental flexibil-
ity with a trend for lower overall intelligence [68]. Further-
more, there is an inverse childhood full IQ/obesity
association in adults [63]. However, after adjusting for
educational attainment, the full IQ/obesity association was
not significantly different [63], suggesting that educational
level plays a role in the persistence of obesity in later life.

Obesity, dementia and cognitive decline
Several studies have shown that obesity in midlife is as-
sociated with increased risk of dementia in later life
[55,69-85]. A 27-year longitudinal, population based
study [81] showed that obese people (BMI ≥ 30 kg/m2)
had a greater risk of dementia (74%) compared with
those who were overweight (BMI 25-29.9 kg/m2) or
normal body weight at 40-45-years of age (35%) [81].
Less is known about the association between obesity
and cognitive aging. “Cognitive aging” refers to the inev-
itable cognitive decline that occurs with aging, with no
evidence of dementia. The extent to which cognitive de-
cline occurs is highly variable, and strongly affected by
various disease processes. In general, cognitive abilities
remain stable through adulthood and decline around
the age of 65 years [86,87].
In the Swedish Adoption/Twin Study of Aging (SATSA)

[88], the association between BMI and cognitive decline
was examined among participants with an average age of
42. BMI and global cognitive ability were measured over a
20-year period beginning at age 25. The study showed that
higher BMI was inversely related to global cognitive ability
with longitudinal decline for both women and men as
indicated by latent growth curve analyses. Early midlife
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obesity was associated with a steeper decline in general
cognitive ability and perceptual speed, with a tendency for
a steeper decline in verbal and spatial abilities. Moreover,
being stably obese over a longer period of time was associ-
ated with lower cognitive function in late life. In contrast,
when obesity developed in late life, there was a steeper de-
cline in only verbal ability. Since verbal ability remains
stable over the adult life span until very old age [86], this
can be seen as evidence that obesity is associated with cog-
nitive decline. However, most studies assessing obesity in
late life found no association between late-life obesity and
late-life cognitive abilities [62,74]. Dahl and Hassing [74]
conducted a systematic review to examine the association
between obesity and cognitive aging among individuals
without dementia. The reviewed studies showed clear evi-
dence that midlife obesity was associated with cognitive
aging, whereas this association was weaker in late life.
Sabia et al. [53] employing the Whitehall II cohort [18],

determined whether cognition in late midlife is influenced
by lifetime obesity. In this study, BMI at 25 years (early
adulthood) was self-reported at baseline and was mea-
sured in early midlife (mean age, 44 years) and again in
late midlife (mean age, 61 years). Cognition was evaluated
in late midlife by using the 30-item MMSE, and tests of
memory (verbal memory) and executive function (Alice
Heim 4-I, tests of verbal and phonemic fluency). The
study found that the proportion of the population that
was either overweight or obese increased from 13.6%
(age 25) to 63.1% (age 61). Moreover, long-term obesity
in adulthood was associated with lower cognitive
performance in late midlife. Those who were obese at 2
or 3 occasions had lower mean MMSE scores and
scores of memory and executive function, adjusted for
age, sex, and education, than did their normal-weight
counterparts. Thus, an increase in BMI over the adult
life course was associated with lower cognitive perform-
ance in late midlife, supporting earlier reports [58].
These data suggest that the association between obesity
and cognition starts early in adulthood and continues to
develop for many years.

Obesity and cognition: the influence of metabolic factors
Singh-Manoux et al. [18], employing the Whitehall II co-
hort, determined the association of BMI and metabolic
status with cognition. A cognitive test battery consisting
of 4 standard tasks was administered, which consisted of
the Alice Heim 4-1, a test of reasoning, in addition to a
recall test to test short-term memory, and two measures
of verbal fluency. In addition, a global cognitive score
was created based on the 3 tests mentioned above. The
results indicated that at baseline, obese individuals (BMI
≥30 kg/m2) had lower cognitive scores than normal
weight individuals. Moreover, the baseline differences
were maintained over the 10-year follow-up. However,
cognitive decline on the global score was only faster
among individuals with both obesity and metabolic
abnormality. It is important to note, that although this
trend was evident for all tests, it was statistically signifi-
cant only for the global cognitive score.
The influence of metabolic abnormalities on the associ-

