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Abstract

In this article, a general model for non-iterative joint equalization and decoding is systematically derived for use in
systems transmitting convolutionally encoded BPSK-modulated information through a multipath channel, with and
without interleaving. Optimal equalization and decoding are discussed first, by presenting the maximum likelihood
sequence estimation and maximum a posteriori probability algorithms and relating them to equalization in
single-carrier channels with memory, and to the decoding of convolutional codes. The non-iterative joint
equalizer/decoder (NI-JED) is then derived for the case where no interleaver is used, as well as for the case when block
interleavers of varying depths are used, and complexity analyses are performed in each case. Simulation results are
performed to compare the performance of the NI-JED to that of a conventional turbo equalizer (CTE), and it is shown
that the NI-JED outperforms the CTE, although at much higher computational cost. This article serves to explain the
state-of-the-art to students and professionals in the field of wireless communication systems, presenting these
fundamental topics clearly and concisely.
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1 Introduction
Equalization and decoding are two essential aspects of any
wireless communication system. The equalizer is tasked
with reversing the effect of the communication channel
on the transmitted information signal, while the decoder
receives the equalized symbol sequence and attempts
to correct errors that might have been caused during
transmission.
The Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm, also

known as the maximum a posteriori probability (MAP)
algorithm, is useful when designing equalizer and decoder
algorithms [1,2]. The BCJR algorithm receives soft prob-
abilistic information regarding the input and produces a
posteriori probabilistic information regarding the output,
and is aptly called a soft-input soft-output (SISO) algo-
rithm. The availability of reliable soft information at the
input allows for more accurate a posteriori estimates to
be produced at the output, which improves overall system
performance [3-5].
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The equalizer can be designed by using the Viterbi
algorithm (VA), also known as the maximum likelihood
sequence estimation (MLSE) algorithm, which makes use
of the min-sum algorithm to find the most probable trans-
mitted sequence [2,6,7]. The VA performs optimally but it
is only able to produce hard estimates at the output, and
is therefore not an attractive choice when the equalizer is
followed by a SISO decoder. The VA can be modified to
produce suboptimal posterior probabilistic information at
the output, resulting in the soft output Viterbi algorithm
(SOVA) in [8], but because of its suboptimal nature the
overall system performance will also be suboptimal. Using
the MAP algorithm, the equalizer is able to produce
optimal posterior probabilistic information regarding the
transmitted information, which can be exploited by the
SISO decoder.
While the VA and SOVA can also be used for decod-

ing, the MAP algorithm is the algorithm of choice when
the output of the decoder is fed back to be used by the
equalizer, a technique known as turbo equalization [3,4].
However, when the estimates of the uncoded transmitted
symbols are taken directly from the output of the decoder,
i.e., when no turbo equalization is performed, the MLSE
algorithm will suffice.
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Joint equalization and decoding can be performed by
MLSE or MAP algorithms and by employing a super-
trellis, as shown in [9], given that the depth of the inter-
leaver is limited by computational complexity limitations.
The joint equalizer and decoder achieves optimal non-
iterative equalization and decoding. Since the input of
the joint equalizer and decoder is ISI-corrupted coded
transmitted symbols, and the output is the equalized
and decoded symbol estimates, no posterior probabilis-
tic information is required at the output. Therefore, the
MLSE algorithm can also be used. The MAP algorithm
will perform just as well, albeit with approximately twice
the computational complexity. It has also been shown in
[10] that joint decoding of turbo codes can be done on a
super-trellis as well.
Figure 1 shows a block diagram of the communication

system considered in this article. The source information
is encoded, after which an interleaver is used to sepa-
rate adjacent coded bits temporally. The coded bits are
mapped to modulation symbols chosen from a modu-
lation alphabet D, after which the symbols are used to
modulate the carrier before transmission. The transmitted
information passes through a multipath white Gaussian
noise channel and is received by the receiver antenna.
After reception the signal is demodulated and matched
filtered in order to produce a received symbol sequence.
The CIR is estimated using a number of known pilot sym-
bols, and is provided as input to the equalizer together
with the received symbol sequence. The equalizer reverses
the effect of the multipath channel and produces optimal
symbol estimates (MAP) or an optimal sequence estimate
(MLSE) regarding the transmitted coded bits after inter-
leaving. The output of the equalizer is deinterleaved and
provided as input to the decoder, which produces optimal
estimates regarding the uncoded transmitted informa-
tion in the form of log-likelihood ratios (LLR), which are

mapped back to bits to produce a final estimate of the
source information. When joint equalization and decod-
ing is performed, the equalizer, deinterleaver, and decoder
are replaced by one functional block, as indicated by the
dashed line around these functional blocks. Equalization
and decoding are performed simultaneously, producing
LLR estimates of the source information at the output.
Equalization, decoding, and joint equalization and

decoding will be discussed in the context of the MAP
algorithm, but for completeness the MLSE algorithm will
also be discussed. The MLSE and MAP algorithms are
discussed next, after which these algorithms will subse-
quently be related to equalization and decoding.

2 TheMLSE andMAP algorithms
The MLSE and MAP algorithms are used for equaliza-
tion as well as for the decoding of convolutional codes
[1,2,6,7,11]. The MLSE algorithm is able to optimally
estimate the most probable sequence of transmitted sym-
bols/codewords (depending on equalization/decoding),
while theMAP algorithm exactly estimates the probability
of each transmitted symbol/codeword. These algorithms
are underpinned by Bayes’ rule of conditional probability,
which states that

rclP(dt = d(m)|rt) = P(dt = d(m))P(rt|d(m))

P(rt)

= P(dt = d(m)
t )P(rt|d(m)

t )∑M
n=1 P(dt = d(n))P(rt|d(n)

t )

= βP(rt|d(m))

(1)

where P(dt = d(m)) is the prior probability of transmitting
symbol/codeword d(m) time instant t. For equalization,
the symbols d(m) are chosen from a given modulation
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alphabet D of size M, where m = 1, 2, . . . ,M, and for
decoding, codewords symbols d(m) are chosen from a
list of M possible codewords. Since it is assumed that
the received symbol/codeword sequence is corrupted by
white Gaussian noise, the probability of receiving rt and
time instant t having transmitted d(m)

t , is expressed as
[1,2,6,7,11]

P(rt|d(m)) = 1√
2πσ

exp
(

−|�(m)
t |2
2σ 2

)
, (2)

where σ is the noise standard deviation and �
(m)
t is a

cost function for the purpose of minimizing the Euclidean
distance between the received symbol/codeword and the
symbol/codeword to be estimated, which will be dis-
cussed in Sections 3 and 4 for equalization and decoding,
respectively. Since P(dt = d(m)) and P(rt) are independent
of the choice of d(m), they can be absorbed into a normal-
ization constant β , which, since

∑(m)
n=1 P(dt = d(n)) = 1,

can be expressed as

β = 1∑M
n=1 P(dt = d(n))

. (3)

In order to apply Bayes’ rule over a transmitted block of
N symbols/codewords, the product rule can be used to
express (1) for a sequence of length N such that

P(d1, d2, . . . , dN |r1, r2, . . . , rN )

= βP(r1|d1).P(r1|d1). . . . .P(rN |dN )

P(d|r) = β

N∏
t=1

P(rt|dt)

= β

N∏
t=1

(
1√
2πσ

exp
(

− �m
t

2σ 2

))

= β

(
√
2πσ)N

exp
(

−
∑N

t=1 �m
t

2σ 2

)

= β

(
√
2πσ)N

exp
(

− �

2σ 2

)

, (4)

where any symbol/codeword dt in the symbol/codeword
sequence d = {d1, d2, . . . , dN } can be substituted for
any d(m), and where r = {r1, r2, . . . , rN } is the received
symbol/codeword sequence.

2.1 The MLSE algorithm
In 1972, Forney [11] showed that the VA [6,7,11], first
developed by Viterbi in 1967 to decode convolutional
error correction codes, can be used to determine the most
likely transmitted sequence. This is done by using a trellis,
a special graph, or remerging tree structure, represent-
ing all possible combinations of transmitted symbols, to
determine the solution with the lowest cost through the

trellis. The sequence of symbols with the lowest cost max-
imizes the probability that said sequence was transmitted,
thus producing the optimal estimate for the transmitted
sequence [2,11].
The VA, or MLSE algorithm, attempts to minimize the

cumulative cost function � = ∑N
t=1 �m

t in (4), which in
turn maximizes P(d|r) in (4). After minimizing � in (4),
there is no sequence of transmitted symbols/codewords
that is more likely to have been transmitted. However,
the probability of each estimated symbol/codeword in
the sequence will not necessarily be maximized among
all possible transmitted symbols/codewords. As stated
before, the MAP algorithm is used to calculate exact pos-
terior probabilities on each symbol/codeword. The min-
sum algorithm is used to find the MLSE solution and is
discussed next.

