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Abstract In 1984, G. Robin proved that the Riemann hypothesis is true if and
only if the Robin inequality σ(n) < eγ n log log n holds for every integer n > 5040,
where σ(n) is the sum of divisors function, and γ is the Euler–Mascheroni constant.
We exhibit a broad class of subsets S of the natural numbers such that the Robin
inequality holds for all but finitely many n ∈ S. As a special case, we determine the
finitely many numbers of the form n = a2 +b2 that do not satisfy the Robin inequality.
In fact, we prove our assertions with the Nicolas inequality n/ϕ(n) < eγ log log n;
since σ(n)/n < n/ϕ(n) for n > 1 our results for the Robin inequality follow at once.
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304 W. D. Banks et al.

1 Introduction

Let ϕ(n) denote the Euler function. In 1903 Landau (see [4, pp. 217–219]) showed
that

lim
n→∞

n

ϕ(n) log log n
= eγ , (1)

where γ is the Euler–Mascheroni constant. Eighty years later, in a highly interesting
work, Nicolas [5] proved that the inequality

n

ϕ(n)
> eγ log log n

holds for infinitely many natural numbers n. Moreover, if Nk denotes the product of
the first k primes, he proved that

Nk

ϕ(Nk)
> eγ log log Nk

holds for every k � 1 on the Riemann hypothesis (RH). Assuming RH is false, he also
showed there are both infinitely many k for which this inequality holds and infinitely
many k for which it does not hold. To acknowledge the many contributions of Nicolas
to this subject, we denote by N the set of numbers n ∈ N that satisfy the Nicolas
inequality:

n

ϕ(n)
< eγ log log n. (2)

The principal aim of this paper is to exhibit a broad class of infinite subsets S ⊂ N

such that this inequality holds for all but finitely many n ∈ S. This class includes a
set that contains all natural numbers which can be expressed as a sum of two squares.

Let σ(n) be the sum of divisors function. The analogue of (1) for this function was
obtained by Gronwall [2], who proved that

lim
n→∞

σ(n)

n log log n
= eγ .

Robin [7] showed that if RH is true, then the Robin inequality:

σ(n)

n
< eγ log log n (3)

holds for every integer n > 5040, whereas if RH is false, then this inequality fails for
infinitely many n. We denote by R the set of numbers n ∈ N that satisfy (3). In view
of the elementary inequality

σ(n)

n
<

n

ϕ(n)
(n > 1),
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The Nicolas and Robin inequalities 305

it is clear that N ⊂ R. Thus, for the class of subsets S ⊂ N considered in the present
paper, the Robin inequality holds for all but finitely many n ∈ S.

Our work was originally inspired by a recent paper of Choie et al. [1], which
establishes the inclusion in R of various infinite subsets of the natural numbers N.
In particular, in [1] it is shown that R contains every square-free number n > 30,
every odd integer n > 9, every powerful number n > 36, and every integer n > 1
not divisible by the fifth power of some prime. As a consequence it follows that the
RH holds iff the Robin inequality holds for all natural numbers n divisible by the fifth
power of some prime. Note that this criterion does not have the restriction n � 5041.
Another “5041-free” criterion was given earlier by Lagarias [3], who showed that RH
is true iff

σ(n) � Hn + eHn log Hn,

where

Hn =
∑

j�n

1

j
(n � 1).

To state our results more precisely, let P denote the set of prime numbers, and for
any subset A ⊂ P, put

πA(x) = # {p � x : p ∈ A} .

Let P be an arbitrary (fixed) subset of P such that

δ = lim
x→∞

πP (x)

π(x)
< 1 and δ = lim

x→∞
πP (x)

π(x)
> 0, (4)

where π(x) = #{p � x} as usual. Let Q denote the complementary set of primes (i.e.,
Q = P\P), and note that

lim
x→∞

πQ(x)

π(x)
= 1 − δ < 1 and lim

x→∞
πQ(x)

π(x)
= 1 − δ > 0. (5)

In this paper, we work with the set S = S(P) defined by

S =
{

n ∈ N : if p ∈ Q and p | n, then p2 | n
}

. (6)

Our main result is the following:

Theorem 1 The set N contains all but finitely many of the numbers in S.

Corollary 1 Of the numbers n which do not satisfy the Nicolas inequality, all but
finitely many are divisible by a prime q ∈ Q such that q2

� n.
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306 W. D. Banks et al.