ation between obesity and cognition was also observed in
the Italian Longitudinal Study on Aging (ILSA) [89], a
prospective study, which investigated the relationship of
MetS with the incidence of mild cognitive impairment and
its progression to dementia. In this study, the presence of
MetS, characterized by abdominal obesity, hypertension,
and hypertriglyceridemia, in individuals with mild cogni-
tive impairment (MCI) was associated with a significantly
higher incidence rate for progression to dementia over
3.5 years of follow-up. The risk in MCI patients with MetS
almost doubled compared with those with MCI without
metabolic abnormalities.
Hypertension was found to modulate the association

between obesity and cognitive functioning in partici-
pants of the Framingham Heart study [90]. In this pro-
spective study, BMI and blood pressure status were
related to cognitive performance on tests administered
4-6 years later. The lowest levels of cognitive perform-
ance were seen for subjects with both hypertension and
obesity as compared to those with either hypertension
or obesity or neither of these risk factors. Interestingly,
adverse effects of obesity and hypertension on cognitive
performance were observed only in aging men. A syner-
gistic influence of concomitant obesity and hypertension
on cognition was also observed by Wolf et al. [61]. In
this study, which employed the Framingham Offspring
Study cohort, midlife measures of obesity and of hyperten-
sion were each significantly related to poorer cognitive
performance on executive function and visual motor skills.
Moreover, the relation of hypertension to cognitive per-
formance was significantly modified by obesity. In addition
to MetS and hypertension, diabetes has been linked to
poorer cognitive performance; however, in this study, dia-
betes did not modify the effects of obesity on cognition
[54], suggesting that the underlying mechanisms may be
different.
Added sugars and cognition
Obesity is directly attributable to excessive caloric intake
[25] and there is now strong evidence that intake of
added sugars, mainly fructose and sucrose, contributes
to the rising obesity and diabetes rates [9,26]. In particular,
high-fructose corn syrup (HFCS)-sweetened beverages
play a role in the development of obesity, and increased
BMI is associated with their increased consumption. In-
take of HFCS-sweetened beverages is also linked to meta-
bolic abnormalities characteristic of the MetS. In addition,
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several studies have shown that intake of added sugars is
associated with lower cognitive function.

Fructose
Fructose, an isomer of glucose, is a natural sugar found in
many fruits. In equal amounts, it is sweeter than sucrose
(glucose-fructose) and therefore commonly used as a
sweetener. The commercial production of HFCS began in
1967. At that time, the fructose content of the syrup was
~15%. After several modifications, the fructose content
was increased to 55% (HFCS-55) and it became the sweet-
ener of choice for the soft drink and ice cream industries.
Currently, HFCS accounts for 40% of all added caloric
sweeteners [25,91]. Approximately 80% of added sugars in
soft drinks, baking products, and ice creams consist of
HFCS [25,92,93].
The intake of fructose has significantly increased over

the past three decades and is derived largely from sucrose
(composed of 50% fructose) and HFCS (42%, 55% or 90%
fructose). In the US, yearly per capita caloric sweetener
consumption rose around 20% since 1970 [94]. Interest-
ingly, this increase coincides with the obesity epidemic.
Data on self-reported food intake from the National
Health and Nutrition Examination Survey (NHANES)
suggest that ~15% of the US population consumes ≥ 25%
of energy from added sugars [92]. The largest source of
added sugars in the Western diet is sugar-sweetened bev-
erages, which accounts for more than 10% of energy in-
take [95]. The consumption of sugar-sweetened beverages
increased by ~135% between 1977 and 2001 [76] contrib-
uting to an increase in the consumption of all caloric
sweeteners of ~83 kcal/person/day [77]. It is estimated
that nearly 7% of daily caloric consumption in the U.S. is
from HFCS [91]. More concerning is the fact that at least
30% of children (1-5 years of age) consumed sugar-
sweetened beverages (soft drinks) [96].
The compositional similarity of HFCS to sucrose sug-