2.1.1 Themin-sum algorithm
In order to perform optimal sequence estimation, the
min-sum algorithm is used. Viterbi [6] and Forney [11]
showed that the min-sum algorithm can be used by con-
structing a trellis and tracing a path, corresponding to
the most likely transmitted symbol/codeword sequence
through the trellis. The min-sum algorithm allows for the
elimination of more costly contending paths at each state
on a trellis, thereby greatly reducing the computational
complexity due to complete enumeration. For equaliza-
tion, there will always be ML−1 possible paths at every
stage in the trellis, where M is the modulation alpha-
bet size and L is the channel memory length. Similarly,
for decoding, there will always be 2K−1 remaining paths
at every stage in the trellis (if convolutional encoding is
performed in GF(2)), where K is the encoder constraint
length which introduces memory to the transmitted code-
words. ML−1 and 2K−1 also correspond to the number of
respective states in the trellis for each time instant t, for
the equalizer and the decoder.
Figure 2 shows a trellis with ML−1 = 2K−1 = 4 states,

corresponding to an equalizer used in a system where a
BPSK modulated symbol sequence of length N is trans-
mitted through a multipath channel with a CIR of length
L = 3, or to a decoder used to decode a coded sequence
of N codewords where a convolutional encoder with con-
straint length K = 3 is used. The trellis is initiated by
assuming that it starts at state S1 at time instant t = 0
and it is terminated at state S1 at time instant t = N .
For equalization, each state represents a unique combina-
tion of modulation symbols sm, where m = 1, 2, . . . ,M,
from amodulation alphabetD of sizeM, and for decoding
each state represents a possible codeword at the output of
the convolutional decoder. The edges or transitions from
state Si, i = 1, 2, 3, 4 at time instant t to any other state
Sj, j = 1, 2, 3, 4 at time instant t + 1 describes the like-
lihood of this occurrence, which will be a maximum if
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Figure 2 Trellis diagram used to aid the explanation of the equalizer and the decoder.

the cost function |�(m)
t |2 in (2) is a minimum. Table 1

shows the values associated with states Sj, j = 1, 2, 3, 4 for
equalization and decoding, respectively.
For equalization, each state will have M incoming tran-

sitions (from the left), while there will be two incoming
transitions for decoding.a But as stated above, there will
only be 2L−1 = 2K−1 = 4 remaining paths at each time
instant in the trellis, which means that all but one path has
to be eliminated at each state. To eliminate more costly
paths at each state in the trellis at time t, the cumula-
tive cost function � = ∑P

t=1 �m
t in (4) is calculated for

all possible paths leading to the said state up to time t,
where the cost of the contending paths are compared, and
the path with the highest cost (corresponding to the low-
est probability), is eliminated. Therefore, at each state all
the previous�t,j→i’s are accumulated, and where there are
contending paths, the path with the largest accumulated
cost is eliminated.
There will therefore be 22 = 4 surviving paths in each

stage on the trellis for stages beyond t = 2. When stages
t = N −2 to t = N are considered, the number of allowed
transitions decrease, because of the known tail symbols
at the end of the transmitted symbol sequence. For the
last few states in the trellis the contending paths are also
eliminated, until only one possible path remains at stage
t = N . This path is then traced back to determine themost
probable sequence of transmitted symbols/codewords.
The MLSE equalizer/decoder produces outputs from a

set ofM symbols for equalization or from a set of uncoded
bits for decoding. These estimates are called hard outputs,
since the estimates do not contain any probabilistic infor-
mation regarding the reliability of those estimates. The

Table 1 Equalizer/decoder state values

S1 S2 S3 S4

Equalizer 1, 1 −1, 1 1,−1 −1,−1

Decoder −1,−1 1,−1 −1, 1 1, 1

MAP equalizer can be used to produce probabilistic infor-
mation as an indication of the reliability of the estimates.
The MAP algorithm is discussed next.

2.2 The MAP algorithm
Following the development of the Viterbi MLSE decod-
ing algorithm [6], the BCJR algorithm [1], named after
its developers Bahl–Cocke–Jelinek–Raviv, also known as
the MAP algorithm, was developed in 1974, also for the
decoding of convolutional codes. In the artificial intelli-
gence community, this algorithm was developed indepen-
dently by Pearl [12] and is called BP. TheMAP algorithm is
able to produce the posterior probability of each symbol in
the estimated transmitted sequence, as opposed to maxi-
mizing the probability of the whole transmitted sequence,
as done by the Viterbi MLSE equalizer [2,6,7,11].
The aim of the MAP algorithm is to maximize the pos-

terior probability distribution for each transmitted sym-
bol/codeword. While the MLSE algorithm assumes the
prior probabilities P(d) of the transmitted symbols to be
equal, theMAP algorithm is able to exploit the prior prob-
abilities P(d), if necessary, in order to enhance the quality
of posterior probabilistic information on each individual
transmitted symbol. Like the MLSE algorithm, the MAP
algorithm uses the model in (4) on a trellis, but unlike
the MLSE algorithm, the MAP algorithm propagates the
transition probabilities forward from past states to future
states, as well as backwards from future states to past
states, after which the marginalized probability for each
estimated symbol/codeword dt is produced, given past
and future information. That is [1,13]

P(dt = d(m)|r) =
N∑

dt† :t† �=t

P(d|r) (5)

where again d(m), m = 1, 2, . . . ,M, is the mth symbol
chosen from amodulation alphabetD of sizeM for equal-
ization, or d(m) is the mth codeword chosen from a list
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ofM codewords produced by a convolutional encoder for
decoding, r is the received sequence, and N is the number
of symbols/codewords in the received sequence.
Referring to Figure 2, the probability of a transition from

state Sj,t−1 (at time t − 1) to state Si,t (at time t), where i,
j = 1, 2, . . . ,ML−1 for equalization and i, j = 1, 2, . . . ,
2K−1 for decoding, is given by

ωj→i,t(Sj,t−1, Si,t) = βP(dt = d(m))P(rt|Sj,t−1, Si,t), (6)

where β is a normalization constant and P(rt|Sj,t−1, Si,t) is
given by

P(rt|Sj,t−1, Si,t) = 1√
2πσ 2

exp
(−|�|2

2σ 2

)
. (7)

By considering the relevant transition value b dξ , P(dt) can
be written as [3,4]

P(dt = d(m)) = exp
(
1
2
dξL(d̃t)

)
, (8)

where L(.) denotes the LLR operation and d̃t is an estimate
of dt . Therefore, substituting (7) and (8) in (6) yields

ωj→i,t(Sj,t−1, Si,t) = δ√
2πσ 2

× exp
(

− |�|2
2σ 2 + exp

(
1
2
dξL(d̃t)

))
,

(9)

which completely describes the probability of a transition
from Sj,t−1 (or dj) at time t − 1 to Si,t (or di) at time t,
based on all available information. Thus, for a transition
labeled dξ = 1 and L(d̃t) equal to any large positive value,c
P(dt = d(m)) will be large, confirming the transition. Sim-
ilarly, for a transition labeled dξ = −1 and L(d̃t) equal
to any large negative value P(dt = d(m)) will be large,
also confirming the transition. However, for a transition
labeled dξ = 1 and L(dξ ) equal to any large negative num-
ber, or for a transition labeled dξ = −1 and L(d̃t) equal
to any large positive number, P(dt = d(m)) will be small.
Thus, if the prior information L(d̃t) is in agreement with
the transition value dξ , the probability of that transition
will increase, confirming that transition. Otherwise, if the
prior information L(d̃k) contradicts the transition value
dξ , the probability of that transition will be decreased.
Propagating the transition probabilities ωj→i,t

(Sj,t−1, Si,t) across the whole sequence from left to right
and from right to left, respectively, and marginalizing
according to (5), will produce the posterior probabili-
ties of each estimated dk . The sum-product algorithm
achieves exactly this [13].

2.2.1 The sum-product algorithm
The sum-product algorithm, also known as the forward–
backward algorithm, uses the trellis in Figure 2 to perform
marginalization. This algorithm follows three steps [13]:

1. Determine the forward pass messages from left to
right on the trellis.

2. Determine the backward pass messages from right to
left on the trellis.

3. Multiply, scale and accumulate (marginalize)
probabilities at each stage of the trellis.

To determine the forward pass messages on the trellis,
let a counter t run from left to right (from 1 to N) on the
trellis and compute for each state in the trellis

αi,t =
∑

jεParent(i)
ωj→i,t(Sj,t−1, Si,t)αj,t−1

where j represents the parent states of the current state
at stage i of the trellis and ωt(Sj,t−1, Si,t) is the probability
associated with the transition from Sj,t−1 to Si,t . Note that
αj,0 = 1. Similarly, to determine the backward pass mes-
sages on the trellis, let a counter t run from right to left
(from N − 1 to 1) on the trellis and compute for each state
in the trellis

βj,t =
∑

jεParent(i)
ωj→i,t(Sj,t , Si,t+1)βi,t+1

where again j represents the parent states of the current
state at stage i of the trellis and ωt(Sj,t , Si,t+1) is the prob-
ability associated with the transition from Sj,t to Si,t+1.
Note that βi,t = 1. Finally, the exact marginalized sym-
bol probability is determined by summing over all states at
each time instant t corresponding to a transition of either
dξ = 1 or dξ = −1 such that

P(dt = 1|r) =
∑

jεParent(i),dξ =1
αj,t−1ωj→i,t(Sj,t−1, Si,t)βi,t

(10)

P(dt = −1|r) =
∑

jεParent(i),dξ =−1
αj,t−1ωj→i,t(Sj,t−1, Si,t)βi,t .

