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Abstract The recently proposed (Güney and Hillery in Phys Rev A 90:062121, 2014;
Phys Rev A 91:052110, 2015) group theoretical approach to the problem of violating
the Bell inequalities is applied to S4 group. The Bell inequalities based on the choice
of three orbits in the representation space corresponding to standard representation of
S4 are derived and their violation is described. The corresponding nonlocal games are
analyzed.

Keywords Bell inequalities · Nonlocal games · Group theoretical methods

1 Introduction

The famous Bell inequalities [1] provide the necessary conditions for any theory to
be a local realistic one. Their importance stems from the observation that they can be
violated in quantum theory. As a result the Bell inequalities can be used for test of
entanglement and as a basis for protocols in quantum cryptography [2].

Bell inequalities have been studied intensively by numerous authors. Their various
forms have been derived [3–9] characterized by the number of parties, measurement
settings and outcomes for each measurement (for a review, see [10,11]).

Recently, there appeared interesting papers [12,13] where the group theoretical
methods have been proposed as a tool for analyzing the quantum mechanical violation
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of Bell inequalities. Examples of Bell inequalities based on representations of some
finite groups were presented there. Further example has been considered in Ref. [14].
It is based on S4 symmetry and its standard irreducible representation. The resulting
Bell inequality is obtained by selecting two generic orbits determined by the geometry
of tetrahedron. In the present paper we provide further examples of Bell inequalities
related to the symmetry of tetrahedron. They result from the particular choices of three
generic orbits.

The paper is organized as follows. In Sect. 2 we discuss the Bell inequalities from
the point of view of the existence of joint probability distribution and describe the
group theoretical approach to the problem of their violation proposed by Güney and
Hillery. This approach is then applied in Sect. 3 to the symmetric group S4. Three
examples of quantum mechanical violation of Bell inequalities are presented. They
are based on the specific choice of orbits in the standard representation of S4. In each
of three cases we consider the set of states arising from the choice of three orbits. The
results are interpreted in Sect. 4 in the framework of game theory. Section 5 is devoted
to some conclusions. Some technical details are relegated to Appendix.

2 Bell inequalities

Quantum mechanical violation of Bell inequalities is closely related to the existence of
noncommuting observables. In two elegant papers [15,16], Fine provided a particulary
transparent interpretation of Bell inequalities (see also [17,18]). Assume that we have a
number of random variables possessing joint probability distribution. Bell inequalities
concern the joint probability distributions of some subsets of the initial set of random
variables. They result from the assumption that these distributions can be obtained as
marginals from the original joint probability distribution. What is even more important
is that the Bell inequalities form also the sufficient conditions for the existence of joint
distribution returning other probabilities as marginals. In fact, the latter condition
provides a set of linear equations for the joint distribution which possess the whole
family of solutions. We are interested in solutions belonging to the interval 〈0, 1〉. The
possibility of selecting such solutions relies on the validity of Bell inequalities.

Fine’s theorem explains the origin of quantum machanical violation of Bell inequal-
ities. Due to the uncertainty principle the joint probability can be constructed only
for the set of mutually commuting observables. Therefore, no inequality of Bell type
could be derived for joint probabilities of commuting observables if these probabilities
emerged as marginals from joint distribution for larger set of, in general, noncommut-
ing observables.

Let us illustrate the above discussion by a simple example. Let Â be some observable
with the spectral decomposition

Â =
∑

i

ai �̂i (1)

where �̂i are the projectors on the relevant eigenspaces (we shall assume our space
of states is finite-dimensional). Consider any state ρ̂ and let [19]
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C (ζ ) = Tr
(
eiζ Âρ̂

)
=

∑

i

eiζai Tr
(
�̂i ρ̂

)
≡

∑

i

eiζai pi (2)

be the generating function for the moments of Â:

〈
Ân

〉
= Tr

(
Ân ρ̂

)
=

∑

i

ani pi =
(

−i
d

dζ

)n

C (ζ )

∣∣∣
ζ=0

. (3)

The probability distribution is obtained by Fourier transform

p (a) = 1

2π

∫
dζe−iζaC(ζ ) =

∑

i

piδ (a − ai ) . (4)

Assume that now we have two observables,

Â1 ≡
∑

i

a1i�̂1i , Â2 ≡
∑

k

a2k�̂2k . (5)

The generating function for the moments
〈
An1

1 An2
2

〉
reads

C (ζ1, ζ2) = Tr
(
eiζ1 Â1eiζ2 Â2 ρ̂

)
=

∑

i,k

eiζ1a1i eiζ2a2kTr
(
�̂1i�̂2k ρ̂

)

≡
∑

i,k

eiζ1a1i eiζ2a2k pik .
(6)

We are tempted to define the joint probability as

p (a1, a2) ≡ 1

4π2

∫
dζ1dζ2e

−i(ζ1a1+ζ2a2)C (ζ1, ζ2)

=
∑

i,k

pikδ (a1 − a1i) δ (a2 − a2k) .
(7)

Due to

∑

k

pik =
∑

k

Tr
(
�̂1i�̂2k ρ̂

)
= Tr

(
�̂1i

(
∑

k

�̂2k

)
ρ̂

)
= Tr

(
�̂1i ρ̂

)
= p1i (8)

single probability densities can be obtained as marginals

p1 (a1) =
∫

da2 p (a1, a2) . (9)