gested that it was safe and would be metabolized in a simi-
lar manner. Thus, HFCS, like sucrose, was not perceived
to pose a significant health risk, with the single exception
of promoting dental caries [97,98]. Additionally, fructose
does not directly stimulate insulin secretion and has a low
glycemic index, which results in smaller increments in
plasma glucose levels in healthy individuals and those with
T2D [99]. As a result, fructose was accepted as a beneficial
dietary component and fructose was recommended as a
sweetener to patients with diabetes. However, there are
differences in how these sugars are metabolized and uti-
lized in the body. Meals high in fructose have been shown
to reduce circulating insulin and leptin levels in women
[91]. In contrast, dietary sucrose increases circulating insu-
lin and leptin levels and inhibits eating, which in turn
further inhibits food intake [100]. Accordingly, the level of
satiety from fructose intake may be less than that of
glucose or sucrose and ultimately add to body weight. In
support of this idea, increased fructose intake, particularly
in the form of HFCS-sweetened beverages, has been
implicated in promoting obesity [101,102]. Results from
animal studies showed that rats with access (12 hours) to
HFCS gained significantly more body weight than rats
given equal access to sucrose (10%), even though they
consumed the same number of total calories. Moreover,
over the long term, rats with access to HFCS gained sig-
nificantly more body weight than the sucrose-fed group.
The HFCS group exhibited an increase in abdominal fat
and elevated circulating triglyceride levels [103]. Studies
have also shown that high fructose exacerbated weight-
gain in rats that are subsequently maintained on a high-fat
diet [104]. Thus, excessive consumption of HFCS may
contribute to the rising incidence of obesity.
Intervention studies provide a clear view of the relation-

ship between sugar-containing beverages and body weight
in humans. In a well-conducted study by Cox et al. [105]
in overweight/obese male and female subjects, consump-
tion of fructose (at 25% of energy requirements for
10 weeks), but not glucose, led to significant decreases in
resting energy expenditure, thus contributing to the build-
up of excess energy substrates. Furthermore, in one of the
population segments at high risk of fructose-related obes-
ity, it was demonstrated that a significant reduction in
fructose and/or general sugar intake over a short period of
time (3 months) in overweight and obese children might
reduce the BMI [106].
Despite these data, we do not have direct evidence that

links obesity to the consumption of physiological daily
intake of fructose (<100 grams) in humans. In addition,
added fructose (< 50 g/day) has no deleterious effect on
triglyceride levels, glucose control, or insulin resistance.
Nevertheless, consumption of sugar-sweetened beverages
is associated with excess calorie intake, and an increased
risk of T2D through an increase in body weight [107]. The
increasing intake of HFCS paralleled the upward trend in
the prevalence of T2D observed in the U.S. during the
20th century [25]. Diets high in added-sugars promote
visceral adiposity, dyslipidemia, and insulin resistance/
glucose intolerance [28,91,108-111]—all components of
the MetS [112]. Moreover, in animal studies, HFCS con-
sumption seems to produce some of these changes asso-
ciated with the MetS even without increasing the body
weight [113]. This has led to the recommendation to
limit the daily intake of added-sugars to no more than
10% of total energy [114].

Fructose and cognition
Results from animal studies suggest that fructose intake
may be associated with cognitive decline. Stranahan
et al. [115] found that rats fed a high-fat, high-glucose
diet and given access to HFCS displayed significantly
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impaired cognitive function, possibly via the development
of insulin resistance. Ross et al. [33] reported that a high
fructose diet impairs spatial (hippocampal-dependent)
memory in male rats. Their study showed that consuming
a high fructose (60%) diet for almost 5 months increased
the latency to reach the target and decreased time spent in
the target quadrant and the number of target approaches
in a spatial water maze probe test. High fructose intake
did not influence navigational ability. In addition, the rats
were able to learn and retain the location of the platform
for short periods of time. Only impairments on the reten-
tion tests were recorded associated with high fructose
intake (given 48 hours after training), which suggests that
consumption of such a diet may impair long-term
memory storage or retrieval, or both.
Impaired cognitive function by high fructose was also

reported by Agrawal and Gomez-Pinilla [32]. Agrawal
and Gomez-Pinilla investigated the impact of a diet defi-
cient in omega-3 FAs (n-3 deficient), to represent the
“normal” Western diet, and the MetS on cognition and
synaptic plasticity, and concomitant changes in the hippo-
campus, a region of the brain critical for learning and
memory. Rats were randomly assigned to four groups:
either with dietary omega-3 FA or a omega-3 FA deficient
diet, and each of those were given fructose (15%) or no
fructose in their drinking water. Dietary omega-3 FA defi-
ciency impaired spatial learning and memory retention in
a Barnes maze, which was further enhanced by the high
fructose intake. Changes in cognitive function were ac-
companied by reduced expression of synaptophysin and
synapsin I, synaptic plasticity-associated proteins found in
the brain. In addition, high-fructose intake led to insulin
resistance and hypertriglyceridemia, suggesting that either
factor could impact on cognitive performance (see below).
The addition of omega-3 FAs to the diet improved mem-
ory and ameliorated the memory impairments induced by
fructose intake. All parameters of MetS in the brain
related to the fructose treatment were also ameliorated by
omega-3 FA intake. Together these results suggest that di-
ets enriched with omega-3 FA can prevent the detrimental
effects of fructose on cognition under “normal” condi-
tions, and particularly during metabolic stress [32]. Inter-
estingly, long-term omega-3 FA supplementation has been
shown to improve cognitive function in experimental
animal models of AD [32].
A recent population-based study investigated the associ-

