
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 729378, 12 pages
doi:10.1155/2010/729378

Research Article

K-Means Based Fingerprint Segmentation with
Sensor Interoperability

Gongping Yang,1 Guang-Tong Zhou,1 Yilong Yin,1 and Xiukun Yang2

1 School of Computer Science and Technology, Shandong University, Jinan 250101, China
2College of Information and Communication, Harbin Engineering University, Harbin 150028, China

Correspondence should be addressed to Yilong Yin, ylyin@sdu.edu.cn

Received 29 August 2009; Revised 20 January 2010; Accepted 25 March 2010

Academic Editor: Wilfried R. Philips

Copyright © 2010 Gongping Yang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A critical step in an automatic fingerprint recognition system is the segmentation of fingerprint images. Existing methods are
usually designed to segment fingerprint images originated from a certain sensor. Thus their performances are significantly
affected when dealing with fingerprints collected by different sensors. This work studies the sensor interoperability of fingerprint
segmentation algorithms, which refers to the algorithm’s ability to adapt to the raw fingerprints obtained from different sensors.
We empirically analyze the sensor interoperability problem, and effectively address the issue by proposing a k-means based
segmentation method called SKI. SKI clusters foreground and background blocks of a fingerprint image based on the k-means
algorithm, where a fingerprint block is represented by a 3-dimensional feature vector consisting of block-wise coherence, mean,
and variance (abbreviated as CMV). SKI also employs morphological postprocessing to achieve favorable segmentation results. We
perform SKI on each fingerprint to ensure sensor interoperability. The interoperability and robustness of our method are validated
by experiments performed on a number of fingerprint databases which are obtained from various sensors.

1. Introduction

An important preprocessing step in an automatic fingerprint
recognition system is the segmentation of fingerprint images
[1, 2]. Effective segmentation cannot only reduce the time
of subsequent processing, but also significantly improve
the reliability of feature extraction. Segmentation is the
decomposition of an image into various components. A
captured fingerprint image usually consists of two compo-
nents, which are called the foreground and the background.
The foreground is the component that originated from
the contact of a fingertip with the sensor, and the noisy
area usually around the borders of the image is called the
background.

A number of fingerprint segmentation methods are
known from literature, which can be roughly divided into
block-wise methods [3–12] and pixel-wise methods [13–
16]. Block-wise methods first partition a fingerprint image
into nonoverlapping blocks of the same size, and then
classify the blocks into foreground and background based

on the extracted block-wise features. Pixel-wise methods
classify pixels through the analysis of pixel-wise features. The
commonly used features in fingerprint segmentation include
gray-level features, orientation features, frequency domain
features, and so forth.

Depending on whether the label information is used,
the fingerprint segmentation methods can also be treated
as unsupervised [4, 10, 14, 15, 17] and supervised ones [6–
9, 11, 13, 16]. Unsupervised segmentation usually chooses an
appropriate threshold for a certain feature; according to the
threshold, the blocks or pixels are divided into background
and foreground. Note that unsupervised segmentation does
not require any label information. Supervised methods train
linear or nonlinear classifiers based on labeled pixels or
blocks. The classifier is then used to predict new blocks
or pixels. Note that most existing methods are designed to
segment fingerprints originated from a certain sensor; while
the models have to be retrained as the sensor changes (It
is worth noting that the various fingerprint databases are
usually collected by different sensors.).
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The problem of biometric sensor interoperability has
attracted a lot of research interest during the past few years
[18–27]. Sensor interoperability refers to “the ability of a
biometric system to adapt to the raw data obtained from
a variety of sensors” [18]. Fingerprint recognition systems,
which are usually designed for fingerprints originating from
a certain sensor, also suffer from the sensor interoperability
problem. The performances of fingerprint segmentation,
enhancement, and matching may drop significantly when
dealing with fingerprints collected by different sensors, due
to the various image qualities, resolutions, and gray-levels.

Ross and Jain [18] raised the sensor interoperability
problem in fingerprint recognition by matching fingerprint
images originated from an optical sensor and a solid-
state sensor, respectively. The experiments showed that the
matching performance drastically decreases as the sensor
changes. Later, the work in [19, 20] tried to improve sensor
interoperability of fingerprint matcher through a Thin Plate
Splines (TPS) based nonlinear calibration scheme. More
works dedicated in this research field can be found in [21–
27].