(11)

The MAP algorithm can also produce soft bits. The soft
bits, also called LLRs, can be determined by

L(s̃t) = log
(

P(dt = 1|r)
P(dt = −1|r)

)
, (12)

where the sign of L(d̃t) indicates whether d̃t = −1 or
d̃t = 1, and |L(s̃t)| is a measure of the confidence of that
estimate.
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3 Equalization
A mobile communication system transmission channel is
characterized by multipath and fading. Multipath is the
phenomenon resulting from time spreading of the trans-
mitted signal as it is transmitted through the channel.
Fading, on the other hand, results from time variations
in the structure of the transmission medium, causing
the nature of the multipath channels to vary with time
[2]. During transmission, the transmitted symbols pass
through the channel, which acts like a filter. The channel
has a continuous impulse response, which is estimated at
the receiver, to aid in the estimation of the transmitted
information.
Each coefficient, or tap, in the impulse response of

a multipath fading channel is modeled as a continuous
function of time, where each coefficient in the impulse
response corresponds to symbol period intervals tTs. As
such, a tapped delay line is used to model the behavior
of this channel, as shown in Figure 3. Figure 3 indicates
that the tth transmitted symbol st is delayed by Ts sec-
onds L − 1 times, where L is the CIR length and Ts is
the symbol period. Each delayed copy of st is multiplied
by h(t)

l , l = 1, 2, . . . , L − 1, corresponding to the lth delay
branch at time t. Therefore, the tth received symbol can
be described by [2,11]

rt =
L−1∑
l=0

h(l)
t st−l + nt , (13)

where nt is the tth noise sample from the distribution
N (μ = 0, σ 2 = 1). Each h(l)

t is a sample taken from one
of L time-varying functions, where t corresponds with the
tth transmitted symbol and l = 1, 2, . . . , L − 1 is the CIR
tap number. Each CIR tap is modeled as an independent
uncorrelated Rayleigh fading sequence, using the model in
[14].

If it is assumed that the CIR is time-invariant for the
duration of a data block, (13) can be rewritten as

rt =
L−1∑
l=0

hlst−l + nt , (14)

where st denotes the tth complex symbol in the trans-
mitted sequence of N symbols chosen from an alphabet
D containing M complex symbols, rt is the tth received
symbol, nt is the tth noise sample from the distribution
N (μ = 0, σ 2 = 1), and hl is the lth coefficient of the esti-
mated CIR. Equalization is performed under the assump-
tion that each CIR coefficient hl is time-invariant for the
duration of a data block. The CIR h = {h0, h1, . . . , hL−1}
therefore completely describes the multipath channel for
a given received data block, assuming that the data block
is sufficiently short so as to render the CIR time-invariant.
The equalizer takes as input the received symbol sequence
r as well as the CIR h.
To estimate the transmitted sequence of length N opti-

mally in a wireless communication system transmitting
modulated symbols though a multipath channel, the
cumulative cost function in (4)

rcl� =
N∑
t=1

�m
t

=
N∑
t=1

|rt −
L−1∑
l=0

hlst−l|2
(15)

must be minimized [2,11]. Here s = {s1, s2, . . . , sN } is
the most likely transmitted sequence that will maximize
(4). Although the minimization of (15) will maximize (4),
the resulting sequence estimates will only be optimal in
the sequence sense. Depending on the application and
whether the equalizer is followed by a decoder, either opti-
mal sequence estimation or exact posterior probabilistic
symbol estimation can be performed using the MLSE or
MAP algorithms discussed above.

Ts Ts Ts

h0 h1 h2 hL-1

st

rt

nt

)t()t()t()t(

Figure 3 Tapped delay line used to simulate ISI in a multipath fading channel.
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4 Decoding
In a mobile communication system, the transmitted signal
is subjected to energy losses due to multipath and fading
as well as interference due to thermal noise, resulting in
unreliable estimates of source information in the receiver.
In order to correct errors in the receiver, error control
coding (ECC) is used to introduce controlled redun-
dancy to the source information. The decoder exploits the
structure introduced to the encoded symbol sequence by
the encoder, to reconstruct the source information from
the estimated coded symbols, correcting errors while
doing so.
ECC plays an important role in digital communication

systems. As the name suggests, ECC is used to allow for
the correction of errors in the received symbol sequence.
ECC is performed by adding controlled redundancy to
the information being transmitted. Since the redundant
information ismathematically related to the original infor-
mation, errors can be corrected [2]. Although the redun-
dancy adds an overhead to the transmitted data, the
performance increase overshadows this drawback. During
the last few decades, ECC has been the subject of much
research and significant contributions and advancements
have been made.
The coding scheme considered in this article is con-

volutional encoding, as it is most often used in turbo
equalization. A convolutional code is generated by pass-
ing the information sequence to be transmitted through
a linear finite state shift register, consisting of K stages.d
The binary input is shifted into the shift register k bits at
a time, producing n output bits. The code rate is there-
fore Rc = k/n. The encoder can be expressed in terms
of n generator polynomials, describing the connections
between the states of the encoder shift register. Figure 4
shows the rate Rc = k/n = 1/3, constraint length K = 3,
convolutional encoder considered in this article.

c(1)

c(2)

c(3)

st

t

t

t

Figure 4 Rate 1/3 convolutional encoder used in this article.

The generator polynomials that describe the connec-
tions between the elements in the shift register are given
in sequence form as g1 =[ 100], g2 =[ 110] , and g3 =[ 011],
which can also be written in octal form as G =[ 4, 6, 3] or
in polynomial form as G =[ 1, 1 + X,X + X2]. For every
input source bit st the encoder produces k = 3 output bits
c(1)t , c(2)t , and c(3)t , where

c(1)t = st
c(2)t = st ⊕ s(t−1) (16)

c(3)t = s(t−1) ⊕ s(t−2),

where ⊕ is the exclusive OR operation. It is assumed that
the encoder starts in the all-zero state for every data block
that is encoded. Also, the encoder is forced into a zero-
state after the data block is encoded by appending K − 1
zero bits to the data block. This is done to enable decoding
using an MLSE or a MAP decoder [1,6,7].
Each convolution encoder has a corresponding state

diagram, which is used to map state transitions to encoder
outputs, which in turn are used to determine the most
likely state transitions during decoding. The state diagram
of the encoder in Figure 4 is shown in Figure 5. Each state
contains two bits representing the two leftmost elements
in the encoder shift register. As bits are shifted through the
encoder k = 1 bit at a time, transitions occur, with each
state transition producing n = 3 output bits. The dashed
lines are associated with transitions resulting from a zero
at the input of the encoder, and solid lines are association
with a one at the input of the encoder.

01

00
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11

000

110

101

011

100

010

001

111

Figure 5 1/3 convolutional encoder state diagram of the
convolutional encoder in Figure 4.
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The decoding of convolutional codes is closely related
to equalization discussed in Section 3, in that the
min-sum (Viterbi MLSE) and sum-product (MAP/BCJR)
algorithms can also be used for decoding. The MAP
algorithm is an attractive choice for use in iterative
equalization/decoding algorithms. It is attractive for two
reasons: first because it includes prior probabilistic infor-
mation in the estimation, and second, because it provides
soft posterior estimates regarding individual coded or
uncoded symbols, which in turn can be used as prior
information in subsequent iterations.
To decode a convolutional code using theMLSE orMAP

algorithms discussed above, the cumulative cost function
in (4)

rcl� =
N∑
t=1

�m
t

=
N∑
t=1

k∑
n=1

|r(n)
t − c(n)

t |2
(17)

is minimized [6,11], where rt = {r(1)t , . . . , r(n)
t } are the

received coded symbols corresponding to codeword ct =
{c(1)t , . . . , c(k)t } at time instant t, selected based on the
encoder output generated by the relevant state transition.e
Here, k is the number of output bits generated by the
encoder. The MLSE or MAP algorithms can be applied
to find either the most probable transmitted sequence of
codewords, or the most probable transmitted uncoded
and/or coded symbols. The output of the latter can be
used in a turbo equalizer as feedback to aid the equalizer
in making more informed decisions.

5 Non-iterative joint equalization and decoding
(NI-JED)

In conventional single-carrier wireless communication
systems, where the coded information is transmitted
through a multipath channel, equalization and decoding,
as explained in Section 3 and 4, are performed separately.
However, joint equalization and decoding can also be per-
formed on a single trellis when it is assumed that the
coded symbols are not interleaved before transmission, or
that certain assumptions are made regarding the structure
of the interleavers used to interleave the coded symbols.
Interleavers allow for the temporal separation of adja-

cent coded symbols during transmission, so that when
burst errors occur in response to a loss of signal power
during fading, the resulting errors in an error burst will
be distributed throughout the data block after deinterleav-
ing. This leads to performance gains in the receiver, as the
equalizer and the decoder are able to infer information
and correct single errors more accurately, as opposed to
correcting consecutive, or burst errors. Therefore, inter-
leavers are employed in a wireless communication system

where the transmitted signal is subject to multipath and
fading [2].
In [9], an optimal joint equalizer and decoder is pre-

sented, where the equalizer and the decoder are jointly
modeled on one trellis, a super-trellis according to [9], and
a block interleaver is used to interleave the coded sym-
bols before transmission. The computational complexity
of this joint equalizer and decoder, however, is not only
exponentially related to the channel memory length and
the encoder constraint length, but also to the interleaver
depth. The interleaver depth determines the degree of
separation between the coded symbols, which has a direct
effect on system performance. In order to improve system
performance the interleaver depth has to be increased,
which results in an exponential increase in computa-
tional complexity. Ideally a random interleaver should
be used for maximum performance gains, but a random
interleaver has a devastating effect on the causality rela-
tionship between transmitted and deinterleaved received
symbols. This joint equalizer/decoder is therefore only
feasible when limited depth block interleavers are used.
Joint equalization and decoding using a super-trellis is
discussed next, first for systems where no interleaving
is performed, and then for systems where depth-limited
interleavers are used.

