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Abstract
Background: T-cell epitopes that promiscuously bind to multiple alleles of a human leukocyte antigen (HLA) supertype are
prime targets for development of vaccines and immunotherapies because they are relevant to a large proportion of the human
population. The presence of clusters of promiscuous T-cell epitopes, immunological hotspots, has been observed in several
antigens. These clusters may be exploited to facilitate the development of epitope-based vaccines by selecting a small number
of hotspots that can elicit all of the required T-cell activation functions. Given the large size of pathogen proteomes, including
of variant strains, computational tools are necessary for automated screening and selection of immunological hotspots.

Results: Hotspot Hunter is a web-based computational system for large-scale screening and selection of candidate
immunological hotspots in pathogen proteomes through analysis of antigenic diversity. It allows screening and selection of
hotspots specific to four common HLA supertypes, namely HLA class I A2, A3, B7 and class II DR. The system uses Artificial
Neural Network and Support Vector Machine methods as predictive engines. Soft computing principles were employed to
integrate the prediction results produced by both methods for robust prediction performance. Experimental validation of the
predictions showed that Hotspot Hunter can successfully identify majority of the real hotspots. Users can predict hotspots from
a single protein sequence, or from a set of aligned protein sequences representing pathogen proteome. The latter feature
provides a global view of the localizations of the hotspots in the proteome set, enabling analysis of antigenic diversity and shift
of hotspots across protein variants. The system also allows the integration of prediction results of the four supertypes for
identification of hotspots common across multiple supertypes. The target selection feature of the system shortlists candidate
peptide hotspots for the formulation of an epitope-based vaccine that could be effective against multiple variants of the pathogen
and applicable to a large proportion of the human population.

Conclusion: Hotspot Hunter is publicly accessible at http://antigen.i2r.a-star.edu.sg/hh/. It is a new generation computational
tool aiding in epitope-based vaccine design.
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Background
The binding of fragments of processed antigens by major
histocompatibility complex (MHC) molecules of antigen
presenting cells (APCs) and their presentation to T-cells is
crucial for immune surveillance and defence against bac-
teria, parasites, viruses and tumors. Recognition of the
MHC-restricted target peptide on the surface of APCs by
the surveying T-cells of the immune system is mediated
through the T-cell receptors (TCRs) [1,2]. Peptides that are
recognized by the TCRs and trigger an immune response
are called T-cell epitopes and are essential for initiation
and regulation of immune responses. Identification of T-
cell epitopes in pathogen proteomes is, therefore, crucial
for the design of vaccines and immunotherapies. Mapping
of these epitopes experimentally, however, is a challeng-
ing task because of the large size of pathogens proteomes
[3], great diversity of MHC molecules [4], and the low
(~0.1–5%) natural prevalence of T-cell epitopes for a
given MHC molecule [5]. The high cost of peptide synthe-
sis, limited access to human peripheral blood samples,
and time-consuming experimental assays further add to
the challenge. Experimental approaches are therefore
combined with a number of prediction tools to screen for
candidate MHC binders, putative T-cell epitopes. This
combination has dramatically accelerated the process of
epitope mapping as the judicious use of the tools enable
large number of laboratory experiments to be avoided [6].

It can be postulated that an epitope-based vaccine ideally
should contain a minimal number of epitopes that cover
a vast majority of the human population [7-10]. T-cell
epitopes that promiscuously bind to multiple alleles of a
human leukocyte antigen (HLA, human MHC) are prime
targets for vaccine and immunotherapy development
because they are relevant to larger proportions of the
human population. The presence of clusters of promiscu-
ous T-cell epitopes, immunological hotspots, has been
observed in several antigens, such as SARS coronavirus
nucleocapsid [11], HIV-1 proteins [12-14], and Chlamydia
trachomatis outer membrane protein [15]. These clusters
may be exploited to facilitate the development of epitope-
based vaccines by selecting a small number of hotspots
that can elicit all of the required T-cell functions [11].