ation of fructose intake with cognitive function in humans.
Ye et al. [116] examined whether routine intakes of total
sugars, added sugars (sucrose and HFCS), sugar-
sweetened beverages or sweetened solid foods are associ-
ated with declining cognitive function in humans. The
study included middle-aged and older Puerto Rican adults
(n = 737; mean age 56.3), without diabetes. Total sugars
were defined as the sum of three free monosaccharides
(glucose, fructose, and galactose) and three free disaccha-
rides (sucrose, lactose, and maltose). Cognitive function
was measured with a battery of seven-tests: the MMSE, to
assess general cognitive function, a sixteen-word list learn-
ing task to assess verbal memory, digit span forward and
backward, to assess attention and working memory, clock
drawing and figure copying, both to assess visual-spatial
organization, verbal fluency, to assess the speed at which
one provide exemplars to a category, and the Stroop test,
the measure cognitive flexibility, response inhibition and
processing speed. Among the participants, ~21% of energy
intake was obtained from total sugars, and 12% from
added sugars. Fruit drinks, soft drinks, dairy desserts, and
sweets provided 22.1%, 12.9%, 11.3% and 10.3% of added
sugars, respectively. Total sugars, added sugars, sucrose,
glucose and added fructose were each significantly in-
versely associated with low MMSE scores, in contrast to
natural fructose (from fruits and vegetables), which had
no effect on cognitive function. Greater consumption of
total sugars was also associated with lower word list learn-
ing score. These findings suggest that increased consump-
tion of added sugars is associated with lower cognitive
function in humans. Interestingly, the association between
added sugar intake and MMSE was independent of BMI
and age.

Sucrose and cognition
Several studies have been conducted to explore the associ-
ation of sucrose intake with cognitive function. Sucrose is
composed of 50% fructose. Results from animal studies
show that diets with higher sucrose content result in
memory impairment. Rats exposed to a sucrose solution
(32%) in addition to chow were found to have poorer
memory in a novel object recognition task, when com-
pared with rats that only received chow, whereas memory
was not affected in rats given a high-fat diet [117]. Inter-
estingly, both the sucrose and high-fat groups became
obese when given access to the diets and had increased
fasting blood glucose levels; however, only the sucrose fed
group showed impairment in object recognition. In
addition, the time spent exploring the novel object was
negatively correlated with fasting blood glucose levels.
Thus, sucrose may be affecting cognitive function inde-
pendent of its effects on body weight, as the two diets had
differential effects on learning performance but not on
body weight gain. Several animal studies have shown that
Western diet-induced learning and memory impairments
can precede the development of diet-induced obesity
[24,118]. In addition, the authors hypothesized that the
impairment in object recognition in sucrose fed rats, is
due, to diet-induced alterations in blood glucose [117]. In
another study, young rats fed a supplemental sucrose solu-
tion (32%) in addition to chow took significantly more
time to find a hidden platform in the Morris Water Maze



Lakhan and Kirchgessner Nutrition Journal 2013, 12:114 Page 7 of 12
http://www.nutritionj.com/content/12/1/114
(MWM), a widely-used task for assessing spatial memory,
that is impaired in rats with damage confined to the
hippocampus (see [119] for review). Moreover, when
tested 10 days after the initial training trials, sucrose fed
rats displayed deficits in long-term spatial memory [79].
As in the previous study, fasting glucose levels were sig-
nificantly higher in the sucrose-fed rats supporting the
idea that these cognitive deficits arise from metabolic
insults.
Postprandial memory performance after consuming a

meal with high or a low glycemic index was examined in
adults with well-controlled T2D [120]. It was shown that
the high glycemic meal led to poorer performance in
memory tests when administered 1-2 hours after eating.
Similarly, a diet with a higher glycemic index led to
poorer memory performance in normal weight under-
graduate women [121] and in non-diabetic individuals,
including children [122]. In summary, simple rather than
complex carbohydrates may impair postprandial mem-
ory performance.

