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Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM) and code-division
multiple access (CDMA), have high peak-to-average power ratios (PARs). A signal with a high PAR not only is vulnerable in the
presence of nonlinear components such as power amplifiers (PAs), but also leads to low transmission power efficiency. Selected
mapping (SLM) and clipping are well-known PAR reduction techniques. We propose to combine SLMwith threshold clipping and
digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the
effectiveness of the proposed approach.
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1. INTRODUCTION

Modern transmission formats, such as orthogonal frequen-
cy-division multiplexing (OFDM) and code-division mul-
tiple access (CDMA), have gained tremendous popularity
thanks to their high spectral efficiency. However, a drawback
is the low power efficiency of these systems. OFDM and
CDMA signals suffer from high peak-to-average power ra-
tios (PARs), making them susceptible to nonlinearities that
are inherent in the RF/microwave power amplifiers (PAs). To
avoid nonlinear distortions, the average operating power of
the PA has to be backed-off significantly, giving rise to low
DC to RF conversion efficiency.

PA efficiency enhancement is a critical issue for wireless
communication applications. In a typical cellular base sta-
tion, the RF PA and its associated cooling equipment are re-
sponsible for approximately 50% of the overall DC power
consumption and 60% of its physical size [1]. On the other
hand, it is reported that in today’s cellular phones, over 90%
of the power used to transmit the signal is wasted in the form
of heat that stays inside the phone [2]. The topic of power
efficiency has attracted much attention in recent years.

There are two key factors that contribute to the low PA
efficiency in these applications: (i) high PAR value of the sig-
nal, and (ii) nonlinearity of the PA. Many techniques have
been proposed to reduce the PAR, such as deliberate clip-

ping, complementary coding, selected mapping (SLM), and
so forth [3–5]. Among the many PA linearization techniques,
adaptive digital baseband predistortion is the most cost-
effective [6]. To the best of our knowledge, few references
except for [7, 8] have discussed joint PAR reduction and PA
linearization. In [7], the authors investigated the BER per-
formance degradation due to inaccuracy of the side infor-
mation of the PAR reduction in a multicarrier CDMA sys-
tem, but gave no details of PA linearization. In [8], a com-
mercial chip that implements deliberate clipping was used
as the PAR reduction preprocessor and a lookup table was
used for PA linearization. In this paper, we will (i) delineate
the relationship between PAR reduction and PA lineariza-
tion with respect to their contributions to power efficiency
improvements; (ii) propose a modified SLM with threshold-
ing and clipping technique and present a closed-form expres-
sion for the distribution of the PAR of the resulting signal;
(iii) quantify the power efficiency enhancement in terms of
increase in the average transmit power while keeping the ad-
jacent channel power ratio (ACPR) fixed. We will demon-
strate our approach through testbed experiments.

2. POWER EFFICIENCY IMPROVEMENT CONCEPTS

Consider the input-output characteristic of a PA shown in
Figure 1(a). If we denote the baseband PA input by x(t),
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(a) Nonlinear PA with input backoff. PAR1 (dB) =
Pm1 (dB)−Pi1 (dB).
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(b) Ideal linear PA. PAR2 (dB) = Pm2 (dB) − Pi2 (dB).
PAR2 = PAR1. Pm2 > Pm1, Pi2 > Pi1.
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(c) After PAR reduction. PAR3 (dB) = Pm3 (dB)−Pi3 (dB).
PAR3 < PAR2. Pm3 = Pm2, Pi3 > Pi2.
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(d) Allow occasional saturation (clipping). PAR4 (dB) =
Pm4 (dB)−Pi4 (dB). PAR4 = PAR3.Pm4 > Pm3,Pi4 > Pi3.

Figure 1: PA linearization and PAR reduction can improve the PA efficiency by reducing the amount of backoff that is needed. From (a)–(d),
the average input power Pi4 > Pi3 > Pi2 > Pi1.

the baseband PA output by y(t), then Psat is the maximum
output power that the PA is capable of producing, that is,
Psat = maxt |y(t)|2. Denote by Pm the maximum input
power, that is,Pm = maxt|x(t)|2, and byPi the average input
power, that is, Pi = E[|x(t)|2]. The peak-to-average power
ratio (PAR) is a characteristic of the input signal and is de-
fined as PAR(s(t)) = Pm/Pi [11] or PAR (dB) = Pm (dB)−
Pi (dB).