Nearly all existing publicly available promiscuous T-cell
epitope prediction servers perform prediction for a single
protein sequence per submission, while those that accept
multiple sequences are not tailor-made to predict
hotspots; they rely on manual visualization techniques.
Given the large size of pathogen proteomes, it is painstak-
ing to integrate the individual prediction results, and
therefore impractical to use these tools for large-scale sys-
tematic study of promiscuous epitopes, which is necessary
for a global view of the localizations of the epitopes in the
proteome and analysis of their antigenic diversity. Herein,

we present Hotspot Hunter, a web-based computational
system for large-scale screening and selection of candidate
immunological hotspots in pathogen proteomes through
analysis of antigenic diversity [9]. It allows screening and
selection of hotspots specific to four common HLA super-
types, namely HLA class I A2, A3, B7, and class II DR. The
A2, A3 and B7 supertypes together cover approximately
88% of the human population [10,16], irrespective of eth-
nicity, while class II DR supertype is present in 100% of
the population. Hotspot Hunter uses Artificial Neural
Network (ANN) and Support Vector Machine (SVM)
methods as predictive engines.

It has been reported that combining predictions by several
methods results in greater accuracy [17-19]. A soft com-
puting approach was applied to integrate the prediction
results produced by both methods used by Hotspot
Hunter and the results are presented to users in a succinct
and easily understood format. Soft computing is a part-
nership of several methods, each of them are complemen-
tary, not competitive, offering their own advantages to
allow solutions to otherwise difficult to solve problems
[20]. Importantly, soft computing exploits the tolerance
for imprecision, uncertainty and approximation, all char-
acteristics for T-cell epitope data.

System implementation
The predominant length of peptides that bind HLA class I
molecules (HLA-A, -B, and -C) is nine amino acids [21].
HLA class II molecules (HLA-DR) bind longer peptides
although through a nine amino acids long binding core
[22,23]. The HLA-A2 training dataset had a total of 3050
(675 binders and 2375 non-binders) 9-mer peptides
related to 15 variants of the HLA-A2 supertype (0201,
0202, 0203, 0204, 0205, 0206, 0207, 0208, 0209, 0210,
0211, 0214, 0217, 6802 and 6901). The HLA-A3 training
dataset had a total of 2216 (680 binders and 1536 non-
binders) 9-mer peptides related to eight variants (0301,
0302, 1101, 1102, 3101, 3301, 3303 and 6801). The
HLA-B7 training dataset had a total of 4102 (1258 binders
and 2844 non-binders) 9-mer peptides related to 13 vari-
ants (0702, 1508, 3501, 3502, 3503, 5101, 5102, 5103,
5301, 5401, 5501, 5502 and 5601). These data were
mainly from three sources, the MHCPEP database [24],
IEDB [25], and published literature, and a set of HLA non-
binding peptides (Brusic V., unpublished data). The HLA-
A2, -A3 and -B7 datasets are available for download at
http://antigen.i2r.a-star.edu.sg/hh/data. The HLA-DR
training dataset had 2396 (448 binders and 1948 non-
binders) 9-mer peptides related to six HLA-DRB1 variants
(0101, 0301, 0701, 0801, 1101 and 1501). The training
data was from experiments conducted on 340 15-mers to
measure their binding affinity to each of the six HLA-DR
alleles. The 15-mers came from three protein sources:
MEL40 (aka SSX2, NCBI Accession: AAH16957.1, human
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melanoma cancer), SSP2 (malaria sporozoite surface pro-
tein 2, NCBI Accession: Q01443, Plasmodium yoelli), HCV
(Hepatitis C virus genome polyprotein, NCBI Accession:
P26663). The transformation from 15-mers to 9-mers was
performed utilizing SYFPEITHI motifs [26]. Each 15-mer
binder was decomposed into overlapping 9-mers which
were submitted to SYFPEITHI for HLA-DR binding predic-
tion. The highest scoring 9-mer was considered as a binder
and the rest of the 9-mers were not used in the final 9-mer
dataset. On the other hand, all overlapping 9-mers
decomposed from 15-mer non-binders were considered
as non-binders. Since the data originated from a single set
of experiments, with relatively consistent experimental
conditions, it is reasonable to expect that the DR training
dataset is of higher quality relative to datasets aggregated
from multiple sources.

