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Abstract: The walking technicolor based on the ladder Schwinger-Dyson gap equation is

studied, with the scale-invariant coupling being an idealization of the Caswell-Banks-Zaks

infrared fixed point in the “anti-Veneziano limit”, such that NC → ∞ with NC · α(µ2) =

fixed and NF /NC = fixed (� 1), of the SU(NC) gauge theory with massless NF flavors

near criticality. We show that the 125 GeV Higgs can be naturally identified with the

technidilaton (TD) predicted in the walking technicolor, a pseudo Nambu-Goldstone (NG)

boson of the spontaneous symmetry breaking of the approximate scale symmetry. Lad-

der calculations yield the TD mass Mφ from the trace anomaly as M2
φF

2
φ = −4〈θµµ〉 =

−β(α(µ2))
α(µ2)

〈G2
λν(µ2)〉 ' NCNF

16
π4m

4
F , independently of the renormalization point µ, where

mF is the dynamical mass of the technifermion, and Fφ = O(
√
NFNC mF ) the TD de-

cay constant. It reads M2
φ ' (vEW

2 · 5vEW
Fφ

)2 · [ 8
NF

4
NC

], (vEW = 246 GeV), which implies

Fφ ' 5 vEW for Mφ ' 125 GeV ' 1
2vEW in the one-family model (NC = 4, NF = 8), in

good agreement with the current LHC Higgs data. The result reflects a generic scaling

M2
φ/v

2
EW ∼M2

φ/F
2
φ ∼ m2

F /F
2
φ ∼ 1/(NFNC)→ 0 as a vanishing trace anomaly, namely the

TD has a mass vanishing in the anti-Veneziano limit, similarly to η′ meson as a pseudo-

NG boson of the ordinary QCD with vanishing U(1)A anomaly in the Veneziano limit

(NF /NC � 1).
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1 Introduction

The Higgs boson with mass nearly 125 GeV has been found at LHC. Still there remains a

mystery about the electroweak symmetry breaking, or the dynamical origin of the Higgs,

which would be understood by physics beyond the Standard Model (SM). An attractive

idea for the origin of mass beyond the SM is the dynamical symmetry breaking traced

back to Nambu [1, 2], the birthplace of all the variants of the concept of the Spontaneous

Symmetry Breaking (SSB). Together with the Nambu’s dynamical symmetry breaking

producing composite Nambu-Goldstone (NG) bosons, we should mention the composite

approach by Shoichi Sakata, who proposed the Sakata model [3], a composite model for

the hadrons, which paved a way to the quark model and eventually to the Standard Model.

We are inspired by his never-ending enthusiasm seeking the deeper level of matter.

In contrast to the SM Higgs boson which has a mass given ad hoc without explanation,

the origin of mass M in the Nambu’s dynamical symmetry breaking resides in the criticality

with the nonzero critical coupling gcr 6= 0, such that the value M in the Nambu-Jona-

Lasinio model (NJL) is generated from nothing as M ∼ Λ (1/gcr − 1/g)1/2 for strong

coupling g > gcr, where g and Λ are the dimensionless coupling and an intrinsic scale

carried by the four-fermion coupling, respectively, as G ∼ g/Λ2. We all know now that

the Nambu’s great idea is essentially realized in the reality, the QCD, where the strong

gauge coupling in the infrared scale ΛQCD gives rise to the hadron mass on that scale.

In the case of Higgs, the top quark condensate model (Top-mode standard model) [4–8]

is a straightforward application of the NJL dynamics, with only the top coupling set to

be above the criticality and others below it [4, 5, 8]:1 the origin of the intrinsic scale Λ

could be the quantum mechanical origin as the trace anomaly like ΛQCD in the classically

scale-invariant theory e.g, gauge theory, or the explicit one such as the given four-fermion

coupling in the NJL with Λ to be regarded as the Landau pole or the compositeness scale,

or the intrinsic scale of certain underlying gauge theory at deeper level. Note that the

existence of the scale Λ does not necessarily implies the existence of the mass M : the weak

coupling g < gcr does not produce the mass M , while the strong coupling does create it,

picking up the intrinsic scale Λ a la dimensional transmutation, generically in the form

M ∼ Λf(g(Λ)) = µf(g(µ)), with f(g(µ))→ 0 as g(µ)→ gcr.

One of the candidates for such a dynamical symmetry breaking theory beyond the SM

is the walking technicolor (WTC) [9–14], having a large anomalous dimension γm = 12

to solve the Flavor-Changing Neutral Currents (FCNC) problem3 of the original techni-

1Note that the NJL dynamics with gcr 6= 0 is in sharp contrast to the weakly-coupled BCS theory which

has gcr = 0 due to the “dimensional reduction” by the presence of the Fermi surface. The NJL criticality

gtop > gcr > gothers is an essence of the top quark condensate model of ref. [4, 5, 8] to ensure that only the

top quark gets condensed to produce only three NG bosons to be absorbed into the weak bosons.
2It was further shown [15] that the NJL model coupled to the walking gauge theories (“gauged NJL

model”) has an even larger anomalous dimension 1 < γm < 2, along the critical line [16–18] with strong

four-fermion coupling. It was further shown [19–23] that such a theory is renormalizable without Landau

pole, i.e., nontriviality theory having a finite nontrivial (non-Gaussian) ultraviolet fixed point, in contrast

the pure NJL model which is a trivial theory. See later discussions.
3Solving FCNC problem by a large anomalous dimension was proposed earlier [24], based on a pure

assumption of the existence of a gauge theory having the nontrivial UV fixed point at large coupling, where

a large anomalous dimension γm > 1 was postulated. See also [25–27].
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color (TC) [28–30] and a technidilaton (TD), a pseudo NG boson of the approximate scale

symmetry, as a composite Higgs (“Conformal Higgs” [31]).4 It has recently been shown

that the TD properties are consistent with the current data of LHC for the 125 GeV Higgs

and hence TD can be identified with the 125 GeV Higgs at LHC [35–39].

The above results [9, 10] were originally obtained based on the ladder Schwinger-

Dyson (SD) gap equation for the fermion propagator, with the nonrunning gauge coupling

constant α(µ2) = α for 0 < µ2 < Λ2 as an input coupling: The theory is scale-invariant

(infrared conformality) in the infrared region below the cutoff Λ to be identified with the

intrinsic scale of the theory, ΛTC, like ΛQCD of ordinary QCD, which is quantum mechan-

ically induced by the regularization as the trace anomaly. When the coupling exceeds the

critical coupling α > αcr 6= 0, the chiral and scale symmetries simultaneously get SSB

due to the generation of the technifermion dynamical mass mF in such a way that mF is

much smaller than the intrinsic scale mF ∼ ΛTC f(α)� ΛTC by the Miransky scaling [40]

(similar to Berezinsky-Kosterlitz-Thouless (BKT) scaling), with f(α) → 0 (α → αcr) in

the essential-singularity form, thus retaining the approximate scale invariance α(µ2) ≈ α

for the wide infrared region m2
F < µ2 < Λ2

TC. The generation of the tiny mF in units

of the intrinsic scale Λ breaks the scale symmetry explicitly as well as spontaneously, so

that the TD as a pseudo NG boson was expected to acquire a tiny mass to be estimated

by the anomalous Ward-Takahashi (WT) identity for the approximate scale symmetry via

Partially Conserved Dilatation Current (PCDC) relation [10], in the same manner as the

pion mass estimate by the Partially Conserved Axial Current (PCAC).

Since then, the WTC has confronted other challenges, namely, the S, T, U param-

eters [41–44] from the electroweak precision measurements,5 the large top quark mass

173 GeV,6 and finally the most serious and urgent problem from the discovery of the Higgs

at 125 GeV. This created a widely spread folklore against TC including WTC: e.g., “More

intuitively, the measured mass of the Higgs tells us that it is weakly coupled. Strong

coupling solutions like technicolor tend to lead to a strongly coupled Higgs” [45].

This is totally a misconception based on the linear sigma model, whose λ|φ|4 coupling

for the would-be QCD σ meson with mass M2
σ = 2λv2 ' (6v)2 ' (500 MeV)2 would be

obviously strong λ ∼ (6v)2/(2v2) ' 18 � 1, in sharp contrast to the 125 GeV Higgs with

λ ' (125 GeV)2/[2(246 GeV)2] ' 1/8 � 1. Actually, the linear sigma model is not the

right effective theory of QCD, rather the nonlinear sigma model corresponding to λ or

M2
σ→ ∞ is the correct one, the Chiral Perturbation Theory (ChPT). The ChPT is not

scale-invariant, which is in accord with the QCD having no scale invariance. However, the

WTC does have an approximate scale invariance and hence its effective field theory must be

approximately scale-invariant. The light composite Higgs, the TD as the pseudo NG boson

of the approximate scale symmetry, does make the nonlinear sigma model (approximately)

scale-invariant, in a way fully consistent with the strongly coupled underlying theory, the

WTC (“scale-invariant ChPT”, sChPT for short) [36, 46]. It will be shown in eq. (4.19)

that the self-interactions of the TD are even weaker than the SM Higgs!