Note that one of the assumptions in interoperable
fingerprint matching is that the fingerprint images have
been properly segmented. However, fingerprint segmenta-
tion also suffers from the sensor interoperability problem.
On one hand, a feature obtained from different sensors
may be confused, resulting in that a block or a pixel may
be considered foreground under the view of one sensor
while classified as background from another sensor. On
the other hand, most segmentation methods train and test
on one fingerprint database collected by a certain sensor,
and it is inevitable to retrain the models when dealing
with other databases. Therefore, the sensor interoperability
problem has to be properly addressed by designing robust
fingerprint segmentation methods especially for applications
with various sensors. However, to the best of our knowledge,
existing works for sensor interoperability problem mainly
focus on the area of fingerprint matching, leaving the
sensor interoperability problem in fingerprint segmentation
remains untouched. A recent work [28] studied the feature
selection for sensor interoperable fingerprint segmentation,
but it is a different problem from the one we addressed here.

This work first empirically analyzes the sensor interop-
erability problem in fingerprint segmentation. To effectively
address this problem, we propose a k-means based segmen-
tation method called SKI, that is, segmentation based on k-
means for sensor Interoperability. SKI clusters foreground
and background blocks of a fingerprint image based on the
k-means algorithm. Here a fingerprint block is represented
by a 3-dimensional feature vector consisting of block-
wise coherence, mean, and variance (which are abbreviated
as CMV). SKI employs morphological postprocessing to
achieve favorable segmentation results. We perform SKI
on each fingerprint to ensure sensor interoperability. The
sensor interoperability and robustness of SKI are validated by
experiments performed on a number of fingerprint databases
which are obtained from various sensors.

This paper is organized as follows. Section 2 raises the
sensor interoperability problem through empirical studies.

(a) (b)

Figure 1: Two fingerprint images originated from two different
sensors.

Section 3 proposes the SKI method, followed by experiments
reported in Section 4. Finally, Section 5 concludes this work
and discusses future directions.

2. The Sensor Interoperability Problem

Due to the various imaging principles, fingerprints obtained
from different sensors usually have different resolutions,
sizes, and feature distributions. For example, the two images
shown in Figure 1 are originated from two different sensors,
and it can be observed that the background gray-level of the
left image is higher than the right one. Thus, we would not be
able to achieve desirable segmentation accuracy on the two
fingerprint images simultaneously if a fixed threshold is set
for gray-level mean.

In order to investigate the influence of various sensors
on the segmentation performance, we randomly select fin-
gerprints from a number of open databases and analyze the
feature histograms and distributions of these fingerprints.
Firstly, each fingerprint image is partitioned into nonover-
lapping blocks of the same size, and for each block, the
coherence, mean, and variance features are extracted. Then
the blocks are manually labeled into two classes: foreground
blocks and background blocks. Here three volunteers were
asked to label the segmented blocks, and then we used
a majority voting scheme to decide the ground truth
labels: a block is regarded as foreground if two or more
volunteers consider it as foreground; otherwise, the block is
background. Finally we draw histogram and distribution for
the labeled blocks of images originating from same sensor
as well as from different sensors, and investigate sensor
interoperability problem existing in current fingerprint
segmentation methods.

2.1. Features. The features of coherence, mean, and variance
(i.e., CMV) are proposed in [13] to capture texture and gray-
level information of local image area around a pixel. Here
we modify the definition of CMV and represent each block
with a 3-dimensional feature vector consisting of block-wise
coherence, mean, and variance. In detail, a fingerprint image
is partitioned into nonoverlapping blocks with the same size
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Table 1: FVC fingerprint database sensor list.