5.1 No interleaving
Noting the striking similarities between MAP equaliza-
tion and MAP decoding in Section 2, a possible joint
equalization and decoding algorithm can be envisioned.
In order to equalize and decode a received symbol
sequence jointly, the cumulative costs for equalization
in (15) and decoding in (17) must be combined in
order to equalize while decoding. Either the MLSE or
MAP algorithms can be used for this purpose, since the
super-trellis encapsulates all the available information and
therefore no exchange of information between equal-
izer and decoder is necessary. No prior information is
therefore required when calculating state transitions on a
super-trellis.
Consider a system transmitting non-interleaved coded

information through a multipath channel of length L. A
rate Rc = k/n constraint length K convolutional encoder
is used to produce a sequence c of coded bits of length Nc
from an uncoded bit sequence s of lengthNu. The number
of super-trellis states required to perform joint equaliza-
tion and decoding is the product of the number of states
of the individual trellises required to perform equalization
and decoding separately. Therefore, the number of super-
trellis states isML−1MK−1 = M(L−1)+(K−1), whereM = 2
due to BPSK modulation as well as GF(2) encoding.
When the MAP equalizer was considered, the

probability of a transition from uncoded symbol sj
transmitted and time t − 1 to si transmitted at time t
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was calculated (see (6)), and when the MAP decoder was
considered, the probability of a transition from codeword
cj transmitted at time t − 1 to ci transmitted at time
t was calculated (although dj and di were used instead
for both the equalization of symbols and decoding of
codewords). When modeling the equalizer and decoder
jointly, however, transitions between super states are cal-
culated on a super-trellis, where each state represents the
uncoded symbols that constitute a codeword, together
with interfering symbols of previous codewords due
to multipath.
Suppose a communication system encodes a source bit

sequence s of length Nu with a rate Rc = k/n = 1/3,
constraint length K = 3, convolutional encoder with arbi-
trary generator polynomials g1 = {g(1)

1 , g(2)
1 , g(3)

1 }, g2 =
{g(1)

2 , g(2)
2 , g(3)

2 } and g3 = {g(1)
3 , g(2)

3 , g(3)
3 }, in order to pro-

duce a coded bit sequence c of length Nc = Nu/Rc, which
is BPSK modulated and transmitted through a multipath
channel with a CIR h of length L. The encoder produces
the coded bit sequence

c =
{
c(1)1 , c(2)1 , c(3)1 , c(1)2 , c(2)2 , c(3)2 , . . . ,

c(1)Nu−1, c
(2)
Nu−1, c

(3)
Nu−1, c

(1)
Nu
, c(2)Nu

, c(3)Nu

}

of length Nc from the length Nc uncoded bit sequence

s = {s1, s2 . . . , sNu−1, sNu}.
5.1.1 Channel length 2 ≤ L < 5
When the coded sequence is transmitted through a
channel with lengths L = 2, L = 3, and L = 4, the
respective resulting received sequences, without noise,
can expressed in terms of the coded symbols

r(1)t = c(1)t h0 + c(3)t−1h1
r(2)t = c(2)t h0 + c(1)t h1
r(3)t = c(3)t h0 + c(2)t h1

, (18)

r(1)t = c(1)t h0 + c(3)t−1h1 + c(2)t−1h2
r(2)t = c(2)t h0 + c(1)t h1 + c(3)t−1h2
r(3)t = c(3)t h0 + c(2)t h1 + c(1)t h3

, (19)

and

r(1)t = c(1)t h0 + c(3)t−1h1 + c(2)t−1h2 + c(1)t−1h3
r(2)t = c(2)t h0 + c(1)t h1 + c(3)t−1h2 + c(2)t−1h3
r(3)t = c(3)t h0 + c(2)t h1 + c(1)t h3 + c(3)t−1h3

, (20)

which can, respectively, be expressed in terms of the
uncoded symbols

r(1)t = (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h0

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h1

r(2)t = (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h0

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h1

r(3)t = (g(1)
3 st ⊕ g(2)

3 st−1 ⊕ g(3)
3 st−2)h0

+ (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h1

, (21)

for L = 2,

r(1)t = (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h0

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h1

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h2

r(2)t = (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h0

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h1

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h2

r(3)t = (g(1)
3 st ⊕ g(2)

3 st−1 ⊕ g(3)
3 st−2)h0

+ (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h1

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h2

, (22)

for L = 3, and

r(1)t = (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h0

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h1

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h2

+ (g(1)
1 st−1 ⊕ g(2)

1 st−2 ⊕ g(3)
1 st−3)h3

r(2)t = (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h0

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h1

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h2

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h3

r(3)t = (g(1)
3 st ⊕ g(2)

3 st−1 ⊕ g(3)
3 st−2)h0

+ (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h1

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h2

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h3

, (23)

for L = 4. It is clear from (21) to (23) that
each rt = {r(1)t , r(2)t , r(3)t } contains uncoded symbols
{st , st−1, st−2, st−3}. The transition probability between
superstate Sj,t−1 and Si,t can therefore be calculated,
where Si,t represents {st , st−1, st−2} and Sj,t−1 represents
{st−1, st−2, st−3}. The number of super-trellis states will
therefore be M = 23, as three symbols need to be
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represented by each superstate. In order to express the
number of states for 2 ≤ L < 5 this author defines

Q = 1, if 2 ≤ L ≤ 4. (24)

The number of super-trellis states can therefore be
expressed asM = 2Q+(K−1) = 2(1)+(2) = 23.

5.1.2 Channel length 5 ≤ L < 8
Transmitting the coded sequence

c =
{
c(1)1 , c(2)1 , c(3)1 , c(1)2 , c(2)2 , c(3)2 , . . . ,

c(1)Nu−1, c
(2)
Nu−1, c

(3)
Nu−1, c

(1)
Nu
, c(2)Nu

, c(3)Nu

}

through a channel length L = 5, L = 6, and L = 7, respec-
tively, the received symbol sequences without noise can be
expressed as

r(1)t = c(1)t h0 + c(3)t−1h1 + c(2)t−1h2
+ c(1)t−1h3 + c(3)t−2h4

r(2)t = c(2)t h0 + c(1)t h1 + c(3)t−1h2
+ c(2)t−1h3 + c(1)t−1h4

r(3)t = c(3)t h0 + c(2)t h1 + c(1)t h3
+ c(3)t−1h3 + c(2)t−1h4

, (25)

r(1)t = c(1)t h0 + c(3)t−1h1 + c(2)t−1h2 + c(1)t−1h3
+ c(3)t−2h4 + c(2)t−2h5

r(2)t = c(2)t h0 + c(1)t h1 + c(3)t−1h2 + c(2)t−1h3
+ c(1)t−1h4 + c(3)t−2h5

r(3)t = c(3)t h0 + c(2)t h1 + c(1)t h3 + c(3)t−1h3
+ c(2)t−1h4 + c(1)t−1h5

, (26)

and

r(1)t = c(1)t h0 + c(3)t−1h1 + c(2)t−1h2 + c(1)t−1h3 + c(3)t−2h4
+ c(2)t−2h5 + c(1)t−2h6

r(2)t = c(2)t h0 + c(1)t h1 + c(3)t−1h2 + c(2)t−1h3 + c(1)t−1h4
+ c(3)t−2h5 + c(2)t−2h6

r(3)t = c(3)t h0 + c(2)t h1 + c(1)t h3 + c(3)t−1h3 + c(2)t−1h4
+ c(1)t−1h5 + c(3)t−2h6

.

(27)

As before, expressing rt = {r(1)t , r(2)t , r(3)t } above in terms
of the uncoded symbols, one gets

r(1)t = (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h0

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h1

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h2

+ (g(1)
1 st−1 ⊕ g(2)

1 st−2 ⊕ g(3)
1 st−3)h3

+ (g(1)
3 st−2 ⊕ g(2)

3 st−3 ⊕ g(3)
3 st−4)h4

r(2)t = (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h0

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h1

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h2

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h3

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h4

r(3)t = (g(1)
3 st ⊕ g(2)

3 st−1 ⊕ g(3)
3 st−2)h0

+ (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h1

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h2

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h3

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h4

, (28)

for L = 5,

r(1)t = (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h0

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h1

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h2

+ (g(1)
1 st−1 ⊕ g(2)

1 st−2 ⊕ g(3)
1 st−3)h3

+ (g(1)
3 st−2 ⊕ g(2)

3 st−3 ⊕ g(3)
3 st−4)h4

+ (g(1)
2 st−2 ⊕ g(2)

2 st−3 ⊕ g(3)
2 st−4)h5

r(2)t = (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h0

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h1

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h2

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h3

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h4

+ (g(1)
3 st−2 ⊕ g(2)

3 st−3 ⊕ g(3)
3 st−4)h5

r(3)t = (g(1)
3 st ⊕ g(2)

3 st−1 ⊕ g(3)
3 st−2)h0

+ (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h1

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h2

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h3

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h4

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h5

, (29)
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for L = 6,

r(1)t = (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h0

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h1

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h2

+ (g(1)
1 st−1 ⊕ g(2)

1 st−2 ⊕ g(3)
1 st−3)h3

+ (g(1)
3 st−2 ⊕ g(2)

3 st−3 ⊕ g(3)
3 st−4)h4

+ (g(1)
2 st−2 ⊕ g(2)

2 st−3 ⊕ g(3)
2 st−4)h5

+ (g(1)
1 st−2 ⊕ g(2)

1 st−3 ⊕ g(3)
1 st−4)h6

r(2)t = (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h0

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h1

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h2

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h3

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h4

+ (g(1)
3 st−2 ⊕ g(2)

3 st−3 ⊕ g(3)
3 st−4)h5

+ (g(1)
2 st−2 ⊕ g(2)

2 st−3 ⊕ g(3)
2 st−4)h6

r(3)t = (g(1)
3 st ⊕ g(2)

3 st−1 ⊕ g(3)
3 st−2)h0

+ (g(1)
2 st ⊕ g(2)

2 st−1 ⊕ g(3)
2 st−2)h1

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h2

+ (g(1)
3 st−1 ⊕ g(2)

3 st−2 ⊕ g(3)
3 st−3)h3

+ (g(1)
2 st−1 ⊕ g(2)

2 st−2 ⊕ g(3)
2 st−3)h4

+ (g(1)
1 st ⊕ g(2)

1 st−1 ⊕ g(3)
1 st−2)h5

+ (g(1)
3 st−2 ⊕ g(2)

3 st−3 ⊕ g(3)
3 st−4)h6

, (30)

for L = 7. It is clear from (28) to (30) that for 5 ≤ L < 8
rt = {r(1)t , r(2)t , r(3)t } contains {st , st−1, st−2, st−3, st−4},
necessitating super-trellis state Sj,t−1 and Si,t to represent,
respectively, {st−1, st−2, st−3, st−4} and {st , st−1, st−2, st−3}
in order to calculate the transition probability. With
the new information, this author redefines Q in
(24) as

Q =
{
1 if 2 ≤ L < 5
2 if 5 ≤ L < 8 .