To have the genuine probability distribution we must assume pik ≥ 0. Then the last
expression (7) provides a finite positive measure onR2. Therefore, by Bochner theorem
C (ζ1, ζ2) is positive definite function [20]. In particular
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C (ζ1, ζ2) = C (−ζ1,−ζ2) (10)

or
Tr

(
eiζ1 Â1eiζ2 Â2 ρ̂

)
= Tr

(
eiζ2 Â2eiζ1 Â1 ρ̂

)
. (11)

Assuming that (11) holds for all states ρ̂ we find

eiζ1 Â1eiζ2 Â2 = eiζ2 Â2eiζ1 Â1 (12)

or
[
Â1, Â2

]
= 0. We see that the joint probability can be defined only for commuting

variables.
Taking into account Fine’s results one concludes that the general scheme for deriv-

ing the Bell inequalities is quite simple. The relevant combination of probabilities is
written in terms of marginals of the joint probability distribution, assumed to exist,
arriving at the expression

∑
α c (α) p (α), where c (α) are integers equal to the number

of times p (α) appears in the sum. Due to 0 ≤ p (α) ≤ 1,
∑
α

p (α) = 1 one obtains

min
α

c (α) ≤
∑

α

c (α) p (α) ≤ max
α

c (α) . (13)

In order to get the standard form of Bell inequalities one should express p (α) in terms
of relevant correlation functions.

In order to establish the violation of Bell inequalities in quantum mechanics one has
to construct the particular examples. In two papers mentioned above [12,13] Güney and
Hillery proposed to use the group theoretical methods. Consider some finite group G
and its irreducible representation D. The space carrying the representation D becomes
the space of states of one party. One selects an orbit {D (g) |ϕ〉}g∈G in such a way that
it decomposes into disjoint sets of orthonormal bases. These bases define the spectral
decompositions of observables entering the example. The space of states of the second
party carries the second representation in the product D ⊗ D; the corresponding orbit
reads {D (g) |ψ〉}g∈G and defines the observables of second party.
Let us construct the operator [12,13]

X (ϕ, ψ) ≡
∑

g∈G
(D (g) |ϕ〉 ⊗ D (g) |ψ〉) (〈ϕ| D+ (g) ⊗ 〈ψ | D+ (g)

)
. (14)

Defining
|g, ϕ〉 ≡ D (g) |ϕ〉 , |g, ψ〉 ≡ D (g) |ψ〉
|g, ϕ, ψ〉 ≡ |g, ϕ〉 ⊗ |g, ψ〉 (15)

one finds for arbitrary bipartite state |χ〉

〈χ | X |χ〉 =
∑

g∈G
|〈g, ϕ, ψ |χ〉|2 . (16)

123



Violation of Bell inequalities from S4 symmetry… Page 5 of 16 38

The right-hand side of Eq. (16) represents the sum of probabilities of particular out-
comes of measurement performed on observables defined by the orbits {|g, ϕ〉} and
{|g, ψ〉}. Its maximal value corresponds to maximal eigenvalue of X . In this way we
obtain a kind of Cirel’son bound [21] for the class of states under consideration.

On the other hand one easily derives the Bell inequality involving the sum of
probabilities on the right-hand side of Eq. (16). To this end one assumes the existence
of joint probability distribution for all observables defined by both orbits (note that
the ones belonging to one orbit in general do not commute) and uses the inequalities
(13).

It remains to find the maximal eigenvalue of X . To this end assume that in the
decomposition of D ⊗ D into irreducible pieces,

D ⊗ D =
⊕

s

D(s) (17)

each D(s) appears only once. Then, by Schur’s lemma, X (ϕ, ψ) is diagonal and
reduces to a multiple of unity on each irreducible component. Using the orthogonality
relations it is easy to see that the relevant eigenvalues of X (ϕ, ψ) are [13]

|G|
ds

‖ (|ϕ〉 ⊗ |ψ〉)s ‖2 (18)

where |G| is the order of G, ds is the dimension of D(s) and (|ϕ〉 ⊗ |ψ〉)s is the
projection of |ϕ〉 ⊗ |ψ〉 on the carrier space of D(s).

In general, in order to violate the Bell inequality it is necessary to consider a
number of orbits. To this end one considers the orbits generated by N pairs of vectors
(|ϕn〉 , |ψn〉) and the corresponding operators X (ϕn, ψn). They mutually commute so
the eigenvalues of

X =
N∑

n=1

X (ϕn, ψn) (19)

are the sums of eigenvalues of all X (ϕn, ψn). In this way one can maximize the sum
of probabilities

N∑

n=1

∑

g∈G
|〈g, ϕn, ψn|χ〉|2 (20)

and proceed as above.