In particular, for any fixed a, m ∈ N with gcd(a, m) = 1, one can put

P = {p ∈ P : p �≡ a (mod m)}

and apply Corollary 1 to deduce the following:

Corollary 2 Of the numbers n which do not satisfy the Nicolas inequality, all but
finitely many are divisible by a prime q ≡ a (mod m) such that q2

� n.

In Sect. 3 we examine more closely the special case

P = {p ∈ P : p ≡ 1 (mod 4)} ∪ {2}.

Note that the corresponding set S contains all natural numbers of the form n =
a2 + b2 (since, by a theorem of Fermat, every prime q ≡ 3 (mod 4) appears with
even multiplicity in the prime factorization of n if and only if n can be written as a
sum of two squares). Using effective bounds from [6] on the number of primes in
arithmetic progressions modulo 4, we are able to determine the set S \ N completely,
leading to:

Theorem 2 The set S\N contains precisely 347 natural numbers. In particular, there
are precisely 246 numbers which can be expressed as a sum of two squares and such
that the Nicolas inequality (2) does not hold, the largest of which is the number
52509581344222812810.

As an application, we obtain the unconditional result that

{1, 2, 4, 5, 8, 9, 10, 16, 18, 20, 36, 72, 180, 360, 720}

is a complete list of those natural numbers which can be expressed as a sum of two
squares and such that the Robin inequality (3) does not hold; this result is consistent
with the truth of the Riemann Hypothesis.

Results like those of Theorem 2 can be established for certain quadratic forms
other than a2 + b2. For example, using similar techniques one finds that there are
precisely 261 numbers that can be expressed in the form n = a2 + 3b2 and for
which the Nicolas inequality (2) does not hold, the largest of which is the number
397999936131188090700.

Throughout the paper, any implied constants in the symbols O , �, 	 and 
 depend
(at most) on the set P and are absolute otherwise. We recall that for positive functions
f, g the notations f = O(g), f � g and g 	 f are all equivalent to the assertion
that f � cg for some constant c > 0, and the notation f 
 g means that f � g and
g � f .
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The Nicolas and Robin inequalities 307

2 Proof of Theorem 1

For every natural number n we put

F(n) = n

ϕ(n)
=

∏

p | n

p

p − 1
.

Note that

F(n) = F(κ(n)) and ω(n) = ω(κ(n)), (7)

where ω(n) is the number of distinct prime divisors of n, and κ(n) is the square-free
kernel of n:

κ(n) =
∏

p | n

p.

Let

N ◦ = N \ N = {
n ∈ N : F(n) � eγ log log n

}
,

and for every integer k � 0, let

Vk = {n ∈ N : ω(n) � k} and Wk = S ∩ N ◦ ∩ Vk .

Since V0 = N, Theorem 1 is the assertion that W0 = S ∩ N ◦ is a finite set. In view
of the next lemma, it suffices to show that Wk = ∅ for some k.

Lemma 1 For every k � 0, W0\Wk is a finite set.

Since ω(n) < k and F(n) � eγ log log n for all n ∈ W0\Wk , Lemma 1 is an
immediate consequence of the following:

Lemma 2 For every constant K > 0, there are at most finitely many natural numbers
n such that ω(n) � K and F(n) � eγ log log n.

Proof If p1, p2, . . . is the sequence of consecutive prime numbers, then for any such
number n we have

∏

j�K

p j

p j − 1
�

∏

p | n

p

p − 1
= F(n) � eγ log log n;

this shows that n is bounded by a constant which depends only on K . 
�
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308 W. D. Banks et al.

For every natural number n, let

s(n) =
( ∏

p | n
p∈P

p

)( ∏

q |n
q∈Q

q2
)

,

and put

Y = {n ∈ N : n = s(n)} .

Note that Y ⊂ S. The following statements are elementary:

(C1) if n = pm with p ∈ P and p � m, then n ∈ Y if and only if m ∈ Y;
(C2) if n = q2m with q ∈ Q and q � m, then n ∈ Y if and only if m ∈ Y;
(C3) s(n) ∈ S for all n;
(C4) κ(s(n)) = κ(n) for all n;
(C5) s(n) | n for all n ∈ S; in particular, s(n) � n.

Lemma 3 If Wk �= ∅ and mk is the least integer in Wk , then mk ∈ Y .

Proof Clearly, s(mk) ∈ S by (C3). Combining (C4) with (7) one sees that

F(s(n)) = F(n) and ω(s(n)) = ω(n) (n ∈ N).