4Similar works on the FCNC solution [32–34] were done without notion of the anomalous dimension,

the scale invariance, and the technidilaton.
5There are several solutions to the S parameter problem. See the discussions in the last section.
6Possible resolutions are discussed in the last section.

– 3 –



J
H
E
P
1
2
(
2
0
1
5
)
0
5
3

Note that all the bound states (techni-hadrons) are in principle strongly coupled to

each other within the WTC sector just as hadrons in QCD are, whereas the couplings

of 125 GeV Higgs so far observed at LHC are not those among the techni-hadrons but

only the couplings of a special technihadron, TD, to the SM sector particles, which must

be weak, through either the (weak) SU(2) × U(1) gauge couplings or the (weak) effective

Yukawa couplings (loop-suppressed and extended TC (ETC)-scale suppressed via ETC-

like couplings), see eq. (2.45), all related to outside of the strongly coupled WTC sector.

Moreover, it was shown that the TD couplings themselves characterized by 1/Fφ � 1/vEW,

are even weaker than those of the SM Higgs [37–39]. See eqs. (4.19) and (5.1).

Another widely spread misconception comes from the ChPT, the opposite to the linear

sigma model view. It says that there is no light composite scalar meson with mass much

lighter than the scale of the naive dimensional analysis (NDA), 4πFπ, which is based on

the estimated breakdown scale of the conventional ChPT valid in the ordinary QCD. The

crucial assumption of NDA is that no light spectrum other than the pions exist below 4πFπ,

which however is already in contradiction with the reality even in the conventional QCD:

Mf0 ' 500 MeV and Mρ ' 770 MeV, well below the NDA 4πFπ ' 1.2 GeV. Actually, the

statement should be reversed: If there exists a light spectrum lighter than 4πFπ, then the

conventional ChPT should be modified so as to include the light spectrum in such a way

that the effective theory must respect the symmetry of the underlying theory. In the case

at hand, it is the sChPT [36, 46].

There have been much progress of the WTC particularly on the light TD, not just

in the ladder SD equation, but also in a variety of approaches such as the ladder Bethe-

Salpeter (BS) equation combined with the ladder SD equation [47, 48], the effective theory

based on the sChPT [36, 46], with possible extension including vector mesons via HLS in

a scale-invariant manner [49], holographic method [39, 50, 51], and eventually, the first-

principle calculation of the flavor-singlet scalar meson in the large NF QCD on the lat-

tice [52–56]. In particular, it is remarkable that such a light flavor-singlet scalar meson

as a candidate for the TD was observed in the lattice NF = 8 QCD [52, 53], the theory

shown to have signatures of the lattice walking theory including the anomalous dimension

γm ' 1 [57–59]. Note that NF = 8 (four weak-doublets) corresponds to the “one-family

model” [30, 60] which is the most straightforward model building of the ETC [61, 62] as a

standard way to give mass to the quarks and leptons. The one-family model of the WTC

with NC = 4 is in fact best fit to the 125 GeV Higgs data [35–39], and is shown to be most

natural for the ETC model building [63].

Among such many approaches, the ladder SD equation is still a powerful and relatively

handy tool to analyze the TD as a composite Higgs, in spite of the fact that it is not a

systematic approximation in the sense that high order corrections are not controllable (see

below, however). In fact it turned out to be more than a mnemonic of the physics guess: it

well reproduced numerically as well as the qualitatively the nonpertubative aspects of the

ordinary QCD in the hadron physics, with additional ansatz simply replacing the nonrun-

ning coupling by the one-loop running one as the input coupling of the SD equation [64].

Many ladder analyses on the dynamical symmetry breaking with large anomalous dimen-

sions in the strongly coupled gauge theories and gauged NJL model gave many suggestive

results in the applications for WTC, top quark condensate model, etc. [11–14, 64].

– 4 –
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Figure 1. Two-loop running coupling (solid curve) in the case of SU(3) gauge theory with NF = 12

massless fundamental fermions with intrinsic scale ΛTC, compared with the ladder coupling for

Λ = ΛTC. The overall scale of α(µ) shrinks like 1/NC to zero in the large NC limit with NCα = fixed

(i.e., Λ = ΛTC is fixed) and r = NF /NC = fixed� 1 (walking/anti-Veneziano limit).

In this paper, in the new light of the 125 GeV Higgs at LHC, we investigate full

implications of the ladder SD gap equation for the WTC, in the context of near conformal

window of large NF QCD, SU(NC) gauge theory with massless NF flavors [65, 66], in the

particular walking limit, “anti-Veneziano limit” (in distinction to the original Veneziano

limit with NF /NC � 1):

NC →∞ and λ ≡ NC · α = fixed, with r ≡ NF /NC = fixed � 1, (1.1)

(see [49, 51] for preliminary discussions). Such a limit realizes the ideal situation for the

ladder SD equation, where the input perturbative coupling becomes nonrunning (infrared

conformality), α(µ2) ≡ α∗, thanks to the perturbative infrared (IR) fixed point (Caswell-

Banks-Zaks (CBZ) IR fixed point) [67, 68], α(µ2) ' α∗ = α(µ2 = 0) already near the

anti-Veneziano limit for 0 < µ2 < Λ2
TC. See figure 1. The present paper is an extension of

ref. [69], where a similar analysis was done without concept of the anti-Veneziano limit.

In the ladder SD equation, the critical coupling αcr is given as αcr = π
3C2

, with the

quadratic Casimir C2 =
N2
C−1

2NC
. For the strong coupling α = α∗ > αcr, the technifermion ac-

quires the dynamical mass mF in an essential-singularity (non-analytic) form a la Miransky-

Berezinsky-Kosterlitz-Thouless [40] of the conformal phase transition [66]:

mF ' 4Λ · exp

− π√
α
αcr
− 1

� Λ

(
0 <

α

αcr
− 1� 1, αcr =

π

3C2
=
π

3

2NC

N2
C − 1

)
,

(1.2)

which implies a large hierarchy mF � Λ near the criticality α ' αcr, where the cutoff Λ as

a regulator may be regarded as the intrinsic scale Λ = ΛTC. The would-be CBZ IR fixed

point α∗ is washed out by the mass, which however is a small mass mF � ΛTC, so that there

still remains an approximate scale symmetry in a wide infrared region mF < µ < ΛTC.

– 5 –
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Note that in the walking/anti-Veneziano limit the ladder approximation becomes more

trustable, since the coupling becomes “weak”,

α(µ) ' α∗ ' αcr ∼ 1/NC → 0 , (1.3)

so that many non-ladder diagrams without C2 factor multiplied on α are suppressed as in

the usual 1/NC expansion (also is the case in the NJL model where (g, gcr) ∼ 1/NC), in

spite of the fact that the ’t Hooft coupling λ is really strong and the “effective” critical

coupling to trigger the chiral condensate is strong, C2αcr = π
3 > 1 such that λ > λcr =

(NC/C2)π/3→ 2π/3.

Eq. (1.2) dictates that α is no longer constant due to mF 6= 0 but does run depending

on Λ/mF according to the nonperturbative beta function β(NP)(α) [70] (see figure 1(a) of

ref. [9]):

β(NP)(α) = Λ
∂α(Λ)

∂Λ
= − 2π2αcr

ln3( 4Λ
mF

)
= −2αcr

π

(
α

αcr
− 1

) 3
2

(α > αcr) , (1.4)

as Λ/mF →∞, and hence the coupling as a solution of ∂α
∂ lnµ = β(NP)(α) runs as renormal-

ization point µ:

α(µ) = αcr

1 +
π2

ln2
(

µ
µIR

)
 (α(µ) > αcr) , (1.5)

with µIR = O(mF ), even when the perturbative coupling (input coupling) is nonrunning,

β(α)|perturbative ≡ 0. This is completely different from the two-loop beta function having

the CBZ IR fixed point, which is no longer valid for α > αcr, where α(µ) ↘ αcr (µ ↗):

αcr is now regarded as the ultraviolet (UV) fixed point, as was emphasized in ref. [9] in the

context of the WTC. Then the would-be IR fixed point α∗ ' αcr is also regarded as the UV

fixed point of the nonperturbative running (walking) coupling α(µ) ≈ αcr in the wide IR

region mF < µ < Λ = ΛTC for the characteristic large hierarchy (“criticality hierarchy”)

mF � ΛTC [69, 71]. (See also ref. [72] for a similar observation.)