For a given Psat and gain of the PA, the efficiency of the
PA increases with increasing Pi. In Figure 1(a), the PA is lin-
ear up to Pm1, but is nonlinear afterwards. Nonlinearity gen-
erates in-band distortion as well as adjacent channel interfer-
ence. To avoid these detrimental nonlinear effects, the input
signal is often backed-off to the PA’s linear region as shown in
Figure 1(a). The corresponding power efficiency is very low,
often in the range of 10% or much less [9]. With PA lin-
earization, we strive to achieve an ideal linear input-output
characteristic shown in Figure 1(b). The input signal is am-
plified undistorted until Psat is reached. In Figure 1(b), the
average input power is higher than that in Figure 1(a), that

is, Pi2 > Pi1, demonstrating how power efficiency can be
improved via PA linearization. If we can reduce the PAR of
the input signal as well, we arrive at a situation depicted in
Figure 1(c). The peak power is the same as in Figure 1(b),
but thanks to PAR reduction, the average input power is
increased, that is, Pi3 > Pi2, further boosting the efficiency
of the PA. If we drive the PA harder by scaling up the input
so the signal occasionally enters the saturation region of the
PA (see Figure 1(d)), we can achieve even higher efficiency at
the expense of controllable nonlinear distortions.

In this paper, we explain by theoretical analysis and
demonstrate by testbed experiments how the combination
of PAR reduction and PA linearization can significantly im-
prove the transmission power efficiency. PA linearization
usually functions regardless of the input signal format (e.g.,
OFDM versus CDMA), but many PAR reduction algorithms
are developed with a particular type of signal in mind. In this
paper, we will focus on the OFDM signal when we investigate
the PAR reduction method, but the proposed technique can
be modified for other signal formats such as CDMA as well.
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3. PAR REDUCTION

3.1. Threshold on PAR

Denote by {Sl[k]}N−1k=0 the lth block of the frequency-domain
OFDM signal drawn from a known constellation, where N
is the number of subcarriers. For the rest of the paper, we
will drop the block index l for notational simplicity, since
OFDM can be free of interblock interference with proper use
of the cyclic prefix. The corresponding time-domain signal is
s(t) = (1/

√
N)
∑N−1

k=0 S[k]e j2πkt/Ts , 0 ≤ t ≤ Ts, where Ts is the
OFDM symbol period and j = √−1.

The worst possible PAR of an OFDM signal is N (e.g.,
when S[k] is the same for each k). To amplify s(t) absolutely
without any distortion, we need to position the highest pos-
sible peak power at Pm2 in Figure 1(b). Under this arrange-
ment, the average power Pi2 and thus the PA efficiency will
be very low.

In practice, a PA is expected to provide a certain level of
power efficiency, which means that for a given PA and bias-
ing conditions, the average input power Pi has to be above
a certain amount. This also requires the input signal PAR to
be less than a threshold γ0. The concept of PAR thresholding
was also explored in [10] for the partial transmit sequence
technique.

3.2. Review of selectedmapping for OFDM

The complementary cumulative distribution function
(CCDF) of the PAR of the continuous-time s(t) was sug-
gested in [12]

Pr
{
PAR

(
s(t)
)
> γ
} = 1− exp

{

− e−γN
√
π

3
lnN

}

. (1)

Selected mapping (SLM) was first proposed in [5] as a
distortionless technique to reduce the PAR of OFDM sig-
nals. Assume that an i.i.d. phase table {φ(m)[k]}1≤m≤M0≤k≤N−1 is
available at the transmitter and at the receiver. Let us first
rotate the phases of S[k] to obtain S(m)[k] = S[k]e jφ

(m)[k].
From among theM equivalent time-domain representations,
{s(m)(t)}Mm=1, s(m)(t), which has the lowest PAR, is transmit-
ted, that is, PAR(s(m)(t)) = min1≤m≤M PAR(s(m)(t)).

Optimal design of the phase table {φ(m)[k]}1≤m≤M0≤k≤N−1
has been investigated in [13]: the PAR reducing capability
of SLM is maximized when {φ(m)[k]} are i.i.d. satisfying
E[e jφ

(m)[k]] = 0. Under this optimality condition, the time-
domain signals s(m)(t) and s(l)(t) can be shown to be asymp-
totically independent form �= l. Consequently, for a large N ,
we can obtain the CCDF of the SLM-OFDM signal s(m)(t) as
follows:

Pr
{
PAR

(
s(m)(t)

)
> γ
} = [1− a]M , (2)

where a = exp{−e−γN√(π/3) lnN} (cf. (1)).
We make the following remarks regarding the “conven-

tional” SLM described above.

(1) SLM aims at minimizing the PAR per OFDM block
by carrying out all M mappings. Even if the first few
mappings have already managed to reduce the PAR to
be below a certain threshold γ0, the SLM scheme still
continues to seek further reduction of the PAR.