3 The S4 group: three orbits

S4 is the group of order 24. It has 5 conjugacy classes. There exist five irreducible
representations of S4: trivial representation, the alternating representation, the homo-
morphic two-dimensional one and two three-dimensional representations, D and D̃
[22]. All representations can be made real orthogonal.
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Consider three-dimensional representation D. The matrices representing the trans-
positions generate D. They are written out explicitly in Ref. [14] and will be not
reported here. S4 is the symmetry of tetrahedron as can be easily seen using the

explicit form of the representation D [14]. In fact, the vectors 
c1 =
(
− 1

3 ,−
√

2
3 ,−

√
6

3

)
,


c2 =
(
− 1

3 ,−
√

2
3 ,

√
6

3

)
, 
c3 =

(
− 1

3 ,
√

8
3 , 0

)
and 
c4 = (1, 0, 0) are the vertices of reg-

ular tetrahedron and form an (degenerate) orbit of S4.
The generic orbit consists of 24 states. According to the discussion presented in

Sect. 2 we look for the orbit consisting of eight triples of orthonormal vectors. Due
to the fact that the action of S4 (in the representation D under consideration) reduces
to the symmetries of tetrahedron (rotations around symmetry axes and reflections in
symmetry planes) this is a simple problem of three-dimensional Euclidean geometry.
The elements of the orbit are denoted as

∣∣xiα
〉
, i = 1, . . . , 8, α = 0, 1, 2. They obey〈

xiα|xiβ
〉

= δαβ , i = 1, . . . , 8 (no summation over i). Consequently, we are dealing

with eight observables ai for Alice and eight observables bi for Bob,

ai =
2∑

α=0

α

∣∣∣xiα
〉 〈
xiα

∣∣∣ , bi =
2∑

β=0

β

∣∣∣xiβ
〉 〈
xiβ

∣∣∣ . (21)

The explicit form of the vectors
∣∣xiα

〉
, obtained by considering the elementary geometry

of rotations and reflections of tetrahedron, is given in Appendix.
According to the discussion presented in Sect. 2 we should also know the details

of the decomposition of the product representation D ⊗ D into irreducible pieces. As
explained in Ref. [14] (see also [22]) it reads

D ⊗ D = D ⊕ D̃ ⊕ D2 ⊕ D0. (22)

The Clebsh–Gordan coefficients, i.e., the elements of the matrixC relating the product
basis to the one in which the decomposition (22) is explicit were computed in [14].
They read

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2
3 0 0 0 − 1√

6
0 0 0 − 1√

6
0 − 1√

6
0 − 1√

6
1√
3

0 0 0 − 1√
3

0 0 − 1√
6

0 0 − 1√
3

− 1√
6

− 1√
3

0

0 1√
2

0 − 1√
2

0 0 0 0 0

0 0 1√
2

0 0 0 − 1√
2

0 0

0 0 0 0 0 1√
2

0 − 1√
2

0

0 1√
3

0 1√
3

1√
6

0 0 0 − 1√
6

0 0 1√
3

0 0 − 1√
6

1√
3

− 1√
6

0
1√
3

0 0 0 1√
3

0 0 0 1√
3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)
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Table 1 Maximal quantum mechanical values of the sum of probabilities for three examples of three orbits
case

No. First orbit Second orbit Third orbit λmax(X)

I |ϕ1〉 =
∣∣∣x1

0

〉
|ϕ2〉 =

∣∣∣x1
0

〉
|ϕ3〉 =

∣∣∣x1
0

〉
16.09

|ψ1〉 =
∣∣∣x4

1

〉
|ψ2〉 =

∣∣∣x7
0

〉
|ψ3〉 =

∣∣∣x5
1

〉

λmax ≈ 7.40 λmax ≈ 4.57 λmax ≈ 4.12

II |ϕ1〉 =
∣∣∣x1

0

〉
|ϕ2〉 =

∣∣∣x1
0

〉
|ϕ3〉 =

∣∣∣x1
0

〉
18.51

|ψ1〉 =
∣∣∣x3

2

〉
|ψ2〉 =

∣∣∣x6
1

〉
|ψ3〉 =

∣∣∣x1
0

〉

λmax ≈ 5.12 λmax ≈ 5.30 λmax ≈ 8.00

III |ϕ1〉 =
∣∣∣x1

0

〉
|ϕ2〉 =

∣∣∣x1
0

〉
|ϕ3〉 =

∣∣∣x1
0

〉
17.38

|ψ1〉 =
∣∣∣x5

2

〉
|ψ2〉 =

∣∣∣x4
1

〉
|ψ3〉 =

∣∣∣x8
1

〉

λmax ≈ 3.35 λmax ≈ 7.40 λmax ≈ 6.63

In order to construct the examples of Bell inequalities violation one has to select the
relevant operator X given by Eqs. (14) and (19), i.e., the number N , and N pairs of
vectors (ϕn, ψn), n = 1, . . . , N . In all our examples N = 3 and, moreover, the states
describing both parties belong to the same orbit; however, in each case the orbit of the
second party (“Bob”) is shifted with respect to the one of the first parties (“Alice”). The
latter implies that all |ϕn〉, |ψn〉 are of the form

∣∣xiα
〉
for some α and i . Equations (18) and

(23) allow us to compute all eigenvalues of arbitrary operator X (ϕ, ψ). In all examples
given below the largest eigenvalue λmax corresponds to the scalar component in the
decomposition (22). The results of three examples we considered are summarized in
Table 1.