The scale symmetry is broken also explicitly by mF which is generated by the SSB

of the the same scale symmetry, the typical order parameter being the decay constant of

the TD, Fφ, defined as 〈0|Dν |φ(q)〉 = −iFφqν .7 Different from the SSB of the internal

symmetry like chiral symmetry, there exists no exact point where the scale symmetry is

spontaneously broken without explicit breaking. Nevertheless there exists a limit where

the explicit breaking is much smaller than the SSB scale of the scale symmetry, that is,

the walking/anti-Veneziano limit, eq. (1.1).

Note that mF is an NF , NC-independent quantity related to Λ = ΛTC via Miransky

scaling, eq. (1.2), with α/αcr ' α∗/αcr being only dependent of the ratio r = NF /NC

in the anti-Veneziano limit. Since the dilatation current is a sum of all the NF and NC-

technifermion species, Dν(x) ∼ NFNC , and the TD state is normalized as |φ〉 ∼ 1/
√
NFNC ,

we have Fφ ∼
√
NFNC mF by definition of Fφ, so that the explicit breaking mF is much

7Fφ is also defined as 〈0|θµν |φ(q)〉 = Fφ(qµqν − q2gµν)/3, which yields the identical Fφ.

– 6 –
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smaller than Fφ, or the NDA associated with the TD loop (4πFφ)2/NF in the walking/anti-

Veneziano limit, in addition to the criticality hierarchy mF � ΛTC of direct relevance to

the scale symmetry:

m2
F � F 2

φ ,
(4πFφ)2

NF
� Λ2

TC. (1.6)

Then the mass of the TD as a pseudo-NG boson Mφ can be evaluated, based on

the anomalous WT identity for the scale symmetry as the PCDC relation for the trace

anomaly [10]:

M2
φF

2
φ = −Fφ〈0|∂µDµ|φ〉(NP) = −4〈0|θµµ|0〉(NP) = −β

(NP)(α(µ))

α(µ)
〈G2

νλ(µ)〉(NP)

= NFNC

(
16ξ2

π4
m4
F

)
, (ξ ' 1.1), (1.7)

where the last expression was given through the ladder evaluation of the vacuum energy

E = 〈0|θµµ|0〉(NP)/4 [73]. Since F 2
φ ∼ NFNCm

2
F by definition of Fφ, eq. (1.7) is also in

accord with the fact that M2
φ as well as m2

F has no explicit dependence on NF and NC .

Here all the quantities with (·)(NP) to be defined later contain only the nonperturbative

contributions arising from the dynamical mass mF 6= 0 due to the SSB, and hence vanishes

as mF → 0.

We show that independent calculations of β(NP)(α(µ))
4α(µ) and 〈G2

νλ(µ)〉(NP) in the ladder

approximation yield the nonperturbative trace anomaly as a product of them, which pre-

cisely agrees with the result calculated independently from the vacuum energy of ref. [73].

The agreement is realized in a highly nontrivial manner, fully consistent with the Renormal-

ization-Group Equation (RGE) point of view: each of the β(NP)(α(µ))
4α(µ) and 〈G2

νλ(µ)〉(NP) does

depend on the renormalization point µ: see eq. (1.4) for β(NP)(α(µ))
4α(µ) ∼ 1/ ln3 µ, and explicit

calculation reads 〈G2
νλ(µ)〉(NP) ∼ ln3 µ for mF < µ < ΛTC. Such a µ-dependence is com-

pletely cancelled each other in the product to arrive at the µ-independent trace anomaly

as it should be. Similar cancellation of the µ-dependence also takes place in the ordinary

QCD, where β(α(µ))
4α(µ) ∼ 1/(lnµ) and 〈G2

νλ(µ)〉 ∼ lnµ, with the logarithm of lnµ instead of

ln3 µ. This result is the RGE view of the previous calculation [69] based on the improved

ladder approximation for the large NF SU(NC) gauge theories near conformal window.

The key observation of the present paper is that as far as the PCDC relation is satisfied

as in the ladder approximation, the TD as a pseudo NG boson has a vanishing mass

in the anti-Veneziano limit, quite independently of the numerical details of the ladder

calculation (see [49, 51] for preliminary discussions): noting that F 2
φ = O(NFNCm

2
F ),

eq. (1.7) naturally explains

Mφ = O
(

4ξmF

π2

)
= O

(mF

2

)
� Fφ = O

(√
NFNC mF

)
, (1.8)

in the walking/anti-Veneziano limit, eq. (1.1), where we have M2
φ/F

2
φ ∼ 1/(NFNC) → 0.

The TD as the pseudo NG boson has a vanishing mass limit, though not exact massless

– 7 –
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point, in the anti-Veneziano limit, where the nonperturbative trace anomaly vanishes in

units of Fφ as a measure of the SSB of the scale symmetry. This is similar to the η′

meson in QCD, which is regarded as a pseudo NG boson whose mass, evaluated through

the anomalous WT identity with the U(1)A anomaly, does vanish in the large NF and NC

limit with NF /NC fixed (� 1) (Veneziano limit): M2
η′/F

2
π ∼ NF /N

2
C → 0, without the

exact massless point.

Note that mF is related to the weak scale vEW = 246 GeV through the Pagels-Stokar

formula F 2
π ' (NCξ

2/2π2)m2
F in the ladder approximation reads (eq. (B.4)): v2

EW =

(246 GeV)2 = NDF
2
π '

NFNCξ
2

4π2 m2
F ' m2

F

[
NF
8
NC
4

]
, with ND(= NF /2) being the number

of the electroweak doublets. Then a natural estimate of the TD mass for the one-family

model NF = 8 with NC = 4 is that Mφ = O(mF /2) = O(vEW/2) = O(125 GeV), in

agreement with the LHC Higgs as the TD. More precisely, eq. (1.7) can be rewritten in

terms of vEW:

M2
φ '

(vEW

2

)2
·
(

5 vEW

Fφ

)2

·
[

8

NF

4

NC

]
. (1.9)

It was first pointed out in ref. [35] that this ladder PCDC result accommodates the 125 GeV

Higgs with Fφ = O (TeV) for the one-family model with NF = 8 and was shown to be the

best fit to the current LHC data:

Fφ ' 5 vEW ' 1.25 TeV for Mφ = 125 GeV (NF = 8, NC = 4) (1.10)

[35–39] (see also the later discussions). With the fact that v2
EW ∝ NFNCm

2
F ∼ F 2

φ , the

result reflects the generic scaling:

Mφ

vEW
∼
Mφ

Fφ
∼ mF

Fφ
∼ 1√

NFNC
→ 0, (1.11)

in the anti-Veneziano limit.8

On the other hand, all the non-NG boson technihadrons, such as the techni-rho, techni-

a1, technibaryon, etc., have no constraints from the PCDC as the explicit breaking of the

scale symmetry but do have constraints from the SSB of the scale symmetry, so that they

should have masses on the scale of SSB of the scale symmetry, characterized by Fφ much

larger than 2mF of the naive nonrelativistic quark model picture:

Mρ,Ma1 ,MN , · · · = O(TeV′s) > O(Fφ)� 2mF �Mφ. (1.12)

In fact, the IR conformal physics of the WTC should be described by the low-lying com-

posite fields as effective fields, in a way to realize all the symmetry structure of the under-

lying theory.

8In early days, ladder-like calculations [70, 73–79] both in pure gauge theories and gauged NJL models

showed Mφ = O(mF ), however without paying attention to the NF , NC dependence, particularly to the

fact that
Mφ
vEW

∼ mF
vEW

� 1 in the anti-Veneziano limit, which is actually of the most phenomenological

relevance with respect to the 125 GeV Higgs such as in the one-family model with NF = 8, NC = 4.
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Such an effective theory of WTC as a straightforward extension of sChPT [36, 46]

is already constructed, i.e, the scale-invariant version [49] of the Hidden Local Symme-

try (HLS) model [80–84], (the “sHLS model”), where the technirho mass terms have the

scale-invariance nonlinearly realized by the TD field χ = eφ/Fφ , with the SSB of the scale

invariance characterized by the scale of Fφ, while the Higgs (TD) mass term in the TD

potential, on the order of mF (� Fφ), is the only source of the explicit breaking of the

scale symmetry related (via PCDC) to the nonperturbative trace anomaly of the underly-

ing theory.