Then, using (C5) it follows that

F(s(mk)) = F(mk) � eγ log log mk � eγ log log s(mk),

which shows that s(mk) ∈ N ◦. Finally, s(mk) ∈ Vk since

ω(s(mk)) = ω(mk) � k.

Thus, we have shown that s(mk) ∈ S ∩ N ◦ ∩ Vk = Wk . Since mk is the least integer
in Wk , the equality mk = s(mk) follows from (C5), hence mk ∈ Y . 
�

Next, for every integer k � 0 let

Zk = {n ∈ N : �(n) = k} and Tk = N ◦ ∩ Y ∩ Zk .

Here, �(n) is the number of prime divisors of n, counted with multiplicity. Using
Lemma 3 one sees that if W	 �= ∅ and m	 is the least integer in W	, then m	 ∈ Tk for
some k � 	; in particular,

⋃

k�	

Tk = ∅ �⇒ W	 = ∅.
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The Nicolas and Robin inequalities 309

As we mentioned earlier, in order to prove Theorem 1 it suffices to show that W	 = ∅

for some 	, hence it is enough to show that Tk �= ∅ for at most finitely many integers
k � 0.

When Tk �= ∅ we shall use the following notation. Let nk denote the least integer in
Tk . Let p̂k be the largest prime p ∈ P that divides nk , and put p̂k = 1 if no such prime
exists. Similarly, let q̂k be the largest prime q ∈ Q that divides nk , and set q̂k = 1 if
no such prime exists. Finally, let

P+
k = max{ p̂k, q̂k} and P−

k = min{ p̂k, q̂k}. (8)

Note that P+
k is the largest prime factor of nk .

Lemma 4 Suppose Tk �= ∅:
(i) if p ∈ P with p < p̂k , then p | nk;

(ii) if q ∈ Q with q < q̂k , then q | nk.

Proof Suppose on the contrary that p ∈ P with p < p̂k and p � nk . Since nk = s(nk)

we can write nk = p̂km with p̂k � m. Put n∗ = pm. Since nk ∈ N ◦, F(p) > F( p̂k),
and n∗ < nk , it follows that

F(n∗) = F(p) F(m) > F( p̂k) F(m) = F(nk) � eγ log log nk > eγ log log n∗,

where we have used the fact that F is multiplicative; this shows that n∗ ∈ N ◦. As
nk ∈ Y , (C1) implies that n∗ ∈ Y . Finally, since � is (completely) additive, we see
that

�(n∗) = �(m) + 1 = �(nk) = k,

which shows that n∗ ∈ Zk , and thus n∗ ∈ N ◦ ∩ Y ∩ Zk = Tk . But this is impossible
since n∗ < nk (the least number in Tk), and this contradiction completes our proof of
(i). Using (C2), the proof of (ii) is similar; we omit the details. 
�
Lemma 5 Suppose that Tk �= ∅ and p̂k < q̂k . Then there is at most one prime p ∈ P
such that p̂k < p < q̂k .

Proof Suppose on the contrary that there are two primes p1, p2 ∈ P such that p̂k <

p1 < p2 < q̂k . Since nk = s(nk) we can write nk = q̂ 2
k m, and it is clear that gcd(m,

p1 p2q̂k) = 1. Put n∗ = p1 p2m. Since nk ∈ N ◦, F(p1 p2) > F(q̂ 2
k ), and n∗ < nk ,

we have

F(n∗) = F(p1 p2) F(m) > F(q̂ 2
k ) F(m) = F(nk) � eγ log log nk > eγ log log n∗,

which shows that n∗ ∈ N ◦. As nk ∈ Y , (C1) implies that n∗ ∈ Y . Finally, since

�(n∗) = �(m) + 2 = �(nk) = k,

we see that n∗ ∈ Zk , and thus n∗ ∈ N ◦ ∩ Y ∩ Zk = Tk . But this is impossible since
n∗ < nk , and this contradiction implies the result. 
�
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310 W. D. Banks et al.

Lemma 6 Suppose that Tk �= ∅ and p̂k > q̂k . Let p be the largest prime in P that
is less than p̂k , and let q be the smallest prime in Q that is greater than q̂k . Then
q > p/2.