Database Sensor type Image size Resolution

FVC2000 DB1 Low-cost Optical Sensor “Secure Desktop
Scanner” by KeyTronic

300× 300 500 dpi

FVC2000 DB2 Low-cost Capacitive Sensor “TouchChip”
by ST Microelectronics

256× 364 500 dpi

FVC2000 DB3 Optical Sensor “DF-90” by Identicator
Technology

448× 478 500 dpi

FVC2002 DB1 Optical Sensor “TouchView II” by Identix 388× 374 500 dpi

FVC2002 DB2 Optical Sensor “FX2000” by Biometrika 296× 560 569 dpi

FVC2002 DB3 Capacitive Sensor “100 SC” by Precise
Biometrics

300× 300 500 dpi

FVC2004 DB1 Optical Sensor “V300” by CrossMatch 640× 480 500 dpi

FVC2004 DB2 Optical Sensor “U.are.U 4000” by Digital
Persona

328× 364 500 dpi

FVC2004 DB3 Thermal sweeping Sensor “FingerChip
FCD4B14CB” by Atmel

300× 480 512 dpi

of w ∗ w pixels (w is a positive integer, w > 1, usually
w = 8, 12, 16), and for each block, the coherence, mean, and
variance are extracted as follows.

(1) Coherence (C). The coherence measures how well the
pixel gradients in a block B are pointing in the same
direction. The block-wise coherence is defined as

C =

√(
Gxx −Gyy

)2
+ 4G2

xy

Gxx + Gyy
, (1)

where Gxx = ∑
(x,y)∈B G2

x, Gyy = ∑
(x,y)∈B G2

y ,Gxy =∑
(x,y)∈B GxGy , and (Gx,Gy) is the local gradient of a pixel

(x, y) based on Sobel operator with 3∗3 masks
[ −1 0 1
−2 0 2
−1 0 1

]
and[−1 −2 −1

0 0 0
1 2 1

]
, respectively. We set C = 0 if Gxx + Gyy = 0.

(2) Mean (M). Let g(x, y) denotes the gray-level of a pixel
(x, y) in block B, then the block-wise mean for B is given by

M = 1
w ∗w

∑
(x,y)∈B

g
(
x, y

)
. (2)

(3) Variance (V). The block-wise variance for block B is
defined as

V = 1
w ∗w

∑
(x,y)∈B

(
g(x, y)−M

)2, (3)

where M is defined the same as in (2).
In addition, we normalize the CMV values into [0, 1]

using Min-max normalization in order to carry on the
following processes.

2.2. Fingerprint Databases. Experiments in this subsection
are conducted using three open fingerprint databases, that
is, FVC2000 [29], FVC2002 [30], and FVC2004 [31]. Each

Table 2: Average number of foreground and background blocks
over the 10 images selected from each subdatabase.

Subdatabase Foreground Background All

FVC2000
DB1 1069.8 299.2 1369

DB2 1147.2 292.8 1440

DB3 1819.4 1484.6 3304

FVC2002
DB1 1290.3 917.7 2208

DB2 1662.4 927.6 2590

DB3 817.6 551.4 1369

FVC2004
DB1 1550.7 3249.3 4800

DB2 1136.9 708.1 1845

DB3 1498.7 721.3 2220

open database is composed of 4 subdatabases, where the first
3 subdatabases are collected from three different types of
sensors, and the last subdatabase is generated synthetically.
For example in FVC2000, four subdatabases imply the up-
to-date fingerprint sensing techniques: DB1 and DB2 were
collected from two small-size and low-cost sensors, that
is, optical sensor and capacitive sensor; DB3 was collected
from a higher quality large area optical sensor; DB4 was
synthetically generated. Each database consists of a training
set of 80 images and a test set of 800 images. The sensors used
in the open databases are presented in Table 1.

In our experiments, we randomly select 10 fingerprint
images from each real subdatabase to construct a database
containing 90 images, and the empirical studies are described
in the next subsection.

2.3. Experiments and Analysis. We partition each of the 90
fingerprint images into nonoverlapping blocks with the same
size of 8 ∗ 8, and manually label the foreground blocks and
background blocks. The numbers of foreground/background
blocks in every subdatabase are listed in Table 2. In the
following, we will compare the CMV histograms and
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Figure 2: CMV histograms and distribution of FVC2000 DB1 81 3.tif.

distributions of a single fingerprint, fingerprints from the
same subdatabase, fingerprints from the same database, and
fingerprints from different databases, respectively.