The number of super-trellis states required for 5 ≤ L < 8
is thereforeM = 2Q+(K−1) = 2(2)+(2) = 24.

5.1.3 Channel length L
Given any channel memory length L, encoder constraint
length K, code rate Rc = k/n = 1/3, the number of

bits needed to be represented by a superstate can be
determined by Q + (K − 1), where

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if n − 1 ≤ L < 2(n − 1)
2 if 2(n − 1) ≤ L < 3(n − 1)
3 if 3(n − 1) ≤ L < 4(n − 1)

...
...

...
q − 1 if (q − 1)(n − 1) ≤ L < (q − 2)(n − 1)
q if q(n − 1) ≤ L < (q − 1)(n − 1)

,

which in turn can be used to determine the number of
super-trellis states by M = 2Q+(K+1). Keeping track of
the ISI undergone by the coded symbols due to multipath,
and replacing those symbols with their corresponding
uncoded symbols, a model for the received symbols can
be derived.
The probability of a transition from superstate Sj,t−1

superstate Si,t is given by

ωj→i,t(Sj,t−1, Si,t) = P(r(1)t , r(2)t , r(3)t |Sj,t−1, Si,t)P(st),
(31)

which can be rewritten in terms of the uncoded symbols
represented by each state

ωj→i,t(Sj,t−1, Si,t)

=P(r(1)t , r(2)t , r(3)t |st , st−1, . . . , st−log2(M))P(st),
(32)

where

P(r(1)t , r(2)t , r(3)t |st , st−1, . . . , st−log2(M))

= 1√
2πσ

(
− ∑k

i=1 �i,t
2σ 2

)
.

(33)

�i,t can be determined by minimizing the receiver
equations such that

�1,t =
∣∣∣∣∣r(1)t −

L−1∑
l=0

hl(g(1)
u st−m ⊕ g(2)

u s(t−m)−1 ⊕ g(3)
u s(t−m)−2)

∣∣∣∣∣
2

�2,t =
∣∣∣∣∣r(2)t −

L−1∑
l=0

hl(g(1)
v st−n ⊕ g(2)

v s(t−n)−1 ⊕ g(3)
v s(t−n)−2)

∣∣∣∣∣
2

�3,t =
∣∣∣∣∣r(3)t −

L−1∑
l=0

hl(g(1)
w st−o ⊕ g(2)

w s(t−o)−1 ⊕ g(3)
w s(t−o)−2)

∣∣∣∣∣
2

,

(34)

where

u =
⎧⎨
⎩
1 if l = 0, n, 2n, . . .
3 if l = 1, n + 1, 2n + 1, . . .
2 if l = 2, n + 2, 3n + 1, . . .

,

and v = ((u+1) mod 3)+1 andw = ((u+2) mod 3)+1.
Also m, n and o starts at 0 and increases by 1 each time
uncoded symbols from the previous time instant are used
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to create the coded symbol interfering with the current
received symbol such that

m =

⎧⎪⎪⎨
⎪⎪⎩
0 if l = 0
1 if l = 1, 2, 3
2 if l = 4, 5, 6
3 if l = 7, 8, 9

,

n =

⎧⎪⎪⎨
⎪⎪⎩
0 if l = 0, 1
1 if l = 2, 3, 4
2 if l = 5, 6, 7
3 if l = 8, 9

,

o =

⎧⎪⎪⎨
⎪⎪⎩
0 if l = 0, 1, 2
1 if l = 3, 4, 5
2 if l = 6, 7, 8
3 if l = 9

.

Finally, since there are always only two equiprobable
codewords that can follow each codeword, P(st) = 0.5.
Therefore,

ωj→i,t(Sj,t−1, Si,t) = 1
2
√
2πσ

(
− ∑k

i=1 �i,t
2σ 2

)
, (35)

which completely describes the transition from state Sj,t−1
to Si,t .
The model derived for the NI-JED without interleav-

ing can be used to jointly equalize and decode BPSK
modulated coded information transmitted through a mul-
tipath channel with CIR length L, where the convolutional
encoder has constraint length K and the code rate is Rc =
k/n = 1/3. This model can be extended for higher order
modulation alphabets, larger encoder constraint lengths,
and different code rates. f

5.1.4 Computational complexity
The computational complexity is determined by counting
the number of computations performed for each received
data block, and expressed in terms of the uncoded block
length Nu, the CIR length L and the encoder constraint
length K and the modulation alphabet size M. The com-
putational complexity of the NI-JED without interleaving,
for the MLSE and MAP algorithms, is determined by

CCMLSE = O(8KLNuMQ+(K−1)) (36)

and

CCMAP = O(2NuM(Q+(K−1)(8KL + 6)). (37)

Figure 6 shows the normalized computational complex-
ity g of this joint equalizer and decoder, employing the
MLSE algorithm, for a CIR length of L = 2 to L = 10,
constraint lengths K = 2, K = 4, and K = 16, and
modulation alphabet sizes of M = 2, M = 4, M = 16,
andM = 64. Figure 7 shows the complexity of employing

the MAP algorithm for the same parameters, where the
respective complexity curves are only slightly higher than
their corresponding MLSE complexity curves in Figure 6.
It is clear that the computational complexity grows expo-
nentially with an increase in channel memory, encoder
constraint length, and modulation alphabet size, and it
should be clear that computational complexity for long
channel memories and large encoder constraint lengths is
too high for feasible implementation.

5.2 Block interleaving
In [9], it was demonstrated that equalization and decoding
can be performed jointly by transforming the convolu-
tion decoder trellis into a super-trellis, and then using
this super-trellis to perform equalization while decoding.
This is a novel idea in the sense that all the available
information is processed as a whole, and there is no
exchange of information between independent subunits.
This approach achieves optimal performance, because all
calculations on the super-trellis are performed with com-
plete information. The only limitation is that the inter-
leaver has to be a block interleaver and that this interleaver
has a certain depth limit due to the exponential relation-
ship between the interleaver depth and the computational
complexity.
Contrary to this approach, turbo equalization makes

use of two independent subunits, namely a MAP equal-
izer and a MAP decoder, with each unit being supplied
with information regarding the decisions made by the
other unit [3-5]. This results in assumptions and esti-
mations being made by the respective subunits based on
incomplete information, which in turn results in subopti-
mal calculations during subsequent iterations, ultimately
leading to suboptimal performance. Only by iteratively
exchanging extrinsic information between the equalizer
and decoder, where this information is used as prior infor-
mation on the calculations in the next iteration, can the
performance be increased. However, the turbo equalizer
is not limited by the structure of the interleaver, since
interleaving and deinterleaving are performed during each
turbo iteration.
It was shown in [9] that the NI-JED performs opti-

mally and therefore outperforms the turbo equalizer, but
its computational complexity grows unimaginably as the
interleaver depth and the CIR length increase. Despite the
excellent performance of theNI-JED, it is not a viable solu-
tion for practical systems. Although the computational
complexity of a conventional turbo equalizer (CTE) is not
as high, it is still exponentially related to the encoder con-
straint length, as well as the channel memory length, but
it is not influenced by the structure of the interleaver.
In this section, this author attempts to derive a gen-

eral model for the NI-JED proposed in [9], which
can be presented as a function of encoder constraint
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Figure 6 Non-iterative MLSE joint equalizer/decoder normalized computational complexity (without interleaver). Blue circle:M = 2, K = 2;
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length, interleaver depth, and channel memory length.
Knickenberg et al. [9] were very vague as to how the algo-
rithm functions. After explaining the effect of the inter-
leaver on the coded information bits, and the subsequent
effect after passing the information through a multipath
channel, they simply show that the received symbols con-
tain the uncoded information bits, and state that theMAP
algorithm is “invoked”. Nothing is said about the fact that
the received symbols have to be deinterleaved, nor is
it explained how the probabilities between state transi-
tions are determined. The authors of this paper therefore
present the NI-JED for various interleaver depths and then
derive a general model.
Suppose a communication system encodes a source bit

sequence s of length Nu with a rate Rc = k/n = 1/3,
constraint length K = 3, convolutional encoder with gen-
erator polynomials g1 = 4 (1002), g2 = 6 (1102), and
g3 = 3 (0112) in order to produce a coded bit sequence c
of length Nc = Nu/Rc, which is interleaved using a block
interleaver, BPSK modulated, and transmitted through a
multipath channel with a CIR h = {h0, h1} of length L = 2.
The encoder produces coded bits ct = {c(1)t c(2)t c(3)t } from
the uncoded bit st .