The corresponding sums of probabilities appearing on the right-hand side of Eq. (16)
are written out explicitly in Appendix 2. Having computed the (maximal) quantum
mechanical values of the relevant sums of probabilities one can study the corresponding
Bell inequalities. To this end we compute the coefficients c(α) entering the inequalities
(13). There are 16 observables: 8 for Alice and 8 for Bob. Therefore, the assumed
joint probability is defined for 316 configurations. We used computer to check, for
three examples above (cf. Table 1), how many times any given configuration appears
in 72 terms of classical counterpart of the right-hand side of Eq. (16). The result are
summarized in Appendix 2. It follows that the relevant sums of probabilities have the
upper bounds 16, 18 and 16 for Examples I, II and III, respectively. This implies that
in all three examples the Bell inequalities are violated.

4 Interpretation in terms of game theory

As it has been described in Refs. [12,13] the Bell inequalities can be discussed in
terms of a nonlocal game. To this end we assume there are two players, Alice and
Bob and an arbitrator who sends Alice a value s and Bob a value t , s = 1, 2, . . . , 8,
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38 Page 8 of 16 K. Bolonek-Lasoń, Ś. Sobieski

Table 2 Winning
configurations for nonlocal
game defined by three orbits
from Example I

s, t Alice, Bob s, t Alice, Bob

14 01, 10, 22 51 01, 10, 22

15 01, 10, 22 52 01, 10, 22

17 00, 12, 21 56 02, 10, 21

24 02, 11, 20 65 01, 12, 20

25 01, 10, 22 67 02, 10, 21

28 02, 11, 20 68 00, 11, 22

34 00, 11, 22 71 00, 12, 21

37 00, 11, 22 73 00, 11, 22

38 02, 10, 21 76 01, 12, 20

41 01, 10, 22 82 02, 11, 20

42 02, 11, 20 83 01, 12, 20

43 00, 11, 22 86 00, 11, 22

t = 1, 2 . . . , 8; assume that all of 64 possible values of (s, t) are equally likely. After
receiving the numbers s and t from an arbitrator both Alice nad Bob transmit back
the numbers a and b, respectively, where a = 0, 1, 2, b = 0, 1, 2. They win iff the
configuration (as = a, bt = b) appears in the sum of probabilities corresponding to
the right-hand side of Eq. (16).

Let us consider for definiteness Example I. Using (36) we get the set of winning
values given in Table 2.

Following Ref. [13] we can show that the maximal classical probability of winning
the game is determined by Bell inequality. In fact, let f A (s) and fB (t) be the strategies
of Alice and Bob, respectively; the function f A,B take their values in the set {0, 1, 2}.
Let F (a, b; s, t) be the characteristic function for the set of winning strategies. Then
the winning probability for the given strategies f A, fB is

1

64

2∑

a,b=0

8∑

s,t=1

F (a, b; s, t) δa, f A(s)δb, fB (t). (24)

Now, the sum entering the left-hand side of Bell inequality can be written as

2∑

a,b=0

8∑

s,t=1

F (a, b; s, t) p (as = a, bt = b) (25)

which is bounded, in Example I, by 16 provided p (as = a, bt = b) can be derived
from a joint probability distribution. However, defining

p (a1, . . . , a8, b1, . . . , b8) ≡
8∏

k=1

δak , f A(k)δbk , fB (k) (26)
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we find that p (as, bt ) are derived as marginals from the above joint probability. There-
fore, the success probability for any classical strategy ( f A(s), fB(t)) cannot exceed
16
64 = 0, 25.

Note that the optimal strategy saturating this limit always exists. To see this let
α = (

a1, . . . , a8, b1, . . . , b8

)
be one of the configurations for which c(α) attains its

maximal value. Then the Bell inequality is saturated for the joint distribution proba-
bility p(α) = 1, p(α′) = 0 for α′ �= α. Such distribution can be written in form (24)
with f A(s) = as , fB(t) = bt .

In the quantum strategy Alice and Bob share the state corresponding to the maximal
eigenvalue of

∑3
n=1 X (ϕn, ψn). If they receive the numbers s, t from an arbitrator, they

measure as (Alice) and bt (Bob), respectively, and send the result to the arbitrator. The

probability of winning in Example I is then 16,09
64 � 0, 2514 which exceeds (although

only slightly) the classical bound. Other examples can be treated similarly.

5 Conclusions

Nonlocality which manifests itself in violation of Bell inequalities is an inherent
property of quantum theory. On the other hand most physical systems exhibit some
symmetries described by the relevant groups of transformations. It is, therefore, inter-
esting to study in more detail the relationship between nonlocality and symmetries.

The space of states of any quantum system carries some unitary representation of
the relevant symmetry group. The states are classified according to their transformation
properties under the action of symmetries. One can pose the general question concern-
ing the structure of “invariant” Bell inequalities and degree of their violation; in other
words, to study the counterpart of Cirel’son bound in the symmetric context. Some
steps in this direction were made in [12,13] and slightly more sophisticated exam-
ple was presented in [14]. In the present paper we provide further example which,
basically, differ from the previous ones in the number of orbits taken into account.
Generally speaking, the degree of violation of Bell inequality depends on the sym-
metry group under consideration, an unitary representation entering the game and the
choice of orbits. As far as the very group and its representations are concerned, the
scheme proposed in [12,13] is rather simple and transparent. Actually, it can be easily
generalized from finite to compact groups; as it is easily seen the only important point
is the existence of finite invariant measure on the group. What concerns the question
of the proper choice of orbits the situation is less clear. In the existing examples choos-
ing one orbit is not sufficient to violate a Bell inequality. Two orbits suffice but, as it
follows from the results of the present paper, three orbits give stronger violation. The
choice of orbits may be critical because they contain, in general, nonorthogonal states
leading to noncommuting projectors, i.e., incompatible measurements characteristic
for quantum theory. The problem deserves further study. We believe some light may
be shed on it by using the method of induced representations.