Proof Suppose on the contrary that q � p/2. Since nk = s(nk) and p | nk (by
Lemma 4) but q � nk (since q > q̂k), we can write nk = p p̂km, where gcd(m, p p̂kq) =
1. Put n∗ = q2m. As in the proofs of Lemmas 4 and 5, we see that n∗ ∈ Y ∩Zk . Since
p < p̂k and q � p/2, we have

F(p p̂k) = p p̂k

(p − 1)( p̂k − 1)
<

p2

(p − 1)2 <
q

q − 1
= F(q2);

therefore,

F(n∗) = F(q2) F(m) > F(p p̂k) F(m) = F(nk) � eγ log log nk > eγ log log n∗,

which shows that n∗ ∈ N ◦. Thus, n∗ ∈ N ◦ ∩ Y ∩ Zk = Tk . But this is impossible
since n∗ < nk , and this contradiction implies the result. 
�

As mentioned above, in order to prove Theorem 1 it suffices to show that Tk �= ∅

for at most finitely many integers k � 0. Arguing by contradiction, we shall assume
that the set

K = {k � 0 : Tk �= ∅}

has infinitely many elements.
Since �(nk) = k, we see that nk → ∞ as k → ∞ with k ∈ K; using Lemma 2 it

follows that ω(nk) → ∞ as well, and therefore P+
k → ∞.

We claim that

p̂k 
 q̂k (k ∈ K), (9)

which by (8) is equivalent to

P+
k 
 P−

k (k ∈ K). (10)

To see this, we express K as a disjoint union A ∪ B, where A [resp. B] is the set of
numbers k ∈ K for which p̂k < q̂k [resp. p̂k > q̂k]. To prove (9) it suffices to show:

(D1) p̂k 	 q̂k for all k ∈ A;
(D2) p̂k � q̂k for all k ∈ B.

We use the following result, which is an easy consequence of the prime number
theorem:

Lemma 7 Let cP = δ / δ and cQ = (
1 − δ

)
/
(
1 − δ

)
. For every ε > 0 there is a

number x0(ε) such that for all x > x0(ε):
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The Nicolas and Robin inequalities 311

(i) if p is the smallest prime in P greater than x, then p � (cP + ε) x;
(ii) if q is the smallest prime in Q greater than x, then q �

(
cQ + ε

)
x;

(iii) if p is the largest prime in P less than x, then p �
(

c−1
P − ε

)
x;

(iv) if q is the largest prime in Q less than x, then q �
(

c−1
Q − ε

)
x.

To prove (D1) we can assume that A is an infinite set. Let k ∈ A, so that p̂k < q̂k .
Since q̂k = P+

k → ∞ as k → ∞ with k ∈ A, the assertion (D1) then follows from
Lemmas 5 and 7.

To prove (D2) we can assume that B is an infinite set. Let k ∈ B, so that p̂k > q̂k .
Let p, q be defined as in Lemma 6. Since p̂k = P+

k → ∞ as k → ∞ with k ∈ B, on
combining Lemmas 6 and 7 it follows that

p̂k � p � q � q̂k,

which proves (D2) and completes our Proof of (9).
Next, for every n ∈ N let

ωP (n) = # {p ∈ P : p | n} and ωQ(n) = # {q ∈ Q : q | n} .

We claim that

ωP (nk) 
 ωQ(nk) (k ∈ K). (11)

Indeed, by Lemma 4 it follows that ωP (nk) = πP ( p̂k) and ωQ(nk) = πQ(q̂k).
Therefore, using the prime number theorem together with (4), (5) and (9) we have

ωP (nk) = πP ( p̂k) 
 p̂k

log p̂k

 q̂k

log q̂k

 πQ(q̂k) = ωQ(nk),

which proves (11).
Finally, we need the following relation:

log κ(nk) 
 ω(nk) log ω(nk) (k ∈ K). (12)

To prove this, observe that Definition (8) and Lemma 4 together imply

∏

p�P−
k

p | κ(nk) and κ(nk) |
∏

p�P+
k

p.

Consequently,

∑

p�P−
k

log p � log κ(nk) �
∑

p�P+
k

log p,
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312 W. D. Banks et al.

and also

π(P−
k ) � ω(nk) � π(P+

k ).

By the prime number theorem, for either choice of the sign ± we have

∑

p�P±
k

log p ∼ P±
k and π(P±

k ) ∼ P±
k

log P±
k

(k → ∞, k ∈ K),

therefore in view of (10) we see that

log κ(nk) 
 P+
k and ω(nk) 
 P+

k

log P+
k

,

and (12) follows immediately.
Now we come to the heart of the argument. To complete the proof of Theorem 1,

we seek a contradiction to our assumption that K is an infinite set. For this, it is enough
to prove both of the following statements with a suitably chosen real number ε > 0:

(E1) the inequality nk � κ(nk)
1+ε holds for at most finitely many k ∈ K;

(E2) the inequality nk > κ(nk)
1+ε holds for at most finitely many k ∈ K.