Underlying mechanisms
There are several possible mechanisms underlying the
association between fructose intake, obesity, MetS and
cognitive function. Animal studies have shown that exces-
sive caloric intake impairs hippocampal synaptic plasticity
suggesting that the hippocampus may be particularly sen-
sitive to changes in dietary energy intake [123-125]. The
hippocampus is a brain region critical for learning and
memory. Thus, diet-induced changes in hippocampal
neuronal plasticity may affect memory and cognition.
Inflammation is correlated with cognitive decline [126]

and dementia [123,127,128], and various inflammatory
markers are increased in obese relative to lean individuals
[129]. Sugar-sweetened beverages were found in a 10-
week intervention study to increase inflammatory activity
[130]. IL-1 has been implicated in memory consolidation,
whereas IL-6 may mediate hippocampal dysfunction and
thus affect memory and cognition [131]. IL-6 and C-
reactive protein (CRP) correlated with accelerated func-
tional decline in the elderly, and middle age CRP levels
may prognosticate dementia risk [132]. Patients with post-
surgical neurocognitive decline, which occurs in 7-26% of
patients undergoing surgery [133], were observed to have
a significant increase in CRP and IL-1 compared to pa-
tients without cognitive decline. Postoperative elevations
in IL-6 and CRP were found to correlate with short- and
medium-term cognitive dysfunction after coronary artery
bypass surgery [134].
Vascular pathologies have been hypothesized to play a

role [71]. In fact, there is evidence that the relations be-
tween obesity and cognition are modified by the presence
of cardiovascular risk factors. In the Framingham Heart
Study [90], obesity and hypertension were independently
associated with lower scores on multiple measures of cog-
nitive functioning, and the adverse effects of obesity and
hypertension were additive with respect to measures of
episodic memory and visual-spatial constructive abilities.
The highest level of performance was observed in the ab-
sence of obesity and hypertension, the second highest for
those with either hypertension or obesity, and the lowest
for those with both obesity and hypertension [90].
It is now known that many of the diagnostic characteris-

tics that define the MetS are individually related to cogni-
tive impairment. Recently, Yau et al. [68] documented
lower cognitive performance and alterations in brain
structure among adolescents with MetS. Adolescents with
MetS scored significantly lower on tests of arithmetic,
spelling, attention, and mental flexibility and displayed a
trend for lower overall intelligence. They also had, in a
metabolic syndrome-dose-related fashion, smaller hippo-
campal volumes. Excessive fructose intake has been linked
to increased lipogenesis, glycogenesis, oxidative stress and
uric acid production [135], and these metabolic changes
are also associated with the MetS, which in turn, may lead
to cognitive dysfunction [136]. Two epidemiological stud-
ies have reported an association between elevated uric acid
and cognitive decline in older individuals [137,138],
whereas one study found a protective effect [139].
Results suggest that insulin resistance induced by high

fructose is linked to cognitive decline [140]. Rats fed diets
supplemented with HFCS were more insulin resistant and
cognitively impaired on spatial learning and ability tasks
than non-supplemented rats [115]. Agrawal and Gomez-
Pinilla [32] found that fructose intake and DHA deficiency
increased hippocampal insulin resistance, as shown by a
decrease in insulin receptor signaling. Insulin resistance
results from impaired signaling at the level of the insulin
receptor primarily as a result of altered phosphorylation.
Phosphorylation of the insulin receptor and its distal sig-
naling molecule Akt were reduced in rats fed the omega-3
FA-deficient diet, and that these effects were aggravated
by high fructose intake. Inclusion of omega-3 FAs in the
diet restored insulin signaling. A role of insulin resistance
in memory impairment is supported by the observation
that exogenous insulin enhances memory even in individ-
uals with AD [141]. Since memory deficits are positively
correlated with increases in insulin resistance, this
suggests that insulin signals neurons directly in the brain.
Insulin can cross the blood–brain barrier (BBB) [142].
However, insulin receptor knockout mice perform nor-
mally in spatial learning and memory tests [143], which
suggests that other mechanisms are involved.
In rats, high fructose intake resulted in hyperinsulinemia,

hyperglycemia, and an increase in triglyceride (TG) levels
[32]. In the study by Agrawal and Gomez-Pinilla [32],
insulin resistance index increased in proportion to TG
levels, and given the association of cognitive impairment
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with elevated TG levels, high fructose intake may prime
the brain to insulin resistance by its effects on TGs. In
fact, the application of TGs to hepatic cells decreases insu-
lin’s ability to trigger its signaling cascade [144]. In
addition, TGs can penetrate the BBB [145] and an injec-
tion of TGs directly into the brain impairs memory [124].
Data also suggest that neuronal cells can metabolize
fructose [146]; however, it is not known whether fructose
can penetrate the BBB.