One interesting candidate for such technihadrons may be a resonance behind the di-

boson excess recently observed at LHC at 2 TeV [85, 86], which can be identified with the

walking technirho [87]. A smoking gun of the walking techni-rho is the absence of the decay

to the 125 GeV Higgs (TD), which is forbidden by the scale symmetry explicitly broken

only by the Higgs (TD) mass term (corresponding to the nonperturbative trace anomaly

in the underlying WTC) [88]. Actually, the salient feature of the scale symmetry of the

generic effective theory not just the sHLS model, containing the SM gauge bosons and the

Higgs plus new vector bosons (any other massive particles as well), is the absence of the

decay of the new vector bosons such as the technirho (and also other higher resonances)

into the 125 GeV Higgs plus the SM gauge bosons [88]. If such decays of new particles are

not found at LHC Run II, then the 125 GeV Higgs is nothing but the dilaton (TD in the

case of the WTC) responsible for the nonlinearly realized scale symmetry, i.e., the SSB

of the scale symmetry, no matter what underlying theory may be beyond the SM. This

should be tested in the ongoing LHC Run-II.

The paper is organized as follows: in section 2 we review the solutions of the ladder

SD equation in some details and the conformal phase transition a la Miransky-BKT in

the context of CBZ IR fixed point of the large NF QCD in the anti-Veneziano limit.

Nonpertubative beta function and the corresponding running of the coupling is discussed.

Large anomalous dimension γm = 1 and its phenomenological implications are reviewed. In

section 3 we explicitly show the RG invariance of the nonperturbative trace anomaly in the

broken phase of the ladder SD equation, in such a way that three independent calculations

of β(NP)(α)
4α , 〈G2

µν〉(NP) and 〈(θµµ)〉(NP) yield precisely a correct trace anomaly relation. We

further check explicitly that the ladder calculation satisfies the anomalous WT identity

in the case of nonzero fermion mass m0 6= 0. This is to establish the consistency of the

ladder calculation with the sChPT proposed in ref. [46] for determining the mass Mφ and

the decay constant Fφ of the TD on the lattice. In section 4 we give a mass and decay

constant of the TD through the PCDC relation as an anomalous WT identity for the scale

symmetry based on the nonperturbative trace anomaly. We discuss that the TD becomes

a parametrical NG boson in the anti-Veneziano limit in accord with the walking regime

of large NF QCD, in a sense similar to the η′ meson in the ordinary QCD a la Witten-

Veneziano. In section 5 we show that the light TD is consistent with the current LHC data

on the 125 GeV Higgs, as an update of the ref. [37, 38]. Section 6 is for the technihadrons

other than TD. Section 7 is devoted to summary and discussions. Appendix A is for the

basic formulas of the ladder SD equation. In appendix B we give a ladder result for the

Pagels-Stokar formula for F 2
π . Appendix C is for the details about the contamination of

– 9 –
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the 125 GeV Higgs poduction between the gluon fusion production and the vector boson

fusion production at the present LHC data.

2 Solution of the ladder SD equation and conformal phase transition

2.1 Ladder coupling as the CBZ IR fixed point in the anti-Veneziano limit

Let us first recapitulate the results in ref. [9] based on the the ladder SD gap equation for the

technifermion mass function Σ(−p2) (p2 < 0) with the nonrunning coupling as an idea limit

of the CBZ IR fixed point of large NF SU(NC) gauge theories, which can be well described

by the improved ladder approximation with the running coupling g2(−p2) [89, 90]:

S−1
F (p) = S−1(p) +

∫
d4k

(2π)4
C2 g

2((p− k)2) Dµν(p− k)γµ SF (k) γν , (2.1)

where iS−1
F (p) = Z−1(−p2)(p/ − Σ(−p2)) and iS−1(p/ − m0) are the full and bare tech-

nifermion propagators, respectively, and iDµν(p) the bare technigluon propagator in the

Landau gauge, with an ansatz g2((p − k)2) ⇒ g2(max{−p2,−k2}). C2 is the quadratic

Casimir of the technifermion of the gauge theory, with C2 = (N2
C − 1)/(2NC) for the fun-

damental representation in SU(NC). After the angular integration, the improved ladder

SD equation in Landau gauge for Σ(x ≡ −p2) reads:

Σ(x) = m0 +
3C2

4π

∫
dy

[
α(x)

x
θ(x− y) +

α(y)

y
θ(y − x)

]
yΣ(y)

y + Σ2(y)
, (Z−1(x) ≡ 1). (2.2)

The original ladder SD gap equation as the basis for the WTC [9, 10] is a scale-invariant

dynamics, having an input coupling as nonrunning :

α(x) =
g2(x)

4π
≡ α, β(α) ≡ 0, for 0 < x < Λ2 . (2.3)

The cutoff Λ breaks explicitly the scale symmetry, as does the the intrinsic scale ΛTC

analogous to the ΛQCD. Such a scale-invariant coupling is indeed an idealization of the CBZ

IR fixed point [67, 68] α = α∗, such that β(2−loop)(α∗) = 0 and α(µ2) ≈ α∗ (µ2 � Λ2
TC) in

the large NF QCD [65, 66], where the two-loop coupling is almost nonrunning particularly

in the walking/anti-Veneziano limit eq. (1.1), while it is rapidly decreasing in the one-loop

dominated asymptotically free UV region µ > ΛTC, as in the ordinary QCD (see figure 1):

µ
∂

∂µ
α=β(2−loop)(α)= −b0α2 − b1α3,

b0 =
1

6π
(11NC−2NF ), b1 =

1

24π2

(
34N2

C−10NCNF−3
N2
C−1

NC
NF

)
,

α∗=−b0
b1
−→ 4π

NC

11−2r

13r−34

(
NC →∞,

34

13
<r≡NF

NC
= const <

11

2

)
.

(2.4)

The analytic form of α is given as

α(µ2) =
α∗

1 +W (z(µ))
, z(µ) ≡ 1

e

(
µ

ΛTC

)b0α∗
, with b0α∗ −→

2

3

(11− 2r)2

34− 13r
, (2.5)
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where W (z) is the Lambert W function and Λ = ΛTC is the intrinsic scale defined as

ΛTC = µ · exp

(
−
∫ α(µ2) dα

β(2−loop)(α)

)
, (2.6)

conventionally taken as α(µ2 = Λ2
TC) = α∗/[1 + W (e−1)] ' 0.78α∗. The UV and IR

behaviors of α(µ2) are given by

α(µ2) ∼ 1

b0 ln µ
ΛTC

(
µ2 � Λ2

TC

)
,

∼ α∗

1 + 1
e

(
µ

ΛTC

)b0α∗ (
µ2 � Λ2

TC

)
(2.7)

The intrinsic scale ΛTC is generated by the regularization in the form of the perturbative

trace anomaly:

〈θµµ〉(perturbative) =
β(2−loop)(α)

4α
〈G2

µν〉 ∼ −(NCα)〈G2
µν〉 ∼ −NFNCΛ4

TC , (2.8)

where Gµν is the technigluon field strength.9 Eq. (2.8) is of course RG invariant: the

µ-dependence of β(2−loop)(α)
4α ∼ −1/ ln(µ2/Λ2

TC) is precisely cancelled by that of 〈G2
µν〉 ∼

Λ4
TC ln(µ2/Λ2

TC) in the UV region µ2 > Λ2
TC as in the ordinary QCD.

The physics behind the walking/anti-Veneziano limit is very simple: the scale of mF

is determined by the criticality α(µ2 = m2
F ) ∼ αcr. Let us start with the QCD-like theory

with r0 ≡ NF /NC ∼ 1 where ΛTC is specified as α(µ2 = Λ2
TC) = O(αcr) = O(1/NC),

so that we have mF = O(ΛTC) as in the usual QCD. We then increase r = r1 > r0,

which decreases the coupling mainly in the infrared region µ2 < Λ2
TC (biasing infrared-

free against asymptotic-free) as a consequence of the increased screening effects of the

fermion loop: α1(µ2) < α0(µ2) for µ2 < Λ2
TC. The criticality α1(µ2 = m2

F ) = O(αcr)

for the infrared-weakened coupling determines the new scale of (mF )r1 < (mF )r0 . As we

continue increasing NF , we get smaller mF accordingly, eventually mF = 0 at certain

critical r = rcr = N cr
F /NC , and the large hirerarchy mF � ΛTC is realized near rcr.

Beyond that point rcr < r < 11/2, called conformal window, the chiral symmetry is not

spontaneously broken, mF ≡ 0. This is depicted in figure 2. Then the ladder coupling is

regarded as the CBZ IR fixed point in the anti-Veneziano limit:

α(x) = α∗θ(Λ
2
TC − x) . (2.9)

9Usual large NC(� NF ) counting would imply 〈θνν 〉(perturbative) ∼ −(NCα)〈G2
νλ〉(perturbative) =

−O(N2
CΛ4

TC) from the gluon loop, which would dominate the fermion-loop of order −O(NCNFΛ4
TC). In

the case at hand with NF � NC , however, the fermion-loop dominates instead. See later discussions.
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Figure 2. Two-loop coupling constant α(µ2) normalized to the ladder critical coupling αcr =

π/(3C2) at increasing r = NF /NC in the anti-Veneziano limit (top). The closed up view near

α = αcr (bottom).