We first investigate the CMV histograms and distribution
for each fingerprint image. We give a sample result in
Figure 2 which shows the CMV histograms and distribution
of 81 3.tif in FVC2000 DB1. It shows that for a fair-quality
fingerprint image, the CMV distribution of foreground and
background blocks are separated into two distinguished clus-
ters. The CMV histograms also show that even under a single
view of coherence (mean or variance), the foreground and
background blocks are still statistically separable. Actually in

most cases, the foreground and background blocks collected
from a single fingerprint are statistically separable, and thus,
a good segmentation performance can be achieved for this
single fingerprint image.

Then we compare the CMV distribution of a single
fingerprint with that of the 10 fingerprints in the same
subdatabase. For example, Figure 3 shows the CMV his-
tograms and distribution of the 10 fingerprints in FVC2000
DB1. Compared with Figure 2 and experimental results of
the other 9 fingerprints in FVC2000 DB1, we can see that
the feature distributions of multiple fingerprints from the
same subdatabase are consistent. Thus, it is not difficult
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Figure 3: CMV histograms and distribution of the 10 fingerprints in FVC2000 DB1.

to understand that traditional segmentation methods can
achieve good segmentation performance on fingerprint
images in the same subdatabase.

For fingerprints obtained from different sensors, the
extracted feature may be confused due to the various image
qualities, resolutions, and gray-levels. For example, Figure 4
shows the CMV histograms and distribution of fingerprints
in the three subdatabases of FVC2000. It can be found that
the CMV distributions of the three subdatabases overlap
with each other. Therefore, when dealing with fingerprints
collected by different sensors, traditional fingerprint seg-
mentation methods cannot guarantee good performance
without adjusting thresholds or retraining classifiers; and this
is primarily caused by the sensor interoperability problem.

Figure 5 provides the CMV histograms and distribution
of all the 90 fingerprints. It shows that the overlaps become
more and more complex as the number of different sensors
increases, under which situation the segmentation turns out
to be more and more difficult.

As mentioned before, the sensor interoperability problem
should be properly addressed in order to deal with different
sensors. However, existing methods are usually designed to
segment fingerprints originated from the same sensor, and
the model must be changed to achieve desirable performance
for other sensors. For example, Chen et al. [8] proposed
to segment fingerprints with a linear classifier trained on
block-wise features of clusters degree, mean, and variance,
and the parameter settings for FVC2002 DB1 and FVC2002
DB3 are [3.723, −0.389, 0.071, −12.6] and [1.152, −0.433,

0.067, −24.0], respectively. Therefore, facing with the sensor
interoperability problem in fingerprint segmentation, a good
fingerprint segmentation algorithm must be robust enough
to handle the diversity produced by various sensors.

3. The ProposedMethod

Two directions can be employed to address the sensor
interoperability problem: (1) extracting features with inter-
operability and (2) designing segmentation methods with
interoperability. Our recent work [28] follows the first strat-
egy, and this paper proposes a new segmentation method SKI
using unsupervised clustering technique.

Clustering has been attracting a lot of research inter-
ests in data mining and pattern recognition community.
Unsupervised clustering explores structures in data without
the need of labeled information [32]. Indeed, fingerprint
segmentation can be regarded as a two-class clustering task,
and the goal is to distinguish the foreground cluster from
the background one. Thus, a clustering algorithm can be
performed on each fingerprint image and the segmentation
can be achieved accordingly. This procedure not only avoids
training a universal model for one or more fingerprint
databases, but also weakens the impact of various sensors
on the segmentation performance. Inspired by this, we
propose SKI which is an effective clustering-based fingerprint
segmentation method with sensor interoperability. The next
subsection describes the k-means algorithm, following by
which SKI is detailed.
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Figure 4: CMV histograms and distribution of the fingerprints in FVC2000 DB1, DB2, and DB3.
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Figure 5: CMV histograms and distribution of all the 90 fingerprints.
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Figure 6: Framework of SKI.