The advantage of our construction is that it can formulated in terms of elementary
Euclidean geometry. As it has been already noticed in Ref. [14], it can be extended
to all Platonic solids and, presumably, to Sn group acting as a symmetry group of the
simplest regular n − 1-dimensional polyhedron.
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We do not have much to say about the experimental prospects. Up to now the exper-
iments concerning the violation of Bell inequalities were performed with the use of
photons, atoms (which are less likely to suffer from detection loophole) and on hybrid
atom–photon systems (for a review see [11]). The relevant symmetries are rotations
and reflections. The states can be classified by angular momentum and parity. In order
to reduce rotations to finite subgroup the rotation group must be spontaneously bro-
ken to some finite subgroup by crystallization. Therefore, the experiments concerning
violation of Bell inequalities based on finite symmetries should likely concern solid
state phenomena.
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Appendix 1

Below we give the explicit form of the vectors
∣∣xiα

〉
. In order to construct them it is

sufficient to find a vector which (a) belongs to the generic orbit under the action of
symmetries of tetrahedron; (b) transforms into two orthogonal vectors under the action
of two such symmetries. It is easy to check that, for example,

∣∣∣x1
0

〉
=

⎡

⎢⎢⎣

√
3

3√
3

3

−
√

3
3

⎤

⎥⎥⎦ (27)

obeys these conditions. In this way we obtain

a1 :
(
x1

0 , x1
1 , x1

2

)

∣∣∣x1
0

〉
=

⎡

⎢⎢⎣

√
3

3√
3

3

−
√

3
3

⎤

⎥⎥⎦ ,

∣∣∣x1
1

〉
=

⎡

⎢⎢⎣

√
3

3
1
2

(
1 −

√
3

3

)

1
2

(
1 +

√
3

3

)

⎤

⎥⎥⎦ ,

∣∣∣x1
2

〉
=

⎡

⎢⎢⎣

√
3

3

− 1
2

(
1 +

√
3

3

)

− 1
2

(
1 −

√
3

3

)

⎤

⎥⎥⎦ (28)

a2 :
(
x2

0 , x2
1 , x2

2

)

∣∣∣x2
0

〉
=

⎡

⎢⎢⎢⎣

1
9

(
−3

√
2 − √

3 − √
6
)

1
18

(
−3 + 5

√
3 − 2

√
6
)

1
6

(
−1 − 2

√
2 + √

3
)

⎤

⎥⎥⎥⎦ ,

∣∣∣x2
1

〉
=

⎡

⎢⎢⎢⎣

1
9

(
−√

3 + 2
√

6
)

1
18

(
9 − √

3 − 2
√

6
)

− 1
6

(
1 + 2

√
2 + √

3
)

⎤

⎥⎥⎥⎦ ,
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∣∣∣x2
2

〉
=

⎡

⎢⎢⎢⎣

1
9

(
3
√

2 − √
3 − √

6
)

− 1
9

(
3 + 2

√
3 + √

6
)

1
3

(
1 − √

2
)

⎤

⎥⎥⎥⎦ , (29)

a3 :
(
x3

0 , x3
1 , x3

2

)

∣∣∣x3
0

〉
=

⎡

⎢⎢⎢⎣

1
9

(
3
√

2 − √
3 − √

6
)

1
18

(
3 + 5

√
3 − 2

√
6
)

1
6

(
1 + 2

√
2 + √

3
)

⎤

⎥⎥⎥⎦ ,

∣∣∣x3
1

〉
=

⎡

⎢⎢⎢⎣

1
9

(
−√

3 + 2
√

6
)

− 1
18

(
9 + √

3 + 2
√

6
)

1
6

(
1 + 2

√
2 − √

3
)

⎤

⎥⎥⎥⎦ ,

∣∣∣x3
2

〉
=

⎡

⎢⎢⎢⎣

− 1
9

(
3
√

2 + √
3 + √

6
)

1
9

(
3 − 2

√
3 − √

6
)

1
3

(
−1 + √

2
)

⎤

⎥⎥⎥⎦ , (30)

a4 :
(
x4

0 , x4
1 , x4

2

)

∣∣∣x4
0

〉
=

⎡

⎢⎢⎢⎣

1
9

(
3
√

2 − √
3 − √

6
)

1
18

(
3 − √

3 + 4
√

6
)

1
6

(
3 + √

3
)

⎤

⎥⎥⎥⎦ ,

∣∣∣x4
1

〉
=

⎡

⎢⎢⎣

1
9

(
−√

3 + 2
√

6
)

1
9

(√
3 + 2

√
6
)