2.2 Solution of the ladder SD equation

Eq. (2.2) with the ladder coupling eq. (2.3) is converted into a differential equation plus

IR and UV boundary conditions [91]:

(xΣ(x))′′ + α
3C2

4π

Σ(x)

x+ Σ2(x)
= 0, (2.10)

lim
x→0

x2Σ′(x) = 0, (2.11)

(xΣ(x))′
∣∣
x=Λ2 = m0. (2.12)

Since eq. (2.10) is a nonlinear equation, the absolute value of the Σ(x) is determined by the

equation itself. In order to have analytical insights, however, we may linearlize eq. (2.10) by

replacing Σ(x) in the denominator of the second term in the left-hand side by a constant,

mP . Then the linearlized SD equation reads [92]

(xΣ(x))′′ + α
3C2

4π

Σ(x)

x+m2
P

= 0 , (2.13)
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where the absolute value of Σ(x) is determined custormarily by

mP ≡ Σ(x = m2
P ) . (2.14)

A solution of eq. (2.13) which satisfies boundary condition eq. (2.11) can then be

expressed in terms of the hypergeometric function as [92]

Σ(x) = (ξ mP ) · 2F1

(
1 + ω

2
,
1− ω

2
, 2,− x

m2
P

)
, (2.15)

where

ω ≡
√

1− α

αcr

(
α < αcr =

π

3C2

)
, i

√
α

αcr
− 1 = iω̃ (α > αcr) , (2.16)

and ξ is a numerical coefficient which is determined from the definition of mP in eq. (2.14):

ξ = 2F1

(
1 + ω

2
,
1− ω

2
, 2,−1

)−1

' 1.1 (ω ' 0) 1.0 (ω ' 1). (2.17)

In the limit of x� m2
P , the solution can be expanded as

Σ(x) ' ξ mP

[
Γ(ω)

Γ(ω+1
2 ) Γ(ω+3

2 )

(
x

m2
P

)ω−1
2

+ (ω ↔ −ω)

]
. (2.18)

The bare chiral condensate of the technifermion, 〈F̄F 〉0 ≡ 〈F̄iFi〉0 (for a single flavor

i with no sum over i), is written in terms of the mass function Σ(x) as

〈F̄F 〉0 = −NC

4π2

∫ Λ2

0
dy

yΣ(y)

y + Σ2(y)
(2.19)

From eq. (2.2) we have

Σ(Λ2) = m0 +
3C2α(Λ2)

4π

1

Λ2

∫ Λ2

0
dy

yΣ(y)

y + Σ2(y)
, (2.20)

which yields a formula for the technifermion condensate in terms of the mass function at

the cutoff Σ(x = Λ2) [93]:

〈F̄F 〉0 =
NC

3C2πα(Λ2)
Λ2
(
m0−Σ(Λ2)

)
=
NC
π2

[
αcr

α(Λ2)

][
Λ2
(
m0−Σ(Λ2)

)]
=−NCαcr

π2

Σ′(x)(
α(x)
x

)′
∣∣∣∣∣
x=Λ2

.

(2.21)

For the nonrunning coupling, the chiral condensate eq. (2.21) reads:

〈F̄F 〉0 =
NC

π2

[αcr

α

] [
Λ4 · Σ′(x)|x=Λ2

]
. (2.22)
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2.3 The conformal phase α ≤ αcr

2.3.1 The exact massless case: m0 ≡ 0

Let us start with the weak coupling case when the coupling is smaller than the critical

coupling, α = α∗ < αcr = π
3C2

. In the chiral limit m0 ≡ 0, the power-damping solution

with eq. (2.18) can satisfy the UV boundary condition eq. (2.12) only by the trivial solution:

Σ(p) ≡ 0, 〈F̄F 〉0 = 0, (α < αcr, m0 ≡ 0). (2.23)

The chiral symmetry is not spontaneously broken, 〈F̄F 〉0 = 0, producing no mass parame-

ter nor bound states (unparticle phase), in the chiral symmetry limit, even though the scale

symmetry is explicitly broken by the intrinsic scale Λ. In this case conformality persists

within the ladder approximation, producing no bound states, the situation characteristic to

the “conformal phase transition” [66]. This is the explicit example that the theory having

intrinsic scale Λ breaking the scale symmetry but has no mass. The same happens e.g., in

the NJL model, where the scale symmetry is badly broken by the coupling characterized

by the intrinsic scale G ∼ g/ΛD−2 but has no mass in the weak coupling g < gcr.

Although the coupling does not run α(µ) ≡ α (β(α) ≡ 0) for µ < Λ, there exists the

explicit breaking of the scale symmetry due to Λ corresponding to the intrinsic scale ΛTC

which is induced quantum mechanically by the regularization. So the scale symmetry is

operative only for the energy region µ < Λ (IR conformal). Such an explicit scale-symmetry

breaking induced by the regularization manifests itself as the trace anomaly relevant even in

the perturbation, see eq. (2.8): 〈θµµ〉(perturbative) = β(α)
4α(µ2)

〈G2
νλ(µ2)〉 = −O(Λ4). Accordingly,

there exists no extra scale and so does no nonperturbative trace anomaly:

〈θµµ〉(NP) ≡ 〈θµµ〉(full) − 〈θµµ〉(perturbative) = 0 (α < αc) . (2.24)

2.3.2 Small explicit breaking: m0( 6= 0)� Λ

If we introduce the explicit fermion mass m0 = m0(Λ2) 6= 0 which is another source of

the explicit breaking of the scale symmetry in addition to Λ(� m0), then the exact IR

confomality is gone and physical states including the bound states can appear, with the

generic mass parameter M solely due to m0 6= 0, all of which are obeying the typical

hyperscaling relation [94],

M ∼ Λ
(m0

Λ

) 1
1+γm , or m0 ∼M

(
M

Λ

)γm
, (2.25)

where the γm is the mass anomalous dimension. If M is the renormalized mass of the

fermion mR, eq. (2.25) takes the conventional form: m0 = ZmmR, with the renormalization

constant Zm = (mR/Λ)γm .

In fact a nontrivial solution of the ladder SD equation, eq. (2.18), satisfies the UV

boundary condition eq. (2.12):

m0 = ξ mP

[
Γ(ω)

Γ(ω+1
2 )2

(
Λ2

m2
P

)ω−1
2

+ (ω ↔ −ω)

]
, (2.26)
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where mP = mR is now the renormalized mass (or current mass) due to this explicit scale

breaking mass m0, with [40]

Zm ≡
m0

mR
= ξ

[
Γ(ω)

Γ(ω+1
2 )2

(
Λ2

m2
R

)ω−1
2

+ (ω ↔ −ω)

]
, (2.27)

or we have [70]

γm = lim
mR/Λ→0

∂ logZm
∂ log(mR/Λ)

= 1− ω = 1−
√

1− α

αcr
, (α < αcr) . (2.28)

For α� 1 (ω ' 1) it coincides with the perturbative one γm ' α
2αcr

= 3C2α
2π 'A/ ln(Λ2/m2

R)

and Zm ' (ln(Λ/mR))−A/2, with A ' 18C2/(11NC − 2NF ). For α → αcr (ω → 0), on the

other hand, we have γm → 1 and Zm → 2ξ
π
mR
Λ .

The asymptotic solution eq. (2.18) takes the form

Σ(x) ∼ mR

(
x

m2
R

)−γm/2
(α < αcr) , (2.29)

which is consistent with the Operator Product Expansion (OPE). Such a nonzero running

mass is a genuine effect of the nonperturbative dynamics of the ladder SD equation having

a set of particular all order diagrams in the conformal phase α < αcr without SSB of the

chiral symmetry. Accordingly, the beta function after including the mR 6= 0 effects would

no longer be a constant, although the ladder coupling as a input is treated as a constant:

β(ladder)(α) = 0.

Note that m0 = m0(Λ)→ 0 as Λ→∞. Here we mention that the cutoff Λ plays a cru-

cial role to identify the solution of the SD equation [95, 96], whether it is a spontaneously

broken solution or explicitly broken one: the spontaneous chiral symmetry breaking solu-

tion with Σ(x) 6= 0 for m0 ≡ 0 exists only for the strong coupling α > αcr = π/(3C2) in

the presence of the cutoff Λ < ∞, while for weak coupling α < αcr there exists only the

explicit chiral symmetry breaking solution such that Σ(x) 6= 0 for m0 6= 0 and Λ <∞, with

m0 → 0 while the renormalized mass mR 6= 0 for Λ → ∞. The explicit breaking solution

would be confused with the spontaneous breaking, if we took (erroneously) Λ → ∞ from

the onset in the SD equation [97, 98]. See the discussions in ref. [95, 96].