3.1. The k-Means Algorithm. Depending on the clustering
rules, existing clustering algorithms can be roughly divided
into three categories: hierarchical clustering, partition based
clustering, and grid-based clustering. The k-means algo-
rithm proposed by MacQueen [33] is a commonly used
partition-based clustering method. The process of k-means
is presented as follows. Firstly, k-means chooses the number
of clusters, that is, k, and determines the cluster centroids;
then it assigns each data point to the nearest cluster center
and recomputes the new cluster centers, and this produce
is repeated until some convergence criterion is met (usually
that the assignment has not changed). The main advantages
of this algorithm are its simplicity and speed which allows it
to run on large datasets.

In our fingerprint segmentation task, the background
blocks and foreground blocks of most fingerprints (fair
quality) fall into two clusters with high density (as shown
in Figures 2 and 3), and the number of clusters can be
directly set to be 2. Also, the statistical separability of the
two clusters helps the k-means algorithm to achieve good
clustering performance.

3.2. SKI. We first partition the fingerprint images into
nonoverlapping blocks with the same size of w ∗ w, and
the block-wise CMV are extracted according to (1), (2), and
(3) to form the feature vectors. Then for each fingerprint
image, k-means is performed to cluster the blocks into
two clusters, that is, background and foreground cluster.
Since the outputs of k-means are two clusters without
specifying background or foreground, we need a preliminary
classification process to determine which cluster indicates the
foreground blocks. Here we consider the 8 neighborhoods of
the center (with respect to the fingerprint image) fingerprint
block, and the cluster that receives the most votes is
assigned to be foreground. For example, let cluster 1 and
cluster 2 denote the output of k-means; if 6 of the 8-
neighborhood blocks belong to cluster 2 and the other
2 belong to cluster 1, then cluster 2 will be regarded as
the foreground cluster. SKI also employs morphological
postprocessing to eliminate noisy blocks. Noisy blocks are
usually presented as “isolated” background or foreground
blocks. Here an isolated block is defined as a foreground
block with less than four foreground neighborhoods (out of
the 8 neighborhoods) or a background block with less than
four background neighborhoods. We relabel the isolated
foreground (or background) blocks to be background (or
foreground) and repeat this process until the assignments
no longer change. The framework of SKI is presented in
Figure 6.

Table 3: Average segmentation error rates (mean ± standard
deviation).

DB1 DB2 DB3

SKI 0.0131± 0.0014 0.0239± 0.0035 0.0187± 0.0021

Chen’s
method

0.0192± 0.0040 0.0290± 0.0038 0.0336± 0.0115

4. Experiments

We first compare SKI with state-of-the-art methods to
show the effectiveness of the proposed method. Then the
performance of SKI using different feature combinations
is studied. In the end of this section, we show the sensor
interoperability and robustness of SKI with some sample
segmentation results. All the experiments are conducted on a
Pentium 4 machine with a 2.0 GHz CPU and 1 GB memory.

4.1. Comparison to State-of-the-Art Methods. In the experi-
ments, SKI is compared with Chen’s method [8], which is
a representative block-wise segmentation method and trains
a linear classifier for segmentation. The linear classifier uses
the criteria of minimal number of misclassified blocks. For
each of the subdatabase of FVC2002, we randomly select a
number (according to [8], 5 for DB1, 10 for DB2, and 30 for
DB3) of fingerprint images to train a linear classifier using
Chen’s method, and then SKI and Chen’s method are used to
segment 10 other randomly selected fingerprints. Note that
SKI does not require any training process. Following [8], the
segmentation performance is measured by error rate, which
is defined as the proportion of misclassified blocks:

Err = Nerr

Ntotal
, (4)

where Nerr denotes the number of misclassified blocks in
the evaluated fingerprints, and Ntotal is the total number of
blocks.

The segmentation error rates are presented in Table 3,
where the smallest error rate on each subdatabase has been
boldfaced. It shows that SKI is superior to Chen’s method on
all the subdatabase.