In view of (11) and (12), there is a constant C > 1 such that the inequalities

ωP (nk) � (C − 1) ωQ(nk) (13)

and

log κ(nk) � C ω(nk) log ω(nk) (14)

both hold if k is sufficiently large. Let C be fixed, and put ε = C−3.
To prove (E1), we suppose on the contrary that nk � κ(nk)

1+ε holds for infinitely
many k ∈ K. Let k be large, and put

r = ωP (nk) = πP ( p̂k) and s = ωQ(nk) = πQ(q̂k)

By what we have already seen it is clear that min{r, s} → ∞ as k → ∞ with k ∈ K,
thus by (13) we have

r � (C − 1)s (15)

if k is large enough. By Lemma 4 and the fact that nk ∈ Y , it follows that

nk =
( ∏

p�p̂k
p∈P

p

)( ∏

q�q̂k
q∈Q

q2
)

and κ(nk) =
( ∏

p�p̂k
p∈P

p

)( ∏

q�q̂k
q∈Q

q

)
.
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The Nicolas and Robin inequalities 313

Hence, our assumption that nk � κ(nk)
1+ε implies that

κ(nk) �
(

nk

κ(nk)

)1/ε

=
( ∏

q�q̂k
q∈Q

q

)1/ε

. (16)

If p1, p2, . . . is the sequence of consecutive prime numbers, then by the prime number
theorem (and recalling our choice of ε) we derive that

log κ(nk) � C3
∑

q�q̂k
q∈Q

log q � C3
∑

p�ps

log p ∼ C3 ps ∼ C3s log s

as k → ∞ with k ∈ K. On the other hand, using (14), (15) and the fact that ω(nk) =
r + s, it follows that

log κ(nk) � C(r + s) log(r + s) � C2s log(Cs) ∼ C2s log s.

Since C3 > C2, these two inequalities for log κ(nk) lead to a contradiction once k is
sufficiently large, and this completes the proof of (E1).

To prove (E2) we use some ideas from Choie et al. [1]. Suppose that nk > κ(nk)
1+ε,

and put t = ω(nk). We claim that either

∑

p�pt

log p < (1 + ε)−1/2 pt , (17)

or

pt � exp (2/ log(1 + ε)) . (18)

Assuming the claim, it is easy to see that ω(nk) is bounded above by a constant K
that depends only on ε. By Lemma 2, nk can take only finitely many distinct values,
which implies (E2).

To prove the claim, assume that (17) fails:

log(p1 · · · pt ) =
∑

p�pt

log p � (1 + ε)−1/2 pt .

Thanks to Rosser and Schoenfeld [8] it is known that

∏

p�x

p

p − 1
� eγ

(
log x + 1

log x

)
(x > 1).
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314 W. D. Banks et al.

Therefore, taking x = pt and noting that κ(nk) � p1 · · · pt , we derive that

eγ

(
log pt + 1

log pt

)
�

t∏

j=1

p j

p j − 1
� nk

ϕ(nk)
� eγ log log nk

> eγ log ((1 + ε) log κ(nk))

� eγ log
(
(1 + ε) log(p1 · · · pt )

)

� eγ log
(
(1 + ε)1/2 pt

)
= eγ

(
log pt + 0.5 log(1 + ε)

) ;

that is,

1

log pt
� 0.5 log(1 + ε),

which is equivalent to (18). This proves the claim and completes our proof of
Theorem 1.

3 Proof of Theorem 2

We continue to use the notation of the previous section, but we focus on the special
case that

P = {p ∈ P : p ≡ 1 (mod 4)} ∪ {2},
Q = {q ∈ P : q ≡ 3 (mod 4)} .

Note that the corresponding set S contains every natural number that can be expressed
as a sum of two squares. As before, we write

Tk = {
n ∈ N : F(n) � eγ log log n, n = s(n), and �(n) = k

}

and put

K = {k � 0 : Tk �= ∅}.

Lemma 8 If k ∈ K, then P−
k < 50000.