(2) For given N and γ0 values, (2) shows that even after all
Mmappings are tried out, there is still a nonzero prob-
ability that the SLMmethod fails to meet the PAR goal,
that is, the resulting PAR(s(m)(t)) > γ0. When that hap-
pens, s(m)(t) will need to be clipped to meet the peak
power and average power constraints.

(3) For given N and M values and clipping probability
p = Pr{PAR(s(m)(t)) > γ0}, we can find from (2) the
corresponding PAR threshold

γ0 = ln

(

N
√
π

3
lnN

)

− ln

(

ln
1

1− p1/M

)

. (3)

We investigate next a modified SLM technique which
incorporates the above PAR thresholding and clipping con-
siderations.

3.3. SLMwith thresholding and clipping

Our objective here is to apply SLM, but to stop trying as soon
as the PAR threshold γ0 is met, with the constraint that the
number of trials is no more than M (including the original
OFDM signal). Our strategy is “to do only what is necessary”
in order to save computational resources. As mentioned be-
fore, there is always the possibility that even after allM trials,
SLM still fails to meet the PAR goal γ0. In that case, s(m)(t)
is clipped to become x(t), which has maximum amplitude√
Piγ0 (the clipping level). As long as the clipping probability

(2) evaluated at γ0 is small (e.g., 10−3), there will be negligible
amount of spectral regrowth or BER increase.

The step-by-step algorithm for the proposed SLM with
thresholding and clipping (SLMTC) technique is described
in Algorithm 1.

In [14], SLM was proposed to reduce the PAR of the
forward link CDMA signal using random phase and PN
offset mapping. The concept of thresholding and clipping de-
scribed above is not restricted to any specific signal format;
for example, it can be applied to the CDMA system as well.

We note that combining SLM with threshold clipping
is not merely doing both; the SLM algorithm exits if the
predetermined PAR threshold is met. PA linearization oper-
ates independently of PAR reduction however, as we elabo-
rated in Section 2.

3.4. Performance analysis of SLMTC

We analyze here the CCDF expression for the PAR of the
SLMTC signal x(t) obtained as described in the previous sec-
tion. Denote by s(m)(t) the signal after SLM with threshold-
ing, which is not to be confused with the s(m)(t) notation used
in the conventional SLM (cf. Section 3.2). If γ ≤ γ0, the event
PAR(x(t)) ≤ γ is equivalent to the event PAR(s(m)(t)) ≤ γ,
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Step 1. Setm = m = 1.

Step 2. Form s(m)(t) and compute PAR(s(m)(t)).

Step 3. If PAR(s(m)(t)) ≤ γ0, then continue to Step 4; else go
to Step 5.

Step 4. Setm = m and x(t) = s(m)(t), and go to Step 8.

Step 5. If PAR(s(m)(t)) < PAR(s(m)(t)), then go to Step 5.1;
else go to Step 5.2.

Step 5.1. Setm = m.

Step 5.2. m = m + 1.

Step 6. Ifm > M, then go to Step 7; else go to Step 2.

Step 7. Clip s(m)(t) to form (A =
√
Piγ0)

x(t) =
⎧
⎨

⎩

s(m)(t) if
∣
∣s(m)(t)

∣
∣ ≤ A,

A exp
{
j∠s(m)(t)

}
otherwise.

(4)

Step 8. Transmit x(t).

Algorithm 1: SLM with thresholding and clipping.

which in turn is equivalent to the event

∃1 ≤ d ≤M, such that PAR
(
s(d)(t)

) ≤ γ,

{
PAR

(
s(l)(t) > γ0

)}d−1
l=1 .

(5)

By recalling (1), we obtain

Pr
{
PAR

(
x(t)

) ≤ γ
}

=
M∑

d=1
Pr
{
PAR

(
s(d)(t)

) ≤ γ
} d−1∏

l=1
Pr
{
PAR

(
s(l)(t)

)
> γ0

}

=
M∑

d=1
a
(
1− a0

)d−1 = a

a0

(
1− (1− a0

)M)
, for γ ≤ γ0,

(6)

where a0 = exp{−e−γ0N√(π/3) lnN}.
Obviously due to clipping,

Pr
{
PAR

(
x(t)

)
> γ
} = 0, for γ > γ0. (7)

Combining (6) and (7), we find the CCDF of the PAR for
the proposed SLMTC method:

Pr
{
PAR

(
x(t)

)
> γ
} =

⎧
⎨

⎩

1− a

a0

[
1− (1− a0

)M]
, γ ≤ γ0,

0, γ > γ0.