The ANN and SVM models employed herein were the
same as those used in MULTIPRED1 [27]. Three-layer
back propagation networks (267-4-1) with sigmoid acti-
vation functions were built for HLA-A2 and -A3 supertype
[28]. Training parameters were determined by observing
100 cross-validation runs. The maximum number of the
ANN training cycles was set to 300. The values of momen-
tum and learning rate were 0.5 and 0.001, respectively.
The training was repeated four times, and four sets of
weights were obtained. The final prediction score was the
average of the four predictions calculated using the four
sets of weights. Three-layer back propagation networks
(289-8-1) with sigmoid activation functions were built for
HLA-B7 supertype. The maximum number of the ANN
training cycles was set to 500. The training was repeated
four times, and four sets of weights were obtained. The
values of momentum and learning rate were 0.5 and
0.005, respectively. The HLA-DR supertype was built in a
similar fashion by a 4-layer back propagation network
(268-2-4-1) with a hyperbolic tangent sigmoid activation
function between the two hidden layers and a sigmoid
activation function between the second hidden layer and
the output. The value of momentum was 0.9, whereas the
learning rate was not fixed but changed according to the
learning process to achieve faster convergence. The initial
learning rate was 0.004. In each training epoch, the sum
of square errors was compared with that of the previous
epoch. If the sum of square errors increased to more than
1.005 times of the previous one, the learning rate was
decreased to 0.7 time of the initial learning rate. If the sum
of square errors decreased to less than 0.98 times of the
previous one, the learning rate was increased to 1.05 time
of the initial learning rate. Ten-fold cross-validation
results showed that the area under the receiver operating
curve (Aroc) for A2, A3, B7 and DR ANN models were
0.83, 0.83, 0.88 and 0.85, respectively.

A SVM with Gaussian kernel (g = 0.1 and c = 0.5) was used
for HLA-A2 and Gaussian kernel (g = 0.1 and c = 2) for
HLA-A3 supertype [29]. SVMs with two-degree polyno-
mial kernel function were employed for prediction of pep-
tide binding to HLA-B7 and -DR supertype. Ten-fold
cross-validation results showed that the Aroc of A2, A3, B7
and DR SVM models are 0.91, 0.95, 0.92, and 0.80 respec-
tively. The selection of architectures, parameter values,
activation functions and kernel functions was done
through sampling and comparison of performance.

The prediction performances of models for HLA-A2 and -
A3 supertypes were validated using experimental results
from a systematic study of human papillomavirus type 16
E6 (NCBI Accession: P03126) and E7 (NCBI Accession:
P03129) proteins [30]. Two of three HLA-A2 hotspots and
all three HLA-A3 hotspots were correctly predicted with-
out false positive [29,31]. Recently, Peters et al. [32] con-
ducted a benchmark study to compare the performance of
various bioinformatics models in predicting MHC class I
binding peptides and reported that our ANN models [33]
showed the best performance among external tools in pre-
dicting peptides binding to three HLA-A2 supertype alle-
les (0202, 0203 and 0206) and two HLA-A3 supertype
alleles (0301 and 1101). Our SVM models have also been
validated using the Peters' datasets. The HLA-A2 SVM
model outperformed all the external tools evaluated in
[32] and the HLA-A3 SVM model was equal to or better
than three of the five HLA-A3 external tools studied [29].
The prediction performances of models for HLA-B7 super-
type were validated using experimental results of the
tumor-associated antigen survivin (NCBI Accession:
NP_001159.2) [34,35]. Hotspot Hunter correctly pre-
dicted one hotspot and missed one. The prediction per-
formance for HLA-DR hotspots was validated using
experimental results from systematic binding studies of
overlapping peptides from myelin oligodendrocyte glyco-
protein (MOG) (NCBI Accession: CAA88109) [36] and
hepatitis C virus 1B protein (NCBI Accession: AAB00216)
[37]. All the predicted hotspots were localized in the
experimentally validated hotspot regions. Additional val-
idation study using secretory aspartyl proteinase 2 (Sap2),
a major protein which is known to induce immune
response during Candida infection in human, showed that
Hotspot Hunter accurately identified two of the three
HLA-DR restricted immunological regions experimentally
identified using PBMC proliferation and IL-2 ELISpot
assays [38].