We also conduct statistic t-tests to gain further insight.
For each of the subdatabase, a paired t-test at 95% signifi-
cance level is conducted on the recorded error rate series and
the results are reported in Table 4. Here H is the indicator of
significance. H = 1 (−1) indicates that SKI is significantly
better (worse) than Chen’s method, and H = 0 means that
there is no significant difference between the two methods.
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(a) Orignal image (b) Segmented image using coher-
ence only

(c) Segmented image using
mean only

(d) Segmented image using vari-
ance only

(e) Segmented image using coher-
ence and mean

(f) Segmented image using
CMV

Figure 7: Segmentation results of SKI on fingerprint image FVC2000 DB3 82 1.tif using different feature combinations, that is, coherence
only, mean only, variance only, the combination of coherence and mean, and the combination of coherence, mean, and variance.

Table 4: Statistic t-tests results of SKI against Chen’s method.

DB1 DB2 DB3

H 1 1 1

P 4.45e − 04 1.27e − 05 0.0012

Table 5: Average off-line training time and on-line segmentation
time (in seconds) of SKI and Chen’s method.

Off-line training time On-line segmentation time

DB1 DB2 DB3 DB1 DB2 DB3

SKI 0 0 0 0.0045 0.0049 0.0034

Chen’s
method

4.7656 8.5469 12.8907 0.0019 0.0025 0.0015

P is the probability for rejecting the hypothesis that “SKI
significantly outperforms Chen’s method”. Table 4 clearly
shows that SKI significantly outperforms Chen’s method on
all the subdatabase. With the above observations we can
conclude that SKI is a highly effective method for fingerprint
segmentation.

Apart from the segmentation performance, computa-
tional time is also an important factor in an automatic
fingerprint recognition system. Table 5 reports the average
off-line training time and on-line segmentation time of SKI

Table 6: Average error rates of Chen’s method for cross-database
segmentation.

FVC2002 DB1 FVC2002 DB2 FVC2002 DB3

Classifier1 0.0192 0.0835 0.0874

Classifier2 0.0262 0.0290 0.0737

Classifier3 0.0283 0.0612 0.0336

Classifier4 0.0272 0.0453 0.0676

as well as Chen’s method. Although the on-line segmentation
time of SKI is about twice as that of Chen’s method, SKI
has three advantages over Chen’s method: (i) there is no
training stage in SKI, (ii) no label information is required
by SKI as an unsupervised learning method, and most
importantly, (iii) SKI performs better when dealing with the
sensor interoperability problem.

We also test the cross-database segmentation perfor-
mance of Chen’s method. Here cross-database segmentation
refers to the segmentation of fingerprint images from one
subdatabase using a classification model trained on another
subdatabase. Note that in previous experiments, we have
trained three linear classifiers on the 5, 10, and 30 finger-
prints of DB1, DB2, and DB3, respectively. Here we denote
the classifiers as Classifier1, Classifier2, and Classifier3, and
evaluate their performances on cross-databases. Besides, we
train a Classifier4 on the abovementioned 45 fingerprint
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NJU2001 Img000.bmp NIST4 f0015.bmp FVC2004 DB2 12 4.tif FVC2004 DB3 105-1.tif

(a)

Segmentation result of
NJU2001 Img000.bmp

Segmentation result of
NIST4 f0015.bmp

Segmentation result of
FVC2004 DB2 12 4.tif

Segmentation result of
FVC2004 DB3 105-1.tif

(b)

FVC2002 DB2 103-1.tif FVC2002 DB1
108-6.tif

FVC2000 DB3
110-3.tif

FVC2000 DB1 102-1.tif

(c)

Segmentation result of
FVC2002 DB2 103-1.tif

Segmentation result of
FVC2002 DB1 108-6.tif

Segmentation result of
FVC2000 DB3 110-3.tif

Segmentation result of
FVC2000 DB1 102-1.tif

(d)

Figure 8: Sample segmentation results of SKI.
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Table 7: Segmentation error rates of SKI on fingerprint image FVC2000 DB3 82 1.tif using different feature combinations.

Feature(s) used Coherence only Mean only Variance only Coherence and Mean CMV

Error rate 445/3304 = 0.1347 197/3304 = 0.0596 2626/3304 = 0.7948 80/3304 = 0.0242 42/3304 = 0.0127

images. The results are presented in Table 6, where the
smallest error rate on each subdatabase has been boldfaced.