−
√

3
3

⎤

⎥⎥⎦ ,

∣∣∣x4
2

〉
=

⎡

⎢⎢⎢⎣

− 1
9

(
3
√

2 + √
3 + √

6
)

1
18

(
−3 − √

3 + 4
√

6
)

1
6

(
−3 + √

3
)

⎤

⎥⎥⎥⎦ , (31)

a5 :
(
x5

0 , x5
1 , x5

2

)

∣∣∣x5
0

〉
=

⎡

⎢⎢⎢⎣

1
9

(
−√

3 + 2
√

6
)

1
18

(
9 − √

3 − 2
√

6
)

1
6

(
1 + 2

√
2 + √

3
)

⎤

⎥⎥⎥⎦ ,

∣∣∣x5
1

〉
=

⎡

⎢⎢⎢⎣

− 1
9

(
3
√

2 + √
3 + √

6
)

1
18

(
−3 + 5

√
3 − 2

√
6
)

1
6

(
1 + 2

√
2 − √

3
)

⎤

⎥⎥⎥⎦ ,

∣∣∣x5
2

〉
=

⎡

⎢⎢⎢⎣

1
9

(
3
√

2 − √
3 − √

6
)

− 1
9

(
3 + 2

√
3 + √

6
)

1
3

(
−1 + √

2
)

⎤

⎥⎥⎥⎦ , (32)

a6 :
(
x6

0 , x6
1 , x6

2

)
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∣∣∣x6
0

〉
=

⎡

⎢⎢⎢⎣

− 1
9

(
3
√

2 + √
3 + √

6
)

1
18

(
−3 − √

3 + 4
√

6
)

1
6

(
3 − √

3
)

⎤

⎥⎥⎥⎦ ,

∣∣∣x6
1

〉
=

⎡

⎢⎢⎢⎣

1
9

(
3
√

2 − √
3 − √

6
)

1
18

(
3 − √

3 + 4
√

6
)

− 1
6

(
3 + √

3
)

⎤

⎥⎥⎥⎦ ,

∣∣∣x6
2

〉
=

⎡

⎢⎢⎢⎣

1
9

(
−√

3 + 2
√

6
)

1
9

(√
3 + 2

√
6
)

√
3

3

⎤

⎥⎥⎥⎦ , (33)

a7 :
(
x7

0 , x7
1 , x7

2

)

∣∣∣x7
0

〉
=

⎡

⎢⎢⎢⎣

1
9

(
3
√

2 − √
3 − √

6
)

1
18

(
3 + 5

√
3 − 2

√
6
)

− 1
6

(
1 + 2

√
2 + √

3
)

⎤

⎥⎥⎥⎦ ,

∣∣∣x7
1

〉
=

⎡

⎢⎢⎢⎣

1
9

(
−√

3 + 2
√

6
)

− 1
18

(
9 + √

3 + 2
√

6
)

1
6

(
−1 − 2

√
2 + √

3
)

⎤

⎥⎥⎥⎦ ,

∣∣∣x7
2

〉
=

⎡

⎢⎢⎢⎣

− 1
9

(
3
√

2 + √
3 + √

6
)

1
9

(
3 − 2

√
3 − √

6
)

1
3

(
1 − √

2
)

⎤

⎥⎥⎥⎦ , (34)

a8 :
(
x8

0 , x8
1 , x8

2

)

∣∣∣x8
0

〉
=

⎡

⎢⎢⎣

√
3

3

− 1
2

(
1 +

√
3

3

)

1
2

(
1 −

√
3

3

)

⎤

⎥⎥⎦ ,

∣∣∣x8
1

〉
=

⎡

⎢⎢⎣

√
3

3
1
2

(
1 −

√
3

3

)

− 1
2

(
1 +

√
3

3

)

⎤

⎥⎥⎦ ,

∣∣∣x8
2

〉
=

⎡

⎢⎢⎣

√
3

3√
3

3√
3

3

⎤

⎥⎥⎦ . (35)

Appendix 2

To make the results slightly more transparent we write out explicitly the sum of prob-
abilities appearing on the right-hand side of Eq. (16). They read:

Example I

S1 ≡ P (a1 = 0, b4 = 1) + P (a1 = 1, b5 = 0) + P (a1 = 2, b7 = 1)

+ P (a2 = 0, b4 = 2) + P (a2 = 1, b8 = 1) + P (a2 = 2, b5 = 2)

+ P (a3 = 0, b4 = 0) + P (a3 = 1, b8 = 0) + P (a3 = 2, b7 = 2)

+ P (a4 = 0, b3 = 0) + P (a4 = 1, b1 = 0) + P (a4 = 2, b2 = 0)
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+ P (a5 = 0, b1 = 1) + P (a5 = 1, b6 = 0) + P (a5 = 2, b2 = 2)

+ P (a6 = 0, b5 = 1) + P (a6 = 1, b7 = 0) + P (a6 = 2, b8 = 2)

+ P (a7 = 0, b6 = 1) + P (a7 = 1, b1 = 2) + P (a7 = 2, b3 = 2)

+ P (a8 = 0, b3 = 1) + P (a8 = 1, b2 = 1) + P (a8 = 2, b6 = 2)