2.4 The SSB phase α > αcr

Now we discuss the strong coupling phase, α > αcr = π
3C2

and m0 ≡ 0, where the nontrivial

solution Σ(x) 6= 0 exists even at m0 ≡ 0, that is, the chiral symmetry is spontaneously

broken, i.e., 〈F̄F 〉0 6= 0. The SSB solution Σ(x) in eq. (2.15) with ω = iω̃ in eq. (2.16)

takes the oscillating form [40, 91, 95, 96]

Σ(x) ' ξ
m2
F√
x

√
8 cthπω̃2

πω̃(ω̃2 + 1)
sin

(
ω̃

2
ln

(
16x

m2
F

)
− ω̃

) (
x� m2

F

)
, ω̃ =

(
α

αcr
− 1

)1/2

,

(2.30)
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where we set the dynamical mass mF as mP = mF such that Σ(x = m2
F ) = mF , and

ξ = F (1/2, 1/2, 2 : −1)−1 ' 1.1. The oscillating solution can satisfy the UV boundary

condition eq. (2.12) for m0 = 0:

0 = m0 ' (xΣ(x))′ |x=Λ2 = ξ
m2
F

Λ

√
8 cthπω̃2
πω̃

sin

(
ω̃

2
ln

16Λ2

m2
F

− ω̃ + tan−1(ω̃)

)
' 4ξ

πω̃

m2
F

Λ
sin

(
ω̃

2
ln

16Λ2

m2
F

)
(2.31)

which is fulfilled by the vanishing phase, ω̃
2 ln

(
16Λ2

m2
F

)
' nπ (n = 1, 2, 3, · · · ), with n = 1

being the ground state [40]:

mF ' 4Λ · exp

− π√
α
αcr
− 1

 (α & αcr =
π

3C2
=
π

3

2NC

N2
C − 1

) . (2.32)

Then the technifermion acquires the dynamical mass mF in an essential-singularity (non-

analytic) form (Miransky scaling, or the BKT transition) which implies a large hierarchy

mF � Λ for α ' αcr, where the cutoff Λ as a regulator may be regarded as the intrinsic

scale ΛTC.

2.4.1 Nonperturbative running (walking) coupling, with the IR fixed point as

a UV fixed point

As we already mentioned in the Introduction, the Miransky-BKT scaling can create a

large hierarchy, “criticality hierarchy”, mF � Λ = ΛTC for α ' α∗ ' αcr, which dictates

that the coupling no longer constant but does depend on the Λ/mF as in eq. (2.32), in

such a way that the scale symmetry still remains approximately as the coupling is walking

α(µ2) ' constant for the wide region m2
F � µ2 < Λ2

TC as shown in eq. (1.4):

β(NP)(α) = Λ
∂α(Λ)

∂Λ
= − 2π2αcr

ln3( 4Λ
mF

)
⇒ −2α

π

(
α

αcr
− 1

) 3
2

≈ 0 (< 0) ,

α(µ) = αcr

1 +
π2

ln2
(

µ
µIR

)
 ≈ αcr , (2.33)

even when the perturbative coupling (input coupling) is nonrunning, β(α)|perturbative ≡ 0.

Here µIR(∼ mF /4) is given as ln(µ/µIR) ' ln(4µ/mF )[1 + π2/ ln2(4µ/mF )]−1.10

Note [31, 69] that the form of the beta function in eq. (2.33) for α > αcr has a multiple

zero, and is in fact not Taylor-expandable, with dβ(α)
dα |α=αcr = 0 (without linear zero term),

|d
nβ(α)
dαn |α=αcr | = ∞ (n ≥ 2), reflecting the conformal phase transition of the Miransky-

BKT essential singularity scaling. This is in sharp contrast to the two-loop beta function

10Solution of ∂α
∂ lnµ

= β(NP)(α) is 1
π

lnµ = ( α
αcr
− 1)−1/2 + tan−1( α

αcr
− 1)1/2 ' α

αcr
( α
αcr
− 1)−1/2. Or,

α(µ) ' αcr

(
1 + π2

ln2 µ

[
1 + π2

ln2 µ

]2)
.
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Αcr

Α*

mF LTC~LETC

ln
Μ2

L
TC

2

Α 0

β

α

α*
αcr

Figure 3. Possible perturbative running coupling (left) and the beta function (right) in the region

α < αcr, in comparison with the nonperturbative region α > αcr.

eq. (2.4) having a Taylor expansion with the first term of the linear zero at α = α∗:

β(perturbative) ∼ α − α∗ +O((α − α∗)2). Such a perturbative IR zero makes sense only for

α(µ) � α∗ . αcr (deep conformal phase). Since the beta function should be continuous

across the critical point αcr, it should be continued to the conformal phase α < αcr with

zero curvature. In the broken phase αcr < α∗ where α∗ is washed out, the two-loop beta

function is operative only for α(µ) < αcr in the far-ultraviolet region µ > ΛTC, where the

dynamics is irrelevant to the electroweak symmetry breaking.

Since the critical coupling αcr behaves as the UV fixed point, the original ladder

coupling as an ideal limit of the IR fixed point (viewed from the UV region µ2 > Λ2
TC)

in the anti-Veneziano limit may be identified with the UV fixed point viewed from the IR

side µ2 < Λ2
TC. Then the effective coupling NCα(µ2) keeps strong in IR region all the

way up to the intrinsic scale ΛTC so that the anomalous dimension is very large in that

region. Now the would-be CBZ IR fixed point α ' α∗ ' αc is regarded as the UV fixed

point of the nonperturbative running (walking) coupling α(µ) ≈ αc in the wide IR region

mF < µ < Λ = ΛTC for the characteristic large hierarchy mF � ΛTC. See figure 3 [69, 71]

(see also ref. [72] for a similar observation.). This is the essence of the WTC. The new scale

mF (denoted as ΛTC in ref. [9], which should not be confused with ΛTC in this paper) is

regarded as the second RG-independent quantity as,

mF = 4µ · exp

(
−
∫ α(µ) dα

β(NP)(α)

)
' 4ΛTC · exp

− π√
α(ΛTC)
αc

− 1

� ΛTC , (2.34)

with β(NP)(α) given in eq. (1.4). Compare it with eq. (2.6).

On the other hand, in the UV region µ > ΛTC (α(µ) < αc ' α∗), the coupling runs

as the usual perturbative asymptotically free theory: α(µ) ∼ 1/ lnµ. See figure 3. Such a

perturbative region α < αc is actually irrelevant to the physics of WTC, since the theory

is expected to become only a part of more fundamental (unified) theory including the SM

sector, say, the ETC [61, 62] or technicolored composite model [26, 27].

Incidentally, the original setting of the WTC [9] was an asymptotically non-free the-

ory with small perturbative beta function 1 � β(α) > 0, as in the technicolored preon
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model [26, 27] where the technifermions as well as the quarks and leptons are composites

on the same footing and the technicolor gauge at composite level is asymptotically non-free

in the perturbative sense due to the formation of many composite technifermions (though

the technicolor at the preon level is asymptotically free). This perturbative setting makes

sense only in the weak coupling phase α < αc. On the other hand, in the strong cou-

pling phase α > αcr (µ < Λ = ΛTC ∼ ΛETC (or Λcomposite), both the asymptotically-free

theories with the CBZ IR fixed point and the asymptotically non-free theories yield the

same nonperturbative beta function eq. (1.4), i.e., eq. (5) and figure 1(a) of ref. [9], having

a UV fixed point at α = αc, which is only the physical issue of the WTC. In fact, in

the asymptotically non-free theory with the perturbative coupling growing function of µ

in units of the Landau pole Λ = ΛLandau = ΛComposite, the ladder SD equation tells us

that the dynamical mass mF is generated as a scale when the coupling exceeds the crit-

ical coupling α(µ = mF ) > αcr. Then, in contrast to the infrared-free phase α < αcr of

the asymptotically-free theory (Coulomb phase), the physics in the strong coupling phase

is precisely the same as the WTC in the anti-Veneziano limit of the asymptotically free

theory, with only exception being that the Λ in the Miransky scaling eq. (1.2) should

now read the Landau pole scale ΛLandau = ΛComposite (“compositeness condition” [8], to

be identified with the composite scale in the technicolored preon model [26, 27], to gen-

erate the effective four-fermion interactions in eq. (2.38)) instead of the intrinsic scale of

the asymptotically-free theory. From the model building point of view, it does not make

sense [93] whether the WTC in isolation is asymptotically free or nonfree in the region,

α < αcr (µ > Λ = ΛTC ∼ ΛETC(ΛComposite)), where the theory is already changed into

a more fundamental unified theory, ETC or peon theory both being asymptotically-free

anyway.