5.2.1 Interleaver depth: D = n = 3
When using an n × Nu interleaver, as shown in Figure 8,
the coded sequence

c =
{
c(1)1 , c(2)1 , c(3)1 , c(1)2 , c(2)2 , c(3)2 , . . . ,

c(1)Nu−1, c
(2)
Nu−1, c

(3)
Nu−1, c

(1)
Nu
, c(2)Nu

, c(3)Nu

}
,

is transformed to

c =
{
c(1)1 , c(1)2 , . . . , c(1)t−1, c

(1)
N c(2)1 , c(2)2 , . . . ,

c(2)t−1, c
(2)
N , c(3)1 , c(3)2 , . . . , c(3)t−1, c

(3)
N

}

before transmission, grouping all the first, second, and
third encoder output bits together after interleaving.

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

cNu-2

cNu-2

cNu-2

cNu-1

cNu-1

cNu-1

cNu

cNu

cNu

(1)

(2)

(3)

(1)

(2)

(1) (1) (1)

(2) (2) (2)

(3) (3) (3) (3) (3) (3)

(2) (2)

(1) (1)

Figure 8 n × Nu interleaver.

During transmission the interleaved coded symbols travel
through a multipath channel h = {h0, h1} of length L =
2 and are received, as shown in the graphical model in
Figure 9.h
The noiseless received symbols can therefore be

expressed in terms of the interleaved coded symbols

r(1)t = c(1)t h0 + c(1)t−1h1
r(2)t = c(2)t h0 + c(2)t−1h1
r(3)t = c(3)t h0 + c(3)t−1h1

, (38)

for t = 1, 2, . . . ,Nu, which in turn can be expressed in
terms of the uncoded bits

r(1)t = sth0 + st−1h1
r(2)t = (st ⊕ st−1)h0 + (st−1 ⊕ st−2)h1
r(3)t = (st−1 ⊕ st−2)h0 + (st−2 ⊕ st−3)h1

. (39)

From (39) it is clear that {st , st−1, st−2, st−3} is contained
in r = {r(1)t , r(2)t , r(3)t }. Therefore, the received symbol
sequence rmust be deinterleaved before joint equalization
and decoding can commence.i Deinterleaving r will result
in the sequence

r =
{
r(1)1 , r(1)2 , . . . , r(1)Nu−1, r

(1)
Nu

, r(2)1 , r(2)2 , . . . ,

r(2)Nu−1, r
(2)
Nu

, r(3)1 , r(3)2 , . . . , r(3)Nu−1, r
(3)
Nu

,
}

being transformed to

r =
{
r(1)1 , r(2)1 , r(3)1 , r(1)2 , r(2)2 , r(3)2 , . . . ,

r(1)Nu−1, r
(2)
Nu−1, r

(3)
Nu−1, r

(1)
Nu

, r(2)Nu
, r(3)Nu

}
,

from which it is clear that all r = {r(1)t , r(2)t , r(3)t } are
adjacent and can be used to estimate st using a trellis-
based algorithm, assuming {st−1, st−2, st−3} is known from
previous states.
The NI-JED uses the sum-product algorithm,j as

explained in Section 2.2.1, and the number of super-trellis
states are determined by the interleaver depth (D), the
channel memory length (L − 1) as well as the number of
encoder memory elements (K − 1). Since BPSK modula-
tion is used, the number of states in the super-trellis is
M = 2(D/n)(L−1)+(K−1) [9]. Therefore, M = 8. The num-
ber of states can also be determined by the range of source
bits contained in (39) minus one, since the trellis has to
model state transitions {st−1, st−2, st−3} to {st , st−1, st−2},
which when combined yields {st , st−1, st−2, st−3}. There-
fore, the number of states can also be determined by
M = 24−1 = 8.
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Figure 9 Graphical model for a systemwith a rate Rc = 1/3
convolutional encoder, a 3 × Nu block interleaver and L = 2.

The task of the NI-JED is to produced the MAP of each
uncoded source symbol at time t from the deinterleaved
received symbol sequence, or

P(st|r) =
Nc∑

st† :t† �=t

P(s|r). (40)

The probability of a transition from state Sj,t−1 to state Si,t ,
where i, j = 1, 2, . . . ,M is given by

ωj→i,t(Sj,t−1, Si,t) = P(r(1)t , r(2)t , r(3)t |Sj,t−1, Si,t)P(st),
(41)

where the symbols associated with states Sj,t−1
({st−1, st−2, st−3}), and Si,t ({st , st−1, st−2}) can be
combined so that

ωj→i,t(Sj,t−1, Si,t)=P(r(1)t , r(2)t , r(3)t |st , st−1, st−2, st−3)P(st),
(42)

where

P(r(1)t , r(2)t , r(3)t |st , st−1, st−2, st−3)

= 1√
2πσ

(− ∑n
i=1 �i,t
2σ 2

)
.

(43)

�i,t can be determined by minimizing the receiver
equations in (39) such that

�1,t =
∣∣∣r(1)t − ∑L−1

l=0 hl(st−l)
∣∣∣2

�2,t =
∣∣∣r(2)t − ∑L−1

l=0 hl(st−l ⊕ s(t−1)−l)
∣∣∣2

�3,t =
∣∣∣r(3)t − ∑L−1

l=0 hl(s(t−1)−l ⊕ s(t−2)−l)
∣∣∣2
, (44)

where the calculation of each �i,t , i = 1, 2, . . . , n is deter-
mined by the structure of the encoder. Finally, since there
are only two equiprobable bits that can be transmitted,
P(st) = 0.5. Therefore,

ωj→i,t(Sj,t−1, Si,t) = 1
2
√
2πσ

(− ∑n
i=1 �i,t
2σ 2

)
, (45)

which completely describes the transition from state Sj,t−1
to Si,t .

5.2.2 Interleaver depth:D = 2n = 6
In the above explanation, the depth of the block inter-
leaver was D = n. It is subsequently assumed that an
interleaver with depth D = 2n is used. Applying the
2n × Nu/2 interleaver in Figure 10 to the coded symbols

c =
{
c(1)1 , c(2)1 , c(3)1 , c(1)2 , c(2)2 , c(3)2 , . . . ,

c(1)Nu−1, c
(2)
Nu−1, c

(3)
Nu−1, c

(1)
Nu
, c(2)Nu

, c(3)Nu

}
,
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Figure 10 2n × Nu/2 interleaver.

transforms it to

c = {c(1)1 , c(1)3 , . . . , c(1)Nu−1, c
(2)
1 , c(2)3 , . . . , c(2)Nc−1, c

(3)
1 , c(3)3 , . . . ,

c(3)Nc−1, . . . , c
(1)
2 , c(1)4 , . . . , c(1)Nc

, c(2)2 , c(2)4 , . . . ,

c(2)Nc
, c(3)2 , c(3)4 , . . . , c(3)Nc

}.
(46)

The received symbols can be expressed in terms of the
coded symbols

r(1)t = c(1)t h0 + c(1)t−2h1
r(2)t = c(2)t h0 + c(2)t−2h1
r(3)t = c(3)t h0 + c(3)t−2h1

, (47)

where t = 1, 2, . . . ,Nu, which in turn can be expressed in
terms of the uncoded bits

r(1)t = sth0 + st−2h1
r(2)t = (st ⊕ st−1)h0 + (st−2 ⊕ st−3)h1
r(3)t = (st−1 ⊕ st−2)h0 + (st−3 ⊕ st−4)h1

. (48)

Comparing (47) and (48) with (38) and (39), respec-
tively, reveals that the system memory has doubled with
a twofold increase in interleaver depth (from D = n to
D = 2n). As before, the received symbol sequence r
must be deinterleaved. Deinterleaving r will results in the
sequence

r = {r(1)1 , r(1)3 , . . . , r(1)Nu−1, r
(2)
1 , r(2)3 , . . . , r(2)Nr−1, r

(3)
1 , r(3)3 , . . . ,

r(3)Nr−1, . . . , r
(1)
2 , r(1)4 , . . . , r(1)Nr

, r(2)2 , r(2)4 , . . . ,
r(2)Nr

, r(3)2 , r(3)4 , . . . , r(3)Nr
}.

being transformed to

r = {r(1)1 , r(2)1 , r(3)1 , r(1)2 , r(2)2 , r(3)2 , . . . . . . ,

r(1)Nu−1, r
(2)
Nu−1, r

(3)
Nu−1, r

(1)
Nu

, r(2)Nu
, r(3)Nu

},

which ensures that all r = {r(1)t , r(2)t , r(3)t } are adja-
cent and can be used to estimate st , assuming that
{st−1, st−2, st−3, st−4} is known from previous states.
As explained earlier, the number of super-trellis states

can be determined by the range of source bits in (48)
minus one. Counting the range of source bits, minus one,
gives the number of states M = 25−1 = 16. Alterna-
tively, the number of trellis states can be determined by
M = 2D(L−1)+(K−1) which givesM = 22(1)+2 = 16. There-
fore, for an interleaver with depth D = 2n, the calculation
of state transition probabilities will require 4 bits per state.
As before, the probability of a transition from state Sj,t−1

to state Si,t , where i, j = 1, 2, . . . ,M is given by

ωj→i,t(Sj,t−1, Si,t) = P(r(1)t , r(2)t , r(3)t |Sj,t−1, Si,t)P(st),
(49)

which can be written as

ωj→i,t(Sj,t−1, Si,t)

= P(r(1)t , r(2)t , r(3)t |st , st−1, st−2, st−3, st−4)P(st),
(50)

where

P(r(1)t , r(2)t , r(3)t |st , st−1, st−2, st−3, st−4)

= 1√
2πσ

(− ∑n
i=1 �i,t
2σ 2

)
.