The beneficial effects of omega-3 FAs
Omega-3 FAs (eicosapentaenoic acid (EPA) and docosa-
hexaenoic acid (DHA)) are diet-dependent factors critical
to normal brain development and function [147], that
have been shown to exert beneficial effects on cognition.
DHA, the principle omega-3 (PUFA) in brain, has effects
on neuronal membrane activity, which modulates cell sig-
naling [148]. DHA status is dependent on dietary supple-
mentation because mammals are inefficient at producing
DHA from precursors. In humans [149] and rats [150],
DHA concentration in the brain decreases with age. This
appears to be related to the age-related deterioration in
CNS functions [149]. Data from animal studies support
this idea. Rodents fed a low omega-3 FA diet showed sig-
nificant cognitive deficits [150] that were reduced by DHA
supplementation [151]. In addition, DHA supplementa-
tion improved memory performance in aged mice [152].
DHA levels in the hippocampus decrease with age and
AD and impairs hippocampal-dependent spatial learning
memory ability. This implies that adequate levels of DHA
are required for optimal cognitive performance.
Supplementation with omega-3 FAs can counteract the

effects of a high fructose diet on memory [32]. In rodents,
dietary omega-3 FA deficiency was associated with a de-
cline in spatial memory in proportion to the intensity of
insulin resistance, which was further aggravated by high
fructose intake. There was no difference in body weight or
total caloric intake; therefore, obesity did not appear to be
a major contributor to altered memory functions in this
model. Based on these data, it appears that omega-3 FA
deficiency increases the vulnerability to the effects of high
fructose, as evidenced by disruptions of insulin signaling
and impaired cognitive functions.
A potential mechanism has been proposed [153] by

which DHA supports the development and maintenance
of spatial learning memory. DHA is synthesized and taken
up by neurons of the developing brain and hippocampus,
which incorporate it into membrane phospholipids, espe-
cially phosphatidylethanolamine. This results in enhanced
neurite outgrowth, synaptogenesis and neurogenesis. In
support of this idea, exposure to omega-3 FAs increased
synaptic protein expression to increase the dendritic spine
density, and enhanced synaptic plasticity by increasing
neurogenesis in the hippocampus. Retinoid signaling may
be involved in the effects of DHA on learning memory
performance as DHA supplementation appeared to in-
crease retinoid X receptor expression compared with the
untreated old group [154].
Dietary DHA appears to be a promising target to protect

against the detrimental effects of high fructose intake on
cognitive performance. Animal studies have shown that
consumption of a DHA enriched diet restores brain DHA
levels [155], enhances learning and memory tasks in aged
animals [155,156], and significantly reduces beta amyloid,
plaques, and tau in transgenic AD models [157,158].
Evidence from clinical studies indicates that dietary
supplementation with omega-3 FAs improves cognitive
performance in healthy children and adults [159] and is
somewhat effective in preventing or ameliorating cognitive
decline in the aged [160]; however, these findings are not
consistent across studies [161,162]. Dietary supplementa-
tion with omega-3 FAs has little or no effects in
underperforming individuals, and patients with mild to
moderate AD [163]. Nevertheless, individuals (aged 65–
94 years) who consumed fish at least once per week were
found to have a reduced risk of AD at ~ 4 years follow-up
compared to those who rarely or never ate fish [164].
Clearly, additional studies examining the effects of longer
duration dietary supplementation with omega-3 FAs may
identify greater change in cognitive function in study
subjects.

Conclusion
The association of obesity with chronic diseases, such as
T2D and MetS is well known. What has recently emerged
is the association of obesity with cognitive decline and that
intake of added sugars may mediate the influence of obes-
ity on cognitive function. The intake of fructose, along
with HFCS has increased over the past three decades.
With the rising trend in childhood obesity, causing
children to be at risk of diabetes and MetS, the potential
contribution of fructose to lower academic performance
in adolescents is becoming increasingly realized. Although
obesity may not be enough to warrant concern among
parents, the lower academic potential of obese adolescents
strongly argues for early treatment of childhood obesity
and comprehensive intervention, including a limitation of
sweetened soft drinks, especially those containing HFCS.
Equally important is exploring the role of dietary omega-3
FAs, which appear to have beneficial effects on cognitive
function and attenuate high-fructose associated cognitive
decline.
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