Proof For every real number x � 10, let

• gP (x) = the smallest prime in P greater than x ;
• gQ(x) = the smallest prime in Q greater than x ;
• 	P (x) = the largest prime in P less than x ;
• 	Q(x) = the largest prime in Q less than x .
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The Nicolas and Robin inequalities 315

Also, put

ϑP (x) =
∑

p�x
p∈P

log p and ϑQ(x) =
∑

q�x
q∈Q

log q.

Using the explicit bounds of Theorems 1 and 2 of Ramaré and Rumely [6], we see
that the inequalities

0.49 x < ϑP (x) < 0.51 x and 0.49 x < ϑQ(x) < 0.51 x (19)

hold for all x � 45000 (note that ϑP (x) = log 2 + θ(x; 4, 1) and ϑQ(x) = θ(x; 4, 3)

in the notation of [6]). Consequently, for any x � 50000 we have

49
51 x < 	P (x) < x < gP (x) < 51

49 x

and

49
51 x < 	Q(x) < x < gQ(x) < 51

49 x .

Now suppose that P−
k � 50000. Using Lemma 5 and the preceding bounds we

have

q̂k < gP (gP ( p̂k)) <
(

51
49

)2
p̂k .

On the other hand, by Lemma 6 we have

51
49 q̂k > gQ(q̂k) > 1

2 	P ( p̂k) > 49
102 p̂k .

Hence, it follows that

0.92 q̂k < p̂k < 2.2 q̂k . (20)

By Lemma 4 it is clear that

log κ(nk) =
∑

p�p̂k
p∈P

log p +
∑

q�q̂k
q∈Q

log q = ϑP ( p̂k) + ϑQ(q̂k).

On the other hand, arguing as in the proof of Theorem 1, it follows from (16) that

log κ(nk) � ε−1ϑQ(q̂k)

if ε > 0 is fixed and nk � κ(nk)
1+ε. Combining the two preceding results with (19),

we see that

0.51 ( p̂k + q̂k) � ϑP ( p̂k) + ϑQ(q̂k) � ε−1ϑQ(q̂k) � 0.49 ε−1q̂k
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since P−
k � 50000; taking into account (20), we further have

0.51 (1 + 2.2) q̂k � 0.51 ( p̂k + q̂k) � 0.49 ε−1q̂k,

which implies that ε � 0.3002. Thus, for the smaller value ε = 0.3, we see that the
condition nk � κ(nk)

1.3 implies P−
k < 50000.

On the other hand, if nk > κ(nk)
1.3, we put t = ω(nk) as in the proof of Theorem 1.

Since ε = 0.3, we derive from (17) and (18) that either

ϑ(pt ) =
∑

p�pt

log p < (1.3)−1/2 pt < 0.88 pt , (21)

or

pt � exp(2/ log 1.3) < 2045.

Using again Theorems 1 and 2 of Ramaré and Rumely [6] (see also [8]), it is easy to
see that the inequality (21) implies pt < 300, hence the inequality pt < 2045 holds
in both cases. It follows that t < 310, and therefore,

min{πP ( p̂k), πQ(q̂k)} = min{ωP (nk), ωQ(nk)} � ω(nk) = t < 310,

which implies that P−
k < 5000. This completes the proof. 
�

Corollary 3 If k ∈ K, then k < 10000.

Proof For any k ∈ K we have

k = �(nk) = ωP (nk) + 2 ωQ(nk) = πP ( p̂k) + 2 πQ(q̂k).

If P−
k = p̂k (i.e., p̂k < q̂k), then by Lemmas 5 and 8 it follows that

k � max
p<50000

{
πP (p) + 2 πQ (gP (gP (p)))

}

� πP (50000) + 2 πQ (gP (gP (50000))) = 7718.

If P−
k = q̂k (i.e., q̂k < p̂k), then by Lemmas 6 and 8 it follows that

k � max
q<50000

max
p∈P

	P (p)<2gQ(q)

{
πP (p) + 2 πQ(q)

}

= max
q<50000

max
p∈P

	P (p)<2gQ(q)

{
1 + πP (	P (p)) + 2 πQ(q)

}

� max
q<50000

{
1 + πP (2 gQ(q)) + 2 πQ(q)

}

� 1 + πP (2 gQ(50000)) + 2 πQ(50000) = 9951.

The result follows. 
�
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Now let p1, p2, . . . be the sequence of consecutive primes in P , and let q1, q2, . . .

be the consecutive primes in Q. For any integers r, s � 0, let

Nr,s =
( r∏

i=1

pi

)( s∏

j=1

q 2
j

)
.