Table 6 shows that the linear classifier achieves the best
performance on the subdatabase from which the classifier is
trained. If a segmentation method is trained on a mixture
of databases, its results might be better to some extent, but
usually not as good as using the classifier to train samples and
test samples from the separated subdatabase. Furthermore, it
would be troublesome to retrain the classifier when using a
new sensor in real production environment. In contrast, SKI
avoids this problem by performing the k-means algorithm on
each fingerprint.

4.2. Using Different Feature Combinations. In this subsection,
we perform SKI using different feature combinations, that is,
coherence only, mean only, variance only, the combination
of coherence and mean, and the combination of coherence,
mean, and variance. We conduct this experiment using
a representative fingerprint image, which is 82 1.tif from
FVC2000 DB3. Table 7 reports the segmentation error rates.
The segmentation results are shown in Figure 7, where
Figure 7(a) is the original image, and Figures 7(b)–7(f) are
the segmented images using different feature combinations.
The results show that SKI achieves better performance
using CMV features as compared with the other feature
combinations. Thus, we can conclude that, for fair quality
fingerprints, using only gray-level information or texture
information may achieve desirable segmentation results;
however, it is suggested to use CMV when dealing with noisy
fingerprints.

4.3. Sample Segmentation Results. Some sample segmen-
tation results of SKI are presented in Figure 8. Here
the fingerprint images are collected from different sub-
databases of FVC2000, FVC2002, FVC2004, NIST4, and
NJU2001(Fingerprint database of Nanjing University. The
sensor type is ZY202-B; the resolution is 500 dpi with size
20 ∗ 320.), where different fingerprints are captured by
different sensors. Desirable segmentation results are achieved
on these fingerprints, reflecting that SKI is a robust method
with interoperability dealing with various sensors.

5. Conclusion

This work studies the sensor interoperability problem in
fingerprint segmentation. We investigate the problem by
analyzing traditional segmentation methods without sensor
interoperability. We then propose a robust segmentation
method called SKI to segment fingerprint images captured
from different sensors. SKI is applicable to network based
fingerprint recognition systems (in which fingerprint sensors
may vary for different users), since it avoids adjusting

threshold or retraining classifier for various sensors. To the
best of our knowledge, this is the first work tackling the
sensor interoperability problem in fingerprint segmentation.
Experimental results also show the sensor interoperability,
robustness, and effectiveness of SKI.

Most existing fingerprint segmentation methods are
statistically based, which require labeled foreground and
background blocks as prior knowledge. They study the fea-
ture distribution of the labeled foreground and background
blocks (or pixels) to assign thresholds or train classifiers
for the segmentation of new fingerprint images. It has been
shown that their performances are limited when dealing
with fingerprints collected by various sensors simultaneously
since the feature values are usually statistically inseparable,
which has been known as the sensor interoperability problem
in fingerprint segmentation. The SKI method proposed in
our research effectively addresses this problem by taking
the following two advantages. On one hand, our method
is not a statistical-based method as it applies k-means
algorithm on each fingerprint. We can segment a fingerprint
with SKI as long as we have well-defined features to
distinguish foreground blocks from background blocks for
this particular image. In this work, we choose coherence,
mean, and variance to describe texture information and
grey-level information of a fingerprint block, respectively,
which contribute to separate the foreground cluster from
the background cluster even for fingerprints obtained from
different sensors. On the other hand, there are naturally
two clusters in the fingerprint segmentation task, that is,
foreground cluster and background cluster, and as a result,
we can directly set the cluster number as 2 in the k-means
algorithm, helping SKI to achieve high accuracy clustering
with relatively small time consumption.

Note that the processing time of the k-means algorithm
mainly depends on the choice of initial cluster centroids.
Thus, we will try to speed up SKI by automatically selecting
a background block and a foreground block as the initial
centroids. Besides, we find in our experiments that coherence
is a feature with sensor interoperability. In so saying, under
the view of coherence, the background and foreground
blocks of a fair-quality fingerprint image are statistically
separable, even though they are collected from various
sensors. Our method takes advantages of this characteristic
when dealing with the fingerprint sensor interoperability
problem. Therefore, extracting other features with sensor
interoperability is another promising way to further improve
the performance of SKI.
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