Each input protein sequence to Hotspot Hunter is trun-
cated into overlapping 9-mer peptide sequences with an 8
amino acid overlap and analysis is carried out on each
individual 9-mer. To predict immunological hotspots
(regions of high concentration of 9-mer promiscuous
binders), we have developed two scoring schemes for HLA
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class I and class II supertypes. The scheme for HLA class I
supertypes is based on high scoring individual 9-mers
within a window of 30 amino acids [31,33], and the
scheme for HLA class II supertype is based on average
scores of individual 9-mers within a window of 15 amino
acids. The selection of window length was based on a trial-
and-error based heuristics. Window lengths of 15, 20, 25
and 30 were explored and the results were compared with
the representative experimental results [31]. The window
length of 30 amino acids was found to be best for class I
predictions and the window length of 15 amino acids was
best for class II predictions. A region in protein sequence
is considered as immunological hotspot specific to a HLA
supertype only if its predicted binding strength is above
the threshold defined for the supertype. The threshold for
each supertype was the sum of the thresholds of corre-
sponding ANN and SVM models, which were selected
based on experimental binding data [29,33]. Two flow-
charts (Figure S1 and S2) describing the steps involved in
identifying hotspots in a single input protein are provided
at http://antigen.i2r.a-star.edu.sg/hh/HTML/
faq.html#Q3.

The web interface of Hotspot Hunter is intuitive, making
use of a set of simple Graphical User Interface forms. Pro-
grams were built using a combination of Perl, CGI and C
language. The implementation was carried out in SunOS
5.9 UNIX environment.

Using the system
Analysis of antigenic regions in a single protein is initiated
by opening the "Single Sequence Query" page of Hotspot
Hunter, the query protein sequence is pasted into the
query box, a name is assigned and the HLA supertype of
interest is selected. The input protein sequence should be
in FASTA format and at least 15 (for HLA-DR supertype)
or 30 (for HLA-A2/A3/B7 supertype) amino acids long
and at most 2000 amino acids long. Input sequences that
contain symbols other than amino acids (spaces and car-
riage returns are allowed) or are of lengths outside the
acceptable length range, are not be processed – an error
message will be displayed. The sequence pasted in the
query box is treated as one single protein sequence (car-
riage returns are ignored). Figure 1 shows the analysis of
the human myelin-oligodendrocyte glycoprotein (MOG)
for HLA-DR hotspots. The input interface is shown in Fig
1A (numbering is relative to the mature sequence of
MOG). Experimental HLA-DR restricted peptides in the
mature sequence of MOG (NCBI Accession: CAA88109)
formed two hotspots, 73–96 and 121–216 [36]. Hotspot
Hunter predicted four hotspots, 38–56, 79–93, 121–163
and 174–211, for the protein (Figure 1B), three of which
corresponded to the two experimentally identified
regions. The "binding strength" represents the sum of
binding scores predicted by ANN and SVM models for

each hotspot. The predicted hotspots are displayed in two
formats: in ascending order of their positions in the
sequence and in descending order of their prediction
scores. Users can click on "Plot Binding Strength" on the
result page to generate a graph providing a clear overall
view of the binding capacity of the input sequence. The X-
axis represents the start position of a peptide (window size
of 15-amino acids for DR supertype and 30-amino acids
for A2, A3 and B7 supertypes) and Y-axis represents the
predicted score of the peptide. Figure 1C shows a plot of
the binding scores for the MOG protein with each dot (in
blue or red color) representing a 15-amino acids peptide.
For example, the first 15-amino acid peptide is plotted at
position 1 with a score of 63.53. Individual peptides with
prediction scores grater than or equal to the threshold 65
for DR supertype are considered as positive binders to
multiple DR alleles and are displayed as red dots, while
the non-binders below the threshold are displayed as blue
dots.