(51)

�i,t can be determined by minimizing the receiver
equations in (48) such that

�1,t =
∣∣∣r(1)t − ∑L−1

l=0 hl(st−2l))
∣∣∣2

�2,t =
∣∣∣r(1)t − ∑L−1

l=0 hl(st−2l ⊕ s(t−1)−2l)
∣∣∣2

�3,t =
∣∣∣r(1)t − ∑L−1

l=0 hl(s(t−1)−2l ⊕ s(t−2)−2l)
∣∣∣2
. (52)

By comparing (52) and (44), it is already clear that the
interleaver depth has an effect on the computational com-
plexity of the NI-JED. Apart from the increase in the
number of super-trellis states as a function of interleaver
depth, this is the only part of the algorithm that is differ-
ent from when the interleaver depth is D = n. Therefore,
the transition probabilities are calculated as before.

5.2.3 Interleaver depth: D = 3n = 9
In order to derive a general model for the NI-JED, the sys-
tem parameters with different interleaver depths are ana-
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lyzed. Here it is assumed that the 3n × Nu/3 interleaver
in Figure 11 is used. Interleaving the coded symbols

c = {c(1)1 , c(2)1 , c(3)1 , c(1)2 , c(2)2 , c(3)2 , . . . ,

c(1)Nu−1, c
(2)
Nu−1, c

(3)
Nu−1, c

(1)
Nu
, c(2)Nu

, c(3)Nu
},

with a 3n × Nu/3 interleaver, will result in

c = { c(1)1 , c(1)4 , c(1)7 , . . . , c(1)Nu−2, c
(2)
1 , c(2)4 , c(2)7 , . . . ,

c(2)Nu−2, c
(3)
1 , c(3)4 , c(3)7 , . . . , c(3)Nu−2, . . .

c(1)2 , c(1)5 , c(1)6 , . . . , c(1)Nu−1, c
(2)
2 , c(2)5 , c(2)6 , . . . ,

c(2)Nu−1, c
(3)
2 , c(3)5 , c(3)6 , . . . , c(3)Nu−1, . . .

c(1)3 , c(1)6 , c(1)9 , . . . , c(1)Nu
, c(2)2 , c(2)5 , c(2)9 , . . . ,

c(2)Nu
, c(3)2 , c(3)5 , c(3)9 , . . . , c(3)Nu

}

.

Again the received symbols can be expressed in terms of
the coded symbols

r(1)t = c(1)t h0 + c(1)t−3h1
r(2)t = c(2)t h0 + c(2)t−3h1
r(3)t = c(3)t h0 + c(3)t−3h1

, (53)
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Figure 11 3n × Nu/3 interleaver.

where t = 1, 2, . . . ,Nu, which can be expressed in terms
of the uncoded bits

r(1)t = sth0 + st−3h1
r(2)t = (st ⊕ st−1)h0 + (st−3 ⊕ st−4)h1
r(3)t = (st−1 ⊕ st−2)h0 + (st−4 ⊕ st−5)h1

, (54)

from which it is clear that the system memory is
once again affected by the increase in interleaver depth.
Deinterleaving r

r = { r(1)1 , r(1)4 , r(1)7 , . . . , r(1)Nu−2, r
(2)
1 , r(2)4 , r(2)7 , . . . ,

r(2)Nu−2, r
(3)
1 , r(3)4 , r(3)7 , . . . , r(3)Nu−2, . . .

r(1)2 , r(1)5 , r(1)6 , . . . , r(1)Nu−1, r
(2)
2 , r(2)5 , r(2)6 , . . . ,

r(2)Nu−1, r
(3)
2 , r(3)5 , r(3)6 , . . . , r(3)Nu−1, . . .

r(1)3 , r(1)6 , r(1)9 , . . . , r(1)Nu
, r(2)3 , r(2)6 , r(2)9 , . . . ,

r(2)Nu
, r(3)3 , r(3)6 , r(3)9 , . . . , r(3)Nu

}

results in

r = {r(1)1 , r(2)1 , r(3)1 , r(1)2 , r(2)2 , r(3)2 , . . . ,

r(1)Nu−1, r
(2)
Nu−1, r

(3)
Nu−1, r

(1)
Nu

, r(2)Nu
, r(3)Nu

},

which ensures that all r = {r(1)t , r(2)t , r(3)t } are adja-
cent and can be used to estimate st , assuming that
{st−1, st−2, st−3, st−4, st−5} is known from previous states.
Therefore, the number of super-trellis states for an inter-
leaver depth of D = 3n and channel memory length L − 1
isM = 2D(L−1)+(K−1) which givesM = 23(1)+2 = 32.
The probability of a transition from state Sj,t−1 to state

Si,t , where i, j = 1, 2, . . . ,M is given by

ωj→i,t(Sj,t−1, Si,t) = P(r(1)t , r(2)t , r(3)t |Sj,t−1, Si,t)P(st),
(55)

which can be written as

ωj→i,t(Sj,t−1, Si,t)

=P(r(1)t , r(2)t , r(3)t |st , st−1, st−2, st−3, st−4, st−5)P(st).
(56)

where

P(r(1)t , r(2)t , r(3)t |st , st−1, st−2, st−3, st−4, st−5)

= 1√
2πσ

(− ∑n
i=1 �i,t
2σ 2

)
.

(57)
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�i,t can be determined by minimizing the receiver
equations in (48) such that

l�1,t =
∣∣∣∣∣r(1)t −

L−1∑
l=0

hl(st−3l))

∣∣∣∣∣
2

�2,t =
∣∣∣∣∣r(1)t −

L−1∑
l=0

hl(st−3l ⊕ s(t−1)−3l)

∣∣∣∣∣
2

�3,t =
∣∣∣∣∣r(1)t −

L−1∑
l=0

hl(s(t−1)−3l ⊕ s(t−2)−3l)

∣∣∣∣∣
2

. (58)

5.2.4 Interleaver depth: D = dn
After deriving the NI-JED for various interleaver depths it
is now possible to present a general model for this algo-
rithm for any nk × Nu/d interleaver. Even though the
channel memory length L−1 remained fixed at L−1 = 1,
and the number of encoder output bits remained fixed at
n = 3 throughout the analysis, it is easy to generalize the
model for any L and n, as will be shown.
When an nk × Nu/d interleaver is used to interleave the

coded symbol sequence

c = {c(1)1 , c(2)1 , c(3)1 , c(1)2 , c(2)2 , c(3)2 , . . . . . . ,

c(1)Nu−1, c
(2)
Nu−1, c

(3)
Nu−1, c

(1)
Nu
, c(2)Nu

, c(3)Nu
},

encoded with an encoder that produces n output bits, the
result will be

c = { c(1)1 , c(1)1+d, c
(1)
1+2d, . . . , c

(1)
Nu−(d−1), c

(2)
1 , c(2)1+d, c

(2)
1+2d, . . . ,

c(2)Nu−(d−1), . . . , c
(n)
1 , c(n)

1+d, c
(n)

1+2d, . . . , c
(n)

Nu−(d−1), . . .
c(1)2 , c(1)2+d, c

(1)
1+2d, . . . , c

(1)
Nu−(d−2), c

(2)
2 , c(2)2+d, c

(2)
2+2d, . . . ,

c(2)Nu−(d−2), . . . , c
(n)
2 , c(n)

2+d, c
(n)

2+2d, . . . , c
(n)

Nu−(d−2), . . .
...

...
...

...
...

...
c(1)d , c(1)d+d, c

(1)
d+2d, . . . , c

(1)
Nu
, c(2)d , c(2)d+d, c

(2)
d+2d, . . . ,

c(2)Nu
, . . . , c(n)

d , c(n)

d+d, c
(n)

d+3d, . . . , c
(n)
Nu

}.

Transmitting the interleaved code symbol sequence
through amultipath channel with a CIR length of L, where
the encoder produces n output bits at a rate of Rc = 1/n,
the received symbols can be expressed in terms of the
coded symbols

r(1)t = c(1)t h0 + c(1)t−dh1 + c(1)t−2dh2 + · · · + c(1)t−(L−1)dhL−1

r(2)t = c(2)t h0 + c(2)t−dh1 + c(2)t−2dh2 + · · · + c(2)t−(L−1)dhL−1
...

...
...

...
r(n)
t = c(n)

t h0 + c(n)

t−dh1 + c(n)

t−2dh2 + · · · + c(n)

t−(L−1)dhL−1

,

(59)

which can be rewritten as

r(1)t = ∑L−1)
l=0 c(1)t−ldhl

r(2)t = ∑L−1)
l=0 c(2)t−ldhl

...
...

r(n)
t = ∑L−1)

l=0 c(3)t−ldhl

, (60)

which can be expressed in terms of the uncoded bits

r(1)t = ∑L−1)
l=0

(
(g(1)

1 st−ld) ⊕ (g(2)
1 s(t−1)−ld)

⊕(g(3)
1 s(t−2)−ld) ⊕ · · · ⊕ (g(K)

1 s(t−(K−1))−ld)
)
hl

r(2)t = ∑L−1)
l=0

(
(g(1)

2 st−ld) ⊕ (g(2)
2 s(t−1)−ld)

⊕(g(3)
2 s(t−2)−ld) ⊕ · · · ⊕ (g(K)

2 s(t−(K−1))−ld)
)
hl

...
...

...
...