It is easy to see that Nr,s ∈ Y for all r, s � 0, and for every k ∈ K one has

nk = Nr,s, p̂k = pr , q̂k = qs and k = r + 2s,

where r = ωP (nk) and s = ωQ(nk). By a straightforward computation, one verifies
the following:

Lemma 9 If r, s � 0, then Nr,s ∈ N ◦ if and only if the pair (r, s) lies in the set

X = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (4, 1),

(3, 2), (2, 3), (4, 2), (3, 3), (5, 2), (4, 3), (3, 4), (5, 3), (4, 4), (6, 3),

(5, 4), (4, 5), (7, 3), (6, 4), (5, 5), (7, 4), (6, 5), (7, 5), (8, 5)} .

We remark that, in view of Corollary 3, it suffices to check the condition Nr,s ∈ N ◦
only for those pairs (r, s) with r + 2s < 10000.

Corollary 4 If k ∈ K, then k � 18.

Corollary 5 If n ∈ S∩N ◦, r = ωP (n) and s = ωQ(n), then (r, s) ∈ X . In particular,
ω(n) � 13.

Proof Since

F(Nr,s) =
( r∏

i=1

pi

pi − 1

)( s∏

j=1

q j

q j − 1

)
�

( ∏

p | n
p∈P

p

p − 1

)( ∏

q | n
q∈Q

q

q − 1

)
= F(n)

and

n � s(n) =
( ∏

p | n
p∈P

p

)( ∏

q | n
q∈Q

q2
)

�
( r∏

i=1

pi

)( s∏

j=1

qq 2
j

)
= Nr,s,

we have

F(Nr,s) � F(n) � eγ log log n � eγ log log Nr,s,

which shows that Nr,s ∈ N ◦. 
�
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We now turn to a description of our method for generating the elements of S \N =
S ∩ N ◦. For any given n ∈ S ∩ N ◦ with r = ωP (n) and s = ωQ(n), we can write

s(n) = p1 · · · pr q2
1 · · · q2

s ,

where p1 < · · · < pr are primes in P and q1 < · · · < qs are primes in Q. For fixed
i = 1, . . . , r , let γi be the largest non-negative integer such that the number

( i−1∏

	=1

p	

)( r∏

	=i

p	+γi

)( s∏

j=1

q 2
j

)

lies in N ◦, which exist by Lemma 2. Using an argument similar to that in the proof
of Lemma 4, one can deduce that

pi � pi � pi+γi
(i = 1, . . . , r). (22)

Similarly, for fixed j = 1, . . . , s, let δ j be the largest non-negative integer such that
the number

( r∏

i=1

pi

)( j−1∏

	=1

q
2
	

)( s∏

	= j

q 2
	+δ j

)

lies in N ◦. Then,

q j � q j � q j+γ j
( j = 1, . . . , s). (23)

Therefore, for fixed (r, s) ∈ X , if n ∈ S ∩ N ◦ with r = ωP (n) and s = ωQ(n), then
the number s(n) must lie in the finite set Ar,s of integers of the form

m = p1 · · · pr q2
1 · · · q2

s , (24)

where p1 < · · · < pr are primes in P , q1 < · · · < qs are primes in Q, the primes pi

and q j satisfy the bounds (22) and (23), and m ∈ N ◦. The set Ar,s can be explicitly
determined by a numerical computation, and we obtain a finite list of “admissible”
values for the quantity s(n).

To determine explicitly all of the numbers n ∈ S ∩ N ◦ with r = ωP (n) and
s = ωQ(n), for every m ∈ Ar,s we need to find all such numbers for which s(n) = m.
To do this, factor m as in (24). For fixed i = 1, . . . , r , let αi be the largest integer such
that the number mpαi −1

i lies in N ◦. Similarly, for fixed j = 1, . . . , s, let β j be the

largest integer such that the number mq
β j −1
j lies in N ◦. Put

M = m · pα1−1
1 · · · pαr −1

r qβ1−1
1 · · · qβs−1

s .
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Then, it is easy to see that m | n and n | M for any n ∈ S ∩ N ◦ such that s(n) = m.
Hence, n can take only finitely many values which can be determined explicitly for
each m ∈ Ar,s .

For example, taking r = s = 2 we find that

{4410, 8820, 10890, 13230, 17640, 21780, 22050, 26460, 30870, 35280, 39690,

44100, 52920, 61740, 66150, 70560, 79380, 88200, 92610, 105840, 110250}

is a complete list of the numbers n ∈ S \ N with ωP (n) = ωQ(n) = 2. Examining
the lists generated as (r, s) varies over the pairs in X , we are lead to the statement of
Theorem 2.