"Multiple Sequences Query" function allows users to pre-
dict hotspots in a set of protein sequences by submitting a
multiple sequence alignment file either in ALN (Clus-
talW) or PHY (PHYLIP) format http://www.ebi.ac.uk/
help/formats_frame.html. Predictions are performed on
each sequence in the alignment and gaps in the sequences
are removed prior to the prediction. However, the gaps are
still displayed on the results page and, therefore, hotspots
can appear on the results page interspersed by gaps of var-
iable sizes, depending on the alignment. The results page
provides a global view of the localizations of the hotspots
in the proteome set, enabling analysis of antigenic diver-
sity and shift of hotspots across protein variants. An exam-
ple of the Hotspot Hunter analysis of a set of dengue virus
type 1 capsid sequences is shown in Figure 2. The users
may bookmark the URL of the result page (shown in Fig-
ure 2B) to access the results which are kept for 24 hours
on the server. Alternatively, users can input their email
address in the textbox (Figure 2A) and the result file will
be emailed to them once the prediction process is com-
plete. The consensus of the input protein sequences is dis-
played on top of the results page (Figure 2C). The
predicted hotspot regions in each protein sequence of the
set are highlighted in yellow. Consensus hotspots are
defined as hotspots present in at least 50% of the
sequences (subject to presence in at least two sequences
submitted for prediction) and are displayed at the bottom
of the result page. These consensus hotspots are of interest
to immunologists as they are shared across multiple pro-
tein variant sequences.

"Target Selection" function for multiple sequence queries
employs a computational method to identify candidate
peptides for the formulation of an epitope-based vaccine
that could be effective against multiple variants of the
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An example of the input and output pages of Hotspot Hunter when performing "Single Sequence Query"Figure 1
An example of the input and output pages of Hotspot Hunter when performing "Single Sequence Query". The 
input protein sequence is Myelin Oligodendrocyte glycoprotein (NCBI Accession: CAA88109) and the selected HLA supertype 
of interest is HLA-DR. A) The input page. B) Prediction result page. C) Plot of predicted scores vs. the amino acid positions in 
the protein sequence.
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B)
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An example of the input and output pages of Hotspot Hunter when performing "Multiple Sequences Query"Figure 2
An example of the input and output pages of Hotspot Hunter when performing "Multiple Sequences Query". 
The input is a set of dengue virus type 1 capsid sequences in ALN (ClustalW) or PHY (PHYLIP) format http://antigen.i2r.a-
star.edu.sg/hh/HTML/alnformat.html. A) The input page. B) Waiting message page. C) Prediction results page.

A)

B)

C)
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pathogen and is also applicable to a large proportion of
the human population. The predicted peptides from con-
sensus hotspots of aligned protein sequences are analyzed
for selection of best targets for further experimental vali-
dation. All the predicted consensus hotspots are ranked to
aid in the decision support, aiming to select the best con-
sensus hotspot. Figure S4 on Hotspot Hunter FAQ page
http://antigen.i2r.a-star.edu.sg/hh/HTML/faq.html#Q5
summarizes the process of decision-making in selecting
the best consensus hotspot and best candidate targets. The
output of this analysis is a comprehensive report, which
facilitates interpretation of results and the selection of val-
idation experiments. A sample of the target selection anal-
ysis output for dengue virus type 1 NS2b protein is
provided in Figure 3.

Hotspot Hunter performs predictions on four HLA super-
types, HLA-A2, -A3, -B7 and -DR. It allows integration of
the prediction results of the four supertypes for identifica-

tion of hotspots common across multiple supertypes,
which is facilitated by the function "Hotspots Common
Across Supertypes". The user needs to upload the output
files (generated by "Multiple Sequences Query") of the
supertypes of interest for the same set of sequences.
Hotspots common across any combination of the four
supertypes can be analysed.

Discussion
Experimental approaches for identification of T-cell
epitopes are laborious and costly, and thus are not appli-
cable for large-scale screening across multiple HLA alleles
and pathogen proteomes. Several publicly available
online computational systems have been developed for
the prediction of peptides binding to HLA alleles and
supertypes, such as SYFPEITHI [26] based on binding
motif, BIMAS [39], ProPred1 [40] and PEPVAC [10] based
on quantitative matrices, SMM [41] based on stabilized
matrix method, MHCPred [42] based on a multivariate

An example of the output page of Hotspot Hunter when using the "Target Selection" functionFigure 3
An example of the output page of Hotspot Hunter when using the "Target Selection" function. The input is a 
HLA-DR supertype prediction results page for dengue virus type 1 NS2b sequences in HTML format (output of "Multiple 
Sequences Query" function). Best peptide targets for experimental validation are highlighted in yellow. Antigenically redundant 
peptides are peptides whose complete nonamer antigenic diversity is covered by the other peptides at the consensus hotspot 
position, thus they can be ignored without loss of information on nonamer antigenic diversity among the peptides [9]. Non-
amer antigenic diversity was studied because they represent the predominant length of binding cores of T-cell epitopes [21].