2.4.2 Large anomalous dimension γm = 1 and enhanced chiral condensate

Eq. (2.30) together with eq. (2.31) yields the asymptotic form of Σ(x) at m2
F � x . Λ2 =

m2
F

16 exp(2π
ω̃ ) [9]:

Σ(x) ' ξ
m2
F√
x

4

πω̃
sin

(
ω̃

2
ln(16x/m2

F )− ω̃
)
' ξ

m2
F√
x

4

πω̃
sin (π − ω̃) ' 4ξ

π

m3
F

x

(
x

m2
F

)1/2

,

(2.35)

where the logarithmic x-dependence is absent for the region ω̃
2 ln(16x/m2

F )∼ ω̃
2 ln(16Λ2/m2

F )

' π. In the proposal of the WTC [9, 10], this asymptotic form Σ(x) ∼ m3
F
x

(
x
m2
F

)1/2
was

identified with the OPE of Σ(x) at m2
F � x . Λ2:11

Σ(x) ∼
m3
F

x

(
x

m2
F

)γm/2
, (2.36)

11The ladder SD solution with respect to OPE was also discussed in [99] in a way somewhat different

than refs. [9, 10], concerning the logarithmic dependence. The log peculiarity is just on the point α ≡ αcr

where no SSB takes place. Absence of log in the SSB phase is consistently seen in eq. (2.41) and eq. (2.42).

See also the OPE, eq. (2.44).
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to conclude a large anomalous dimension in the SSB phase near criticality (UV fixed

point) [9]:

γm = 1

(
ω̃ =

√
α

αcr
− 1 =

π

ln 4Λ
mF

' 0

)
. (2.37)

The large anomalous dimension γm = 1 in the SSB phase was also compared with the

anomalous dimension eq. (2.28) in the conformal phase (α < αcr) at criticality: γm =

1−
√

1− α/αcr → 1 (α→ αcr-0) (see eqs. (6) and (7) and figure 1(b) of ref. [9] ).

The ladder result, γm = 1, in eq. (2.37) is a direct consequence of the scale-symmetric

strong dynamics first found in the ladder SD equation in the proposal of WTC [9] as a

solution of the FCNC problem of the original TC as a simple scale-up of the QCD [28, 29].

Before advent of the WTC, a large anomalous dimension of the TC dynamics γm & 1 was

anticipated [24] (see also [25–27]) to enhance the bare condensate by the factor Z−1
m =

(Λ/mF )γm , as a solution of the FCNC problem, based on the pure assumption of the UV

fixed point at strong coupling.

Masses of the quarks/leptons are generated through communication between quarks/-

leptons ψ and the technifermions F through extra dynamics such as the ETC [61, 62], or

the technicolored peon model [26, 27] (quarks, leptons and technifermions are composites

on the same footing), which generically give effective four-fermion interactions:

Ga
(
ψ̄ψ
)2
,
Gb
NC

(
F̄F
)2
,
Gc
NC

(
ψ̄ψ
) (
F̄F
)
, (2.38)

where the three types of four-fermion couplings Ga,b,c = O
(
a,b,c
Λ2

)
are on the same order

of magnitude characterized by the scale of the extra dynamics Λ = ΛETC ∼ ΛTC, except

for the numerical factors a, b, c = O(1) depending on the explicit model, and the factor

1/NC for Gb, Gc is the effect of the Fierz transformation from the current × current four-

fermion coupling from the ETC gauge exchanges. While Ga yields FCNC, Gc yields the

quark/lepton mass:

mq/l = − Gc
NC
〈F̄F 〉0 ∼ −

cZ−1
m

Λ2

〈F̄F 〉R
NC

' c
m2
F

Λ
, Z−1

m ∼ Λ

mF
(2.39)

where 〈F̄F 〉R/NC = −O(m3
F ) = −O(1

3 TeV)3 is the condensate renormalized at µ = mF ,

and ΛETC ∼ 103 TeV, thus arriving at the typical order of quarks/leptons mass (except

for the top quark): mq/l ∼ 0.1 GeV. This is in sharp contrast to the ordinary QCD

with Z−1
m ∼ (ln(Λ/mF ))A/2 = O(1) and γm ' 3C2α

2π ' A/ ln(Λ2/m2
F ) ≈ 0 with A =

18C2/(11NC − 2NF )(< 1):

mq/l = Gc 〈F̄F 〉0 ∼
c

Λ2
〈F̄F 〉R ∼ 0.1 MeV , 〈F̄F 〉0 = O

(
〈F̄F 〉R

)
. (2.40)

In order to keep track of the concrete analytical expression of the ladder results (in a

linearized version eq. (2.13)), we here list results of the precise (linearized) ladder computa-

tion of the chiral condensate 〈F̄F 〉0, using the explicit form of the SSB solution eq. (2.30),

based on eq. (2.21) and/or (2.22). (For details see appendix A.)
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The bare condensate and the mass renormalization constant Zm = m0/mR take the

form in agreement with ref. [100]:

〈F̄F 〉0 = −ξNC

π2

αcr

α(Λ2)
Λ2Σ(Λ) ' −4ξNC

π3
m2
F Λ , (2.41)

Zm =
m0

mR
' 2ξ

π

mF

Λ
, (2.42)

〈F̄F 〉R = Zm〈F̄F 〉0 ' −
8ξ2NC

π4
m3
F . (2.43)

Thus the asymptotic form of Σ(x) (m0 6= 0) in eq. (2.30) with mP = Σ(x = m2
P ) '

mF +mR (mR � mF ) is perfectly consistent with the OPE for x such that ω̃ ln
(

16x
m2
F

)
' π:

Σ(x) ∼ 4ξ

π

1

ω̃

m2
P√
x

sin

(
ω̃

2
ln

(
16x

m2
P

)
−ω̃
)
' 4ξ

π

1

ω̃

m2
P√
x

sin

(
ω̃

2
ln

(
16x

m2
F

)
−ω̃ ln

(
1−mR

mF

)
−ω̃
)

' 4ξ

π

[
mF mR√

x
+
m2
F√
x

]
∼ 4ξ

π
mR

(
x

m2
F

)−γm/2
− π3

2ξNC

〈
(
F̄F
)
R
〉

x

(
x

m2
F

)γm/2
. (2.44)

Combining eq. (2.41) with the Pagels-Stokar formula eq. (B.4), F 2
π = NCξ

2

2π2 m
2
F , or m2

F '
4π2

ξ2
1

NFNC
v2

EW, we have for Λ = ΛTC ∼ ΛETC:

mq/l =
c

NC

〈F̄F 〉0
Λ2

ETC

= yeff · vEW, yeff =
c

NFNC
O
(

4

ξπ

4vEW

ΛETC

)
= O

(
10−3

)
. (2.45)

2.4.3 Large anomalous dimension and amplification of the symmetry violation

A striking feature of the WTC having the large anomalous dimension γm = 1 is that the

explicit symmetry breaking by a small Lagrangian parameter is enhanced by the strong

dynamics near the criticality being persistent all the way up to the intrinsic scale ΛTC. The

quark/lepton mass enhancement already discussed is a typical such example: such masses

come from formally the small explicit breaking of the SM fermion chiral symmetry by the

small ETC gauge coupling, gETC, leading to the small ETC-induced four-fermion coupling

Gc ∼ g2
ETC/M

2
ETC ∼ c/Λ2

ETC(� 1/m2
F ), where METC ∼ gETCΛETC is the ETC gauge

boson mass generated by the SSB of the ETC gauge symmetry down to the WTC, with

the order parameter vETC of the SSB of the ETC gauge symmetry being vETC ∼ ΛETC.

Though the coupling is small, the resultant mass is amplified by the walking dynamics with

Z−1
m ' Λ/mF > 103, as we discussed in the above.