(8)

10−5

10−4

10−3

10−2

10−1

100

P
r(
PA

R
>
γ)

4 5 6 7 8 9 10 11 12 13 14

γ (dB)

Empirical (OFDM)
Theoretical (OFDM)
Empirical (SLM-OFDM)

Theoretical (SLM-OFDM)
Empirical (SLMTC-OFDM)
Theoretical (SLMTC-OFDM)

w/SLMTC

w/SLM

OFDM

PAR reduction
3.5 dB

Figure 2: CCDF of the PAR for the OFDM signal, OFDM signal
with SLM, and OFDM signal with SLMTC.

3.5. Validation of the CCDF expressions

In the computer simulations, the number of subcarriers
N = 128, the maximum number of phase rotations M =
16, and the PAR threshold γ0 = 7.5 dB. The frequency-
domain OFDM subsymbols were drawn independently from
a QPSK constellation, and 106 Monte Carlo runs were per-
formed. Figure 2 shows the empirical CCDFs (solid lines)
of PAR(s(t)) (OFDM), PAR(s(m)(t)) (SLM), and PAR(x(t))
(SLMTC), along with the corresponding theoretical CCDFs
(dash-dotted lines) calculated from (1), (2), and (8), respec-
tively. The empirical CCDFs of the continuous-time PAR
were obtained by evaluating the discrete-time PAR of the
4-time oversampled OFDM signal [11]. It is evident from
Figure 2 that the theoretical and the empirical CCDFs agreed
very well. We observe that whenM = 16, the proposed algo-
rithm achieved 3.5 dB of PAR reduction at the CCDF level
of 10−3. Indeed, if we substitute N = 128 and p = 10−3

into (1), we obtain γ = 12.5720 ∼= 11 (dB); if we substi-
tute N = 128, M = 16, and p = 10−3 into (3), we ob-
tain γ0 = 5.6178 ∼= 7.5 (dB). Thus, PAR reduction in the
amount of γ− γ0 = 3.5 dB was achieved at the CCDF level of
p = 10−3.

We observe from Figure 2 that the CCDF curves for SLM
and SLMTC cross over at γ0, and SLMTC has less PAR re-
ducing capability than SLM for γ < γ0. This is completely
expected since by design, SLMTC generally uses fewer map-
pings and consumes less computational resources than SLM.
Unless one pursues block-by-block adaptive biasing or linear
scaling [15] approaches, any PAR value lower than the re-
quired γ0 does not necessarily lead to additional power sav-
ings.We regard SLMTC as a lower-cost alternative to SLM. As
we mentioned in Section 3.3, the resources savings from the
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Figure 3: Block diagram of the testbed.

PAR thresholding can be harvested using a buffered dynamic
processing scheme [16], which results in a smaller transmis-
sion latency than SLM, and thus permits a higher data rate.

4. DIGITAL BASEBAND PREDISTORTION
LINEARIZATION OF THE PA

We adopt the memory polynomial predistorter (PD) model
given by [6]

z[n] =
K∑

k=1

Q∑

q=0
akqx[n− q]

∣
∣x[n− q]

∣
∣k−1, (9)

where x[n] = x(t)|t=n/Fs is the sampled version of the input
x(t) with sampling frequency Fs, z[n] is the discrete-time
output of the PD, and {akq} are the PD coefficients. This PD
has memory depth Q and highest nonlinearity order K . The
indirect learning architecture is used to solve for the param-
eters {akq} via linear least squares; see [6] for details. Note
that whenQ = 0, (9) becomes a memoryless polynomial PD,
which may be sufficient for memoryless PAs, such as handset
PAs with narrowband inputs.

5. TESTBED EXPERIMENTS

We have conducted testbed experiments on two different PAs
to demonstrate our approach. Our goal is to show that for the
same PA, it is possible to boost the average transmit power
through PAR reduction and PA linearization, while keeping
the ACPR unchanged.

Figure 3 depicts the configuration of the testbed, which
consists of a high-speed digital I/O system, a digital-to-
analog converter (DAC), RF transmit and receive chains, a
device under test (DUT), and an analog-to-digital converter
(ADC). The high-speed digital I/O system has 150 million

samples per second (MSPS), 16-bit digital input/output ca-
pability. In the transmissionmode, the digital I/O system first
generates baseband data, applies the SLMTC algorithm, pre-
distorts it, and then digitally upconverts the signal to an in-
termediate frequency (IF) of 30MHz, and finally sends out
the 14-bit data stream to the DAC at a sampling rate of
120MSPS. Superheterodyne upconversion and downconver-
sion chains are used to convert the digital IF signal to and
from the carrier frequency. The DUTs are, respectively, a 1W
handset PA and a 45W base-station PA. In the acquisition
mode, the digital I/O system acquires 12-bit digital IF data at
the sampling rate of 120MSPS from the ADC. The received
baseband data y[n] is obtained by converting the PA output
to baseband and removing the time delay between the input
and the output of the digital I/O system. Since the signal is
modulated in the digital domain, any inphase and quadra-
ture imbalance problem in the quadrature modulator is ob-
viated.