Hotspot position Rank Predicted peptide sequence 
Frequency of peptide sequence 

in input dataset (%) #

IMAVGIVSILLSSLLKNDVPLAG 72.73 

IMAIGIVSILLSSLLKNDVPLAG 22.73 8-30 2 

IMAVGIVSILLSSFLKNDVPLAG 4.55 

LIAGGMLIACYVISGSSADLS 95.45 
32-52 1 

LIAGGMLIACYVISGTSADLS 4.55 

DTLTILLKATLLAVSGVYPMSIPATLFV 36.36 

DTITILLKATLLAISGVYPMSIPATLFV 13.64 

DTLTILLEATLLAVSGVYPLSIPATLFV 4.55 

DTLTILLKATLLAVSGVYPISIPATLFV 9.09 

ATLTILLKATLLAVSGVYPLSVPATLFV 4.55 

DTLTILLKATLLAVSGVYPMSIPATLFL 4.55 

DTLTILLKATLLAISGVYPMSIPATLFV * 18.18 

93-120 3 

DTLTILLKATLLAVSGVYPLSIPATLFV * 9.09 

Key: 
* Antigenically redundant sequence  
 Best peptide targets for experimental validation 
# Only considering the predicted peptide sequences (highlighted in yellow) of the 

consensus hotspot in the input dataset 
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statistical method, SVMHC [43,44] based on SVM. Com-
bined computational methods that integrate multiple crit-
ical steps of MHC class I antigen processing pathways,
such as proteasome cleavage, TAP (transporter associated
protein) transport, and MHC class I binding, have been
recently proposed as a supporting methodology for pre-
diction of high probability targets for therapeutic peptides
and vaccines [45]. Several combined computational mod-
els of antigen processing and presentation have been
reported, such as NetCTL [46] and MHC-PATHWAY [47].
A major weakness of these methods is that they only rep-
resent the major antigen processing pathways; alternative
pathways for class I peptide loading exist [48]. For exam-
ple, proteasomal cleavage is a statistical event with prefer-
ence for, but not exclusive to, certain cleavage sites. In
addition, TAP binding is not the only route for peptide
loading into the endoplasmic reticulum (ER); some pep-
tides (signal peptides, membrane peptides, and some viral
peptides) are able to access the ER in a TAP-independent
manner [49]. Moreover, TAP can transport peptides
longer than the optimal HLA-binding length, with endo-
proteases trimming the peptide to their optimal size in the
ER. Taken together, these observations suggest that a sim-
ple sequential combination of prediction systems is not
adequate. Both relevance and adequacy of such combined
systems should be taken with caution. These concerns
have been addressed in NetCTL where user can provide
the numerical weight for each of the steps in antigen
processing and presentation pathway.

Hotspot Hunter is different from other online servers in
several aspects. First, the prediction engine combines the
strengths of the ANN and SVM methods for better and
more robust prediction performance; second, it presents
users with predicted immunological hotspots, which are
regions of high concentration of predicted promiscuous
HLA binding peptides; third, it is suitable for systematic
studies of a large set of pathogen proteomes as it can con-
currently analyze multiple sequences and present a map
providing a global view of their localizations in the pro-
teome, which is the main novelty of the system; and
finally, the system provides a utility for selecting candi-
date experimental targets based on antigenic diversity
analysis. Therefore, Hotspot Hunter is a new generation
computational tool aiding in epitope-based vaccine
design. A customized version of Hotspot Hunter has been
integrated into some of our in-house specialized data-
bases, such as the Tumor Antigen Database http://
research.i2r.a-star.edu.sg/Templar/DB/cancer_antigen/
and CandiVF – Candida albicans Virulence Factor Database
[50], for prediction of T-cell epitope hotspots.
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