+ P (a1 = 0, b7 = 0) + P (a1 = 1, b4 = 0) + P (a1 = 2, b5 = 2)

+ P (a2 = 0, b5 = 1) + P (a2 = 1, b4 = 1) + P (a2 = 2, b8 = 0)

+ P (a3 = 0, b8 = 2) + P (a3 = 1, b7 = 1) + P (a3 = 2, b4 = 2)

+ P (a4 = 0, b1 = 1) + P (a4 = 1, b2 = 1) + P (a4 = 2, b3 = 2)

+ P (a5 = 0, b6 = 2) + P (a5 = 1, b2 = 0) + P (a5 = 2, b1 = 2)

+ P (a6 = 0, b7 = 2) + P (a6 = 1, b8 = 1) + P (a6 = 2, b5 = 0)

+ P (a7 = 0, b1 = 0) + P (a7 = 1, b3 = 1) + P (a7 = 2, b6 = 0)

+ P (a8 = 0, b2 = 2) + P (a8 = 1, b6 = 1) + P (a8 = 2, b3 = 0)

+ P (a1 = 0, b5 = 1) + P (a1 = 1, b7 = 2) + P (a1 = 2, b4 = 2)

+ P (a2 = 0, b8 = 2) + P (a2 = 1, b5 = 0) + P (a2 = 2, b4 = 0)

+ P (a3 = 0, b7 = 0) + P (a3 = 1, b4 = 1) + P (a3 = 2, b8 = 1)

+ P (a4 = 0, b2 = 2) + P (a4 = 1, b3 = 1) + P (a4 = 2, b1 = 2)

+ P (a5 = 0, b2 = 1) + P (a5 = 1, b1 = 0) + P (a5 = 2, b6 = 1)

+ P (a6 = 0, b8 = 0) + P (a6 = 1, b5 = 2) + P (a6 = 2, b7 = 1)

+ P (a7 = 0, b3 = 0) + P (a7 = 1, b6 = 2) + P (a7 = 2, b1 = 1)

+ P (a8 = 0, b6 = 0) + P (a8 = 1, b3 = 2) + P (a8 = 2, b2 = 0) (36)

Example II

S2 ≡ P (a1 = 0, b3 = 2) + P (a1 = 1, b2 = 0) + P (a1 = 2, b6 = 0)

+ P (a2 = 0, b1 = 1) + P (a2 = 1, b3 = 0) + P (a2 = 2, b6 = 2)

+ P (a3 = 0, b2 = 1) + P (a3 = 1, b6 = 1) + P (a3 = 2, b1 = 0)

+ P (a4 = 0, b7 = 1) + P (a4 = 1, b5 = 2) + P (a4 = 2, b8 = 0)

+ P (a5 = 0, b7 = 0) + P (a5 = 1, b8 = 1) + P (a5 = 2, b4 = 1)

+ P (a6 = 0, b1 = 2) + P (a6 = 1, b3 = 1) + P (a6 = 2, b2 = 2)

+ P (a7 = 0, b5 = 0) + P (a7 = 1, b4 = 0) + P (a7 = 2, b8 = 2)

+ P (a8 = 0, b4 = 2) + P (a8 = 1, b5 = 1) + P (a8 = 2, b7 = 2)

+ P (a1 = 0, b6 = 1) + P (a1 = 1, b3 = 0) + P (a1 = 2, b2 = 2)

+ P (a2 = 0, b6 = 0) + P (a2 = 1, b1 = 0) + P (a2 = 2, b3 = 1)

+ P (a3 = 0, b6 = 2) + P (a3 = 1, b1 = 2) + P (a3 = 2, b2 = 0)

+ P (a4 = 0, b5 = 0) + P (a4 = 1, b8 = 1) + P (a4 = 2, b7 = 2)

+ P (a5 = 0, b8 = 2) + P (a5 = 1, b4 = 2) + P (a5 = 2, b7 = 1)

+ P (a6 = 0, b3 = 2) + P (a6 = 1, b2 = 1) + P (a6 = 2, b1 = 1)
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+ P (a7 = 0, b4 = 1) + P (a7 = 1, b8 = 0) + P (a7 = 2, b5 = 1)

+ P (a8 = 0, b5 = 2) + P (a8 = 1, b7 = 0) + P (a8 = 2, b4 = 0)

+ P (a1 = 0, b1 = 0) + P (a1 = 1, b1 = 1) + P (a1 = 2, b1 = 2)

+ P (a2 = 0, b2 = 0) + P (a2 = 1, b2 = 1) + P (a2 = 2, b2 = 2)

+ P (a3 = 0, b3 = 0) + P (a3 = 1, b3 = 1) + P (a3 = 2, b3 = 2)

+ P (a4 = 0, b4 = 0) + P (a4 = 1, b4 = 1) + P (a4 = 2, b4 = 2)

+ P (a5 = 0, b5 = 0) + P (a5 = 1, b5 = 1) + P (a5 = 2, b5 = 2)

+ P (a6 = 0, b6 = 0) + P (a6 = 1, b6 = 1) + P (a6 = 2, b6 = 2)

+ P (a7 = 0, b7 = 0) + P (a7 = 1, b7 = 1) + P (a7 = 2, b7 = 2)