...
...

r(n)
t = ∑L−1)

l=0
(
(g(1)

n st−ld) ⊕ (g(2)
n s(t−1)−ld)

⊕(g(3)
n s(t−2)−ld) ⊕ · · · ⊕ (g(K)

n s(t−(K−1))−ld)
)
hl

,

(61)

where K is the encoder constraint length and gen-
erator polynomials g1 = {g(1)

1 , g(2)
1 , . . . , g(K)

1 }, g2 =
{g(1)

2 , g(2)
2 , . . . , g(K)

2 } and gn = {g(1)
n , g(2)

n , . . . , g(K)
n }. Deinter-

leaving r will result in the sequence

r = { r(1)1 , r(1)1+d , r
(1)
1+2d, . . . , r

(1)
Nu−(d−1), r

(2)
1 , r(2)1+d, r

(2)
1+2d , . . . ,

r(2)Nu−(d−1), . . . , r
(n)
1 , r(n)

1+d , r
(n)

1+2d, . . . , r
(n)

Nu−(d−1), . . .
r(1)2 , r(1)2+d , r

(1)
1+2d, . . . , r

(1)
Nu−(d−2), r

(2)
2 , r(2)2+d, r

(2)
2+2d , . . . ,

r(2)Nu−(d−2), . . . , r
(n)
2 , r(n)

2+d , r
(n)

2+2d, . . . , r
(n)

Nu−(d−2), . . .
...

...
...

...
...

...
r(1)d , r(1)d+d , r

(1)
d+2d, . . . , r

(1)
Nu

, r(2)d , r(2)d+d, r
(2)
d+2d, . . . ,

r(2)Nu
, . . . , r(n)

d , r(n)

d+d, r
(n)

d+3d, . . . , r
(n)
Nu

}.

being transformed to

r = {r(1)1 , . . . , r(n)
1 , r(1)2 , . . . , r(n)

2 , . . . ,

r(1)Nu−1, . . . , r
(n)
Nu−1, r

(1)
Nu

, r(2)Nu
, r(3)Nu

},

from which it is clear that all r = {r(1)t , . . . , r(n)
t }

are adjacent and can be used to estimate st using
a trellis-based algorithm, assuming {st−1, st−2, st−3, . . . ,
st−(D(L−1)+(K−1))} is known from previous states. The
number of super-trellis states for an interleaver depth of
D = dn, channel memory length L − 1, and encoder
constraint length K, isM = 2D(L−1)+(K−1).
The probability of a transition from state Sj,t−1 to state

Si,t , where i, j = 1, 2, . . . ,M is given by

ωj→i,t(Sj,t−1, Si,t) = P(r(1)t , . . . , r(n)
t |Sj,t−1, Si,t)P(st),

(62)
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which can be written as

ωj→i,t(Sj,t−1, Si,t)

= P(r(1)t , . . . , r(n)
t |st , st−1, st−2, . . . , st−(d(L−1)+(K−1)))P(st),

(63)

where

P(r(1)t , . . . , r(n)
t |st , st−1, st−2, . . . , st−(d(L−1)+(K−1)))

= 1√
2πσ

(
− ∑n)

i=1 �i,t
2σ 2

)

(64)

and P(st) = 0.5 as before.
�i,t can be determined by minimizing the receiver

equations in (61) such that

�1,t =
∣∣∣r(1)t − ∑L−1)l=0

(
(g(1)

1 st−ld) ⊕ (g(2)
1 s(t−1)−ld)

⊕ . . . ⊕ (g(K)
1 s(t−(K−1))−ld)

)
hl

∣∣∣2
�2,t =

∣∣∣r(2)t − ∑L−1)
l=0

(
(g(1)

2 st−ld) ⊕ (g(2)
2 s(t−1)−ld)

⊕ . . . ⊕ (g(K)
2 s(t−(K−1))−ld)

)
hl

∣∣∣2
...

...
...

...
...

...
�n,t =

∣∣∣r(n)
t − ∑L−1)

l=0

(
(g(1)

n st−ld) ⊕ (g(2)
n s(t−1)−ld)

⊕ . . . ⊕ (g(K)
n s(t−(K−1))−ld)

)
hl

∣∣∣2

.

(65)

This algorithm can therefore be used to jointly, non-
iteratively equalize, and decode BPSK modulated infor-
mation, encoded with a rate Rc = 1/n, constraint length
K convolutional encoder, transmitted through amultipath
channel with a CIR length of L, using an interleaver with
depth D = dn. This concludes the derivation of a general
model for the NI-JED.

5.2.5 Computational complexity
The computational complexity of the NI-JED, with block
interleaving, is determined by counting the number of
computations performed for each data block received, and
expressed in terms of the uncoded block length Nu, the
CIR length L and the encoder constraint length K, the
modulation alphabet size M, and the interleaver depth
D. The computational complexity of the NI-JED without
interleaving, using the MAP algorithm, is determined by

CCMAP = O(2NuMD(L−1)+(K−1)(8KL + 6)). (66)

Figure 12 shows the normalized computational complex-
ity for a CIR length of L = 2 to L = 10, encoder constraint
lengths K = 2, K = 4, K = 6, a modulation alphabet
size of M = 2 and interleaver depths of D = 3, D = 6,
D = 9, andD = 12. It is clear that the computational com-
plexity grows exponentially with an increase in channel

memory, encoder constraint length and interleaver depth.
Figure 13 shows the normalized computational complex-
ity for the same parameters but with a fixed interleaver
depth of D = 6 and varying modulation alphabet sizes
of M = 2, M = 4, M = 16, and M = 64, resulting in
an increase in complexity with an increase in modulation
alphabet size.

6 Simulation results
The performance of the NI-JED is evaluated for BPSK
modulation with and without interleaving, and it is com-
pared to that of a CTE, where the number of CTE itera-
tions is Z = 10. The CIR h = {h0, h1, . . . , hL−1} of length
L is normalized such that h′h = 1, the uncoded and coded
block lengths are Nu = 600 and Nu = 1800, respectively,
the various channel lengths are L = 2, L = 3, and L = 4,
and interleaver depths of D = 1, D = k, D = 2k, and
D = 3k were used, where k = 3 is the number of encoder
output bits. Uncoded and coded data block lengths are
Nu = 600 and Nc = 1800, respectively.
Figure 14 shows the BER performance of the NI-JED

compared to that of the CTE, for various interleaver
depths and a channel length of L = 2. From Figure 14
it can be seen that the performance of both algorithms
improves with an increase in the interleaver depth, except
for an increase from D = 1 to D = 3. It is clear that the
NI-JED outperforms the CTE, even thought the CTE uses
multiple iterations, while the NI-JED performs close to
the coded additive white Gaussian noise (AWGN) bound
when the interleaver depth isD = 9. In Figures 15 and 16,
the performance of the NI-JED is again compared to that
of the CTE for various interleaver depths, for L = 3 and
L = 4, respectively. As before, the NI-JED outperforms
the CTE. From Figures reffig14, 15, and 16, it is clear that
the NI-JED is superior in terms of performance, and it is
in fact optimal. Even though the NI-JED outperforms the
CTE, its vast computational complexity inhibits it from
finding practical application. The CTE is therefore used as
an alternative solutions in practical systems.

7 Conclusions
In this article, optimal equalization and decoding using
theMLSE (min-sum) andMAP (sum-product) algorithms
were discussed. It was shown how the MLSE algorithm
can be used to determine the most likely sequence of esti-
mates, while theMAP algorithm can be used to determine
optimal posterior probabilities regarding the transmitted
symbols or codewords. NI-JED was also discussed, first
assuming no interleaving and then assuming that special
block interleavers were used for interleaving. As a result,
a general model was derived for systems transmitting
convolutionally encoded BPSK modulated information
through a multipath channel of length L, where the infor-
mation is interleaved with an interleaver of depth D = dk,
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and where the uncoded information is encoded with a rate
Rc = 1/k encoder with constraint length K. The compu-
tational complexity was analyzed by counting the number
of computations performed, given certain system param-
eters. The complexity of the NI-JED without interleaving

grows exponentially with an increase in either channel
memory length or encoder constraint length, while the
complexity of the NI-JED with block interleaving is expo-
nentially related to the channel memory length, encoder
constraint length, and the interleaver depth.
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From these analyses, it is clear that NI-JED is extremely
expensive in terms of the number of computations
required, even for moderate channel memory lengths,
encoder constraint lengths, and interleaver depths. In
order to achieve acceptable performance in a multipath
fading environment, block interleavers with depths of
multiple orders of the encoder output length are required
to separate adjacent coded symbols sufficiently. Under
these conditions the NI-JED becomes infeasible. Ideally, a
random interleaver will allow for maximum performance
gains, but the NI-JED cannot be applied when interleaving
is performed with a random interleaver. The CTE is there-
fore applied in systems transmitting randomly interleaved
coded information through a multipath channel.
Turbo equalization is used as an alternative to optimal

NI-JED, which is not feasible because of computational
complexity constraints discussed before, to the extent
that approximate inference via the iterative exchange of
information is the last resort. Turbo equalization is not
optimal, as demonstrated in this article, but it is the best
alternative amongst all iterative joint equalization and
decoding solutions, as its constituent parts—the MAP
equalizer and the MAP decoder—produce optimal pos-
terior estimates about the respective coded and uncoded
transmitted symbols.

Endnotes
aIt is assumed that GF(2) decoding is used as usual.
bdξ ∈ {−1, 1} for BPSK.

cThe magnitude of L(d̃t) gives an indication of the confi-
dence of that estimate.
dK is also known as the constraint length.
eDuring decoding, the output bits ct = {c(1)t , . . . , c(n)

t } are
made bipolar because the elements of ct are compared to
received symbols, and not bits.
fJoint equalization and decoding using a higher order
modulation alphabet will require convolutional encoding
to be performed in GF(M), where M is the modulation
alphabet size.
gThe computational complexity is normalized by the
number of coded transmitted symbols Nc.
hNote that the channel coefficients are not shown in
Figure 9.
iThis step in not mentioned, nor implied in [9], but has
been inferred by the author of this article.
jThe min-sum algorithm can also be used.
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