4 Evaluation of lim
n∈S

n
ϕ(n) log log n and lim

n∈S
σ(n)

n log log n

We conclude the paper by giving two propositions and two corollaries that yield the
analogue of the work of Landau [4] and Gronwall [2] for any set S of the form (6)
and for the set of natural numbers equal to a sum of two squares. In fact, Corollary 6
shows that Theorem 1 is nontrivial in the sense that F(n)/ log log n cannot be bounded
away from eγ by any positive constant for all large n ∈ S. We will use the notation
f (n) = o(g(n)) to mean that lim

n→∞ f (n)/g(n) = 0.

Proposition 1 Let {an} be an infinite sequence of positive integers such that if we
write an = ∏

p pv(p,n) we have:
(i) κ(an) = ∏

p�n p (i.e., v(p, n) = 0 ⇐⇒ p > n);

(ii) an = exp(n1+o(1));
(iii) lim

n→∞ v(p, n) = ∞ for each p.

Then,

lim
n→∞

σ(an)

an log log an
= eγ .

Proof For all n � 1, let

bn =
∏

p�n

p and cn = σ(an)

an

ϕ(bn)

bn
,

and observe that (i) implies

cn =
( ∏

p�n

pv(p,n)+1 − 1

pv(p,n)(p − 1)

)( ∏

p�n

p − 1

p

)
=

∏

p�n

(
1 − 1

pv(p,n)+1

)
.
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Since v(p, n) + 1 � 2 for every prime p � n, we have for any m � n:

1 � cn >
∏

p�m

(
1 − 1

pv(p,n)+1

) ∏

p>m

(
1 − 1

p2

)
.

Using (iii) we have for every fixed integer m:

1 � lim
n→∞ cn � lim

n→∞
cn �

∏

p>m

(
1 − 1

p2

)
.

The product on the right tends to one as m → ∞, hence limn→∞ cn = 1; therefore,

lim
n→∞

σ(an)

an log n
= lim

n→∞
bn

ϕ(bn) log n
.

Our assumption (ii) implies that log log an = (1 + o(1)) log n, and using Mertens’
theorem (see, e.g., [8]) we have

ϕ(bn)

bn
=

∏

p�n

(
1 − 1

p

)
= (1 + o(1))

e−γ

log n
,

and the result follows. 
�
Using similar ideas (and an easier argument) one can obtain the following analogue

of Proposition 1 for the Euler totient function:

Proposition 2 Let {an} be an infinite sequence of positive integers such that:
(i) κ(an) = ∏

p�n p;

(ii) an = exp(n1+o(1)).

Then,

lim
n→∞

an

ϕ(an) log log an
= eγ .

Corollary 6 For any set S defined by (6), we have

lim
n∈S

σ(n)

n log log n
= lim

n∈S
n

ϕ(n) log log n
= eγ .

Proof Since

lim
n→∞

σ(n)

n log log n
= lim

n→∞
n

ϕ(n) log log n
= eγ

123



The Nicolas and Robin inequalities 321

by [2] and [4], respectively, it suffices to show that there is a sequence {an} in S such
that

lim
n→∞

σ(an)

an log log an
= lim

n→∞
an

ϕ(an) log log an
= eγ .

Let a1 = 1, and for every integer n � 2, let

bn =
∏

p�n

p, dn =
⌊

n(log n)−1/2
⌋

and an = bdn
n .

It is easy to see that dn � 2 for n � 2, dn = no(1), and dn tends to infinity with
n. Clearly, an ∈ S for all n � 1, and by the Prime Number Theorem in the form∑

p�x log p = x(1 + o(1)) as x → ∞ we see that

log an = dn log bn = no(1)
∑

p�n

log p = n1+o(1) (n → ∞).

The sequence {an} therefore satisfies the hypotheses of Propositions 1 and 2, and the
result follows. 
�
Corollary 7 We have

lim
n=a2+b2

σ(n)

n log log n
= lim

n=a2+b2

n

ϕ(n) log log n
= eγ .

Proof Defining an for all n � 1 as in the proof of Corollary 6, it is easy to see that the
sequence {a2

n} satisfies the hypotheses of Propositions 1 and 2; it follows that

lim
n=a2

σ(n)

n log log n
= lim

n=a2

n

ϕ(n) log log n
= eγ ,

and this implies the stated result. 
�

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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