+ P (a8 = 0, b8 = 0) + P (a8 = 1, b8 = 1) + P (a8 = 2, b8 = 2) (37)

Example III

S3 ≡ P (a1 = 0, b5 = 2) + P (a1 = 1, b7 = 0) + P (a1 = 2, b4 = 0)

+ P (a2 = 0, b8 = 0) + P (a2 = 1, b5 = 1) + P (a2 = 2, b4 = 1)

+ P (a3 = 0, b7 = 1) + P (a3 = 1, b4 = 2) + P (a3 = 2, b8 = 2)

+ P (a4 = 0, b2 = 1) + P (a4 = 1, b3 = 2) + P (a4 = 2, b1 = 1)

+ P (a5 = 0, b2 = 0) + P (a5 = 1, b1 = 2) + P (a5 = 2, b6 = 2)

+ P (a6 = 0, b8 = 1) + P (a6 = 1, b5 = 0) + P (a6 = 2, b7 = 2)

+ P (a7 = 0, b3 = 1) + P (a7 = 1, b6 = 0) + P (a7 = 2, b1 = 0)

+ P (a8 = 0, b6 = 1) + P (a8 = 1, b3 = 0) + P (a8 = 2, b2 = 2)

+ P (a1 = 0, b4 = 1) + P (a1 = 1, b5 = 0) + P (a1 = 2, b7 = 1)

+ P (a2 = 0, b4 = 2) + P (a2 = 1, b8 = 1) + P (a2 = 2, b5 = 2)

+ P (a3 = 0, b4 = 0) + P (a3 = 1, b8 = 0) + P (a3 = 2, b7 = 2)

+ P (a4 = 0, b3 = 0) + P (a4 = 1, b1 = 0) + P (a4 = 2, b2 = 0)

+ P (a5 = 0, b1 = 1) + P (a5 = 1, b6 = 0) + P (a5 = 2, b2 = 2)

+ P (a6 = 0, b5 = 1) + P (a6 = 1, b7 = 0) + P (a6 = 2, b8 = 2)

+ P (a7 = 0, b6 = 1) + P (a7 = 1, b1 = 2) + P (a7 = 2, b3 = 2)

+ P (a8 = 0, b3 = 1) + P (a8 = 1, b2 = 1) + P (a8 = 2, b6 = 2)

+ P (a1 = 0, b8 = 1) + P (a1 = 1, b8 = 2) + P (a1 = 2, b8 = 0)

+ P (a2 = 0, b7 = 2) + P (a2 = 1, b7 = 0) + P (a2 = 2, b7 = 1)

+ P (a3 = 0, b5 = 0) + P (a3 = 1, b5 = 2) + P (a3 = 2, b5 = 1)

+ P (a4 = 0, b6 = 2) + P (a4 = 1, b6 = 1) + P (a4 = 2, b6 = 0)

+ P (a5 = 0, b3 = 0) + P (a5 = 1, b3 = 2) + P (a5 = 2, b3 = 1)

+ P (a6 = 0, b4 = 2) + P (a6 = 1, b4 = 1) + P (a6 = 2, b4 = 0)

+ P (a7 = 0, b2 = 1) + P (a7 = 1, b2 = 2) + P (a7 = 2, b2 = 0)

+ P (a8 = 0, b1 = 2) + P (a8 = 1, b1 = 0) + P (a8 = 2, b1 = 1) (38)
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Table 3 Coefficients c(α) entering Eq. (13)

Example I Example II Example III

c(α) No. of configurations c(α) No. of configurations c(α) No. of configurations

1 12 960 1 9 720 1 18 360

2 159 408 2 126 576 2 115 596

3 645 408 3 510 480 3 474 696

4 1 729 188 4 1 514 862 4 1 445 778

5 3 479 760 5 3 182 904 5 3 286 224

6 5 424 408 6 5 374 584 6 5 510 160

7 6 896 016 7 7 139 664 7 7 178 976

8 7 261 569 8 7 822 791 8 7 670 547

9 6 410 016 9 6 903 648 9 6 795 936

10 4 866 480 10 5 058 216 10 5 012 208

11 3 176 496 11 3 006 000 11 3 087 504

12 1 758 348 12 1 506 186 12 1 567 458

13 808 704 13 613 800 13 638 280

14 311 040 14 208 008 14 196 812

15 90 720 15 55 584 15 41 400

16 15 876 16 11 673 16 4 761

17 0 17 1 656 17 0

18 0 18 144 18 0

19 0 19 0 19 0

20 0 20 0 20 0

Therefore, the corresponding Bell inequalities take the form

S1 ≤ 16 (39)

S2 ≤ 18 (40)

S3 ≤ 16. (41)

They were obtained by assuming the existence of joint distribution of random variables
a1, . . . , a8, b1, . . . , b8 and computing the coefficients c(α) defined in Sect. 2. More
precisely, for each example we write all probabilities entering the sums S1, S2, S3 as
the marginals of joint probability distribution. As a result we obtain the expressions
of the form

S =
∑

α

c(α)p(α) (42)

where α runs over all 316 configurations of the variables a1, . . . , a8, b1, . . . , b8. The
results of numerical computations are summarized in Table 3.
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