5.1. Experiment on the 1Whandset PA

In this experiment, the DUT is the 1W handset PA. The in-
put is an OFDM signal centered at 836MHz with a 1.25MHz
bandwidth and 128 subcarriers. We measured the power
spectral density (PSD) of the PA output using a spectrum
analyzer. ACPR was measured as the ratio between the aver-
age power in the adjacent channel and the average power in
the main channel, both over a 30KHz bandwidth [9]. The
requirement was to keep the ACPR below −50 dBc. Figure 4
shows the PSDs of the PA output when (a) the input was
backedoff just enough to meet the ACPR requirement; (b)
a memoryless polynomial PD (i.e., Q = 0, K = 5 in (9))
was applied, and the amount of input backoff was reduced;
(c) both SLMTC (M = 16, γ0 = 7.5 dB) and the memory-
less polynomial PD were applied, requiring even less input
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−49.91 dB

Figure 4: Power spectral density measurements at the output of the
1W handset PA when (a) the input was backed-off, (b) a memo-
ryless polynomial PD (Q = 0, K = 5) was applied, and (c) both
SLMTC (M = 16, γ0 = 7.5 dB) and the memoryless polynomial PD
(Q = 0, K = 5) were applied.

backoff. By comparing curves (a) and (b) in Figure 4, we see
that the average output power in the main channel increased
by 6 dB thanks to the use of the PD and the resulting reduc-
tion in backoff. Moreover, with the SLMTC PAR reduction
technique, we were able to boost the average output power by
another 3 dB without introducing any spectral regrowth (cf.
lines (b) and (c)). Therefore, we have achieved a total of 9 dB
increase in the average output power of the PA through the
combination of PAR reduction and predistortion lineariza-
tion.

5.2. Experiment on the 45Wbase-station PA

In this experiment, the DUT is the 45W base-station PA.
The input is an OFDM signal centered at 881MHz with
a 2.5MHz bandwidth and 128 subcarriers. For the 45W
PA, the requirement was to keep the ACPR below −45 dBc.
Figure 5 shows the PSDs of the PA output when (a) the in-
put was backed-off just enough to meet the ACPR specifi-
cation; (b) a memory polynomial PD (i.e., Q = 5, K =
5 in (9)) was applied; (c) both SLMTC (M = 16, γ0 =
7.5 dB) and the memory polynomial PD were applied. From
Figure 5, we can see that the average output power was in-
creased by 11 dB through the combination of PAR reduction
and predistortion linearization. Through experimentation,
we have found that this high power amplifier had significant
memory effects and that memoryless predistortion was not
as effective as the memory polynomial predistortion demon-
strated here.

6. CONCLUSIONS

We proposed in this paper joint PAR reduction and PA lin-
earization as an effective approach to improve the efficiency

Atten 5 dBRef −20 dBm
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Log

10 dB/

Vavg
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V1 V2
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AA

Center 881MHz
Res BW 30 kHz VBW 30 kHz

Span 10MHz
Sweep 22.64ms (401 pts)

1 R

1

(a)
(b)
(c)

Mkr1 Δ2MHz
−44.97 dB

Figure 5: Power spectral density measurements at the output of
the 45W base-station PA when (a) the input was backed-off, (b)
a memory polynomial PD (Q = 5, K = 5) was applied, and (c)
both SLMTC (M = 16, γ0 = 7.5 dB) and the memory polynomial
PD (Q = 5, K = 5) were applied.

of the RF/microwave PA in wireless communications. For
PAR reduction, we discussed a thresholding and clipping
technique to reduce the computational resource require-
ments of selected mapping (SLM). A closed-form CCDF ex-
pression was derived for the resulting PAR. For PA lineariza-
tion, we adopted the (memory) polynomial predistorter for
its simplicity and robustness. PAR reduction and PA lin-
earization can be applied independently, so many combina-
tions of PAR reduction and PA linearization techniques may
work. Using testbed experiments, we demonstrated the effec-
tiveness of our technique as significant increase in the average
output power without exceeding the spectral emission limits.
Our analysis uses OFDM as the model system, but the idea
of joint PAR reduction and PA linearization applies to other
systems characterized by high PAR values as well.
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