Here we briefly comment on yet another quantity subject to this enhancement effects

due to the large anomalous dimension. It is the technipions mass, another phenomeno-

logical issue of the generic WTC. The technipions are the left-over (pseudo) NG bosons

besides the (fictitious) NG bosons absorbed into SM gauge bosons. They exist in a large

class of the WTC having large NF (> 2) and will be a smoking gun of this class of WTC

in the future LHC.
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Technipion mass is all from explicit breaking outside of the WTC sector, i.e, SM gauge

interactions and ETC gauge interactions (Gb terms in eq. (2.38)): the estimation of the

masses of the technipions in the WTC is done, based on the first order perturbation of the

explicit chiral symmetry breaking by the “weak gauge couplings” of SM gauge interactions

and the ETC gauge interactions (Dashen’s formula),

M2
π(SM) ∼ CSM

2 αSM

4πF 2
π

∫
dx (ΠV (x)V −ΠA(x)) (2.46)

M2
π(ETC) ∼ 1

F 2
π

αETC

M2
ETC

〈 1

NC
(F̄F ) (F̄F )〉0 ∼

1

F 2
π

b

Λ2

1

NC

(
〈F̄F 〉0

)2
(2.47)

up to Clebsh-Gordan coefficient depending on the detailed model, where ΠV,A(x) are cur-

rent correlators of vector and axialvector currents. This is the same strategy as the QCD

estimate of the π+ − π0 mass difference, where the explicit chiral symmetry breaking is

given by the QED lowest order coupling, while the full QCD nonperturbative contributions

are estimated through the current correlators by various method like ladder, holography,

lattice, etc.

It is obvious that M2
π(ETC) is enhanced through the condensate by the anomalous

dimension as (Z−1
m )2 ∼ (Λ/mF )2γm , as was noted before the advent of the WTC [24, 26, 27],

and was confirmed in the WTC with γm = 1 based on the concrete scale-invariant dynamics,

the ladder SD equation [9]. M2
π(SM) is also enhanced by the large anomalous dimension

γm = 1 [101], since the high energy behavior is slower damping by the anomalous dimension

ΠV (x) − ΠA(x)|x>m2
F
∼ α(x)

〈F̄F 〉2R
x2

(
x
m2
F

)γm
∼ NCm

4
F

x (a similar observation was made

without notion of the anomalous dimension [102]). Then we have a large mass for the

technipions [51, 101, 103]:

M2
π(ETC)∼2π2bm2

F = O
(
(TeV)2

)
,

[
M2
π(SM)

]
x>m2

F

∼
(
CSM

2 αSM

)
m2
F ln

(
Λ2/m2

F

)
. (TeV)2 ,

(2.48)

where the Pagels-Stokar formula eq. (B.1) is used.12

Striking fact is that although the explicit chiral symmetry breakings are formally very

small due to the “weak gauge couplings”, the nonperturbative contributions from the WTC

sector lift all the technipions masses to the TeV region so that they all lose the nature of

the “pseudo NG bosons”. This is actually a universal feature of the dynamics with large

anomalous dimension, “amplification of the symmetry violation” [11–14], as dramatically

shown in the top quark condensate model [4, 5], based on the gauged NJL model with large

anomalous dimension γm ' 2 [15].

12Note thatM2
π(SM) has also IR contributions from x . m2

F , which is less than the UV contributions as far

as the (techni-sector) S parameter is large S > 0.3, thus Mπ(SM)2 =
[
M2
π(SM)

]
x>m2

F
+
[
M2
π(SM)

]
x<m2

F
<

O((1.5TeV)2), in somewhat tension with the present LHC limit for the colored technipions. (The techni-

sector S parameter can be cancelled by the ETC sector contribution to be consistent with the S parameter

value constrained by the precision experiments.) A possible way out besides the ETC cancellation would

be the strong gluon condensate which has not been incorporated into the ladder SD approach but has been

shown in the holography to dramatically enhance the infrared part
[
M2
π(SM)

]
x<m2

F
, in accord with the

suppression of the techni-sector S parameter S < 0.1 [51]. This gluonic effect enhances M2
π(ETC).
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This amplification effect should not be confused with that of the pseudo NG boson

mass due to the technifermion bare mass effects, like the pion mass due to the current quark

mass, F 2
πm

2
π = 2m0〈ψ̄ψ〉0 = 2mR〈ψ̄ψ〉R, which are not amplified by the large anomalous

dimension, since the bare mass operator as the explicit breaking is the RG invariant,

m0(F̄F )0 = mR(F̄F )R, and hence is ignorant about the anomalous dimension within the

WTC sector. In the actual technicolor model, all the technifermions are set to be exactly

massless and such a type of explicit breaking is not considered anyway.

Note that although the left-over light spectra are just three exact NG bosons absorbed

into W/Z bosons, our theory with NF � 2 in the anti-Veneziano limit is completely

different from the model with massless flavors Nf = 2 where the symmetry breaking is

SU(2)L × SU(2)R/SU(2)V . In fact even though all the NG bosons, other than the three

exact NG bosons to be absorbed into W,Z bosons, are massive and decoupled from the low

energy physics, they are composite of the linear combinations of all the NF technifermions

not just 2 of them.

In fact, the technifermions do not acquire the explicit mass from these explicit breaking

terms, and hence the walking behavior of the coupling of the large NF in the anti-Veneziano

limit is not drastically changed. They actually get some effects on the dynamical masses,

as a result of the vacuum alignment including the extra gauge interactions, which are to

be treated as the corrections to the ladder SD equation including not only the WTC gauge

coupling but also the SM gauge interactions, with the modified criticality CWTC
2 αWTC +

CSM
2 αSM > π

3 , and the ETC gauge interactions as corrections to the WTC gauge interaction

in the ladder kernel in a form of the four-fermion couplings Gb,c in eq. (2.38).

While Gc is in general (except for the top quark) a small feedback of the SM fermion

condensate to the technifermion condensate in the coupled SD equation, Gb is potentially

strong effects on the phase structure in a way that the critical coupling is replaced by the

critical line (surface) of the two-dimensional (multi-dimensional) coupling space, (α, g),

with g = NC
4π2 Λ2Gb in the gauged NJL model [16–18], as analyzed with the kernel having

extra contributions of the SM (running) gauge couplings and ETC-induced four-fermion

interaction (strong ETC technicolor). In that case, the SSB solution of the SD equation

exists even for the weak gauge coupling α < αcr because of the additional strong NJL

four-fermion coupling (α → 0 is the NJL limit).13 The result shows drastic effects with

the anomalous dimension even larger, 1 < γm = 1 +
√

1− α
αcr

< 2 [15] at the critical

line. This is particularly useful for reproducing the top quark mass which would need more

enhancement than other quarks due to such a large anomalous dimension [15, 104]. See

the discussions in the last section.

In fact, the SSB solution takes the form instead of the Miransky scaling:

m2ω
F = Λ2ω

(
g − g(+)

cr

g − g(−)
cr

)
, g(±)

cr =
1

4
(1± ω)2 , ω ≡

√
1− α

αcr
(0 < α < αcr) , (2.49)

13The NJL four-fermion coupling can be treated effectively as if a strong asymptotically nonfree gauge

coupling α(x) = g x
Λ2 θ(Λ

2 − x) in the improved ladder kernel in eq. (2.2).
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and the anomalous dimension [15, 19–23]:

γm = 2g +
α

2αcr
, γ(±)

m = γm

∣∣∣∣∣
g=g

(±)
cr

= 1± ω = 1±
√

1− α

αcr
, (2.50)

where the critical line g = g
(+)
cr behaves as a UV fixed point, while the non-critical line

g = g
(−)
cr an IR fixed point:

β(NP)(g) =
∂g

∂ ln Λ

∣∣∣∣∣
α,mF

= −2
(
g − g(+)

cr

)(
g − g(−)

cr

)
. (2.51)

The nonperturbative running coupling near the UV fixed point g = g
(+)
cr is given as g(µ) =

g
(+)
cr (1 +

m2ω
F

µ2ω−m2ω
F

) for g > g
(+)
cr (µ > mF ) and g(µ) = g

(+)
cr (1 − m2ω

F

µ2ω+m2ω
F

) for g < g
(+)
cr .

At α → αcr, the fusion of the UV and IR fixed points takes place: g
(+)
cr = g

(−)
cr = 1/4,

and hence βNP(g) = −2(g − g∗)2 (g∗ = 1/4) [19–23, 105]. This beta function again has a

multiple zero but not a simple zero at UV=IR fixed point, with essential singularity scaling

m2
F = Λ2 exp(−1/(g − g∗)), similarly to conformal phase transition at α∗ = αcr in the

walking gauge theory without four-fermion coupling [69, 71, 72] (see the next subsection).

The outstanding feature of the gauged NJL model with α 6= 0, ω < 1 is the renor-

malizability (in the sense of nontriviality, or no Landau pole) [19–23], when the gauge

coupling is walking, α(µ2) ≈ const., with the four-fermion interaction having the full

dimension 2 < D = 2(3 − γm) = 4 − 2ω < 4 (relevant operator, or super renormal-

izable) , including D ' 2(1 + A/ lnµ2) > 2 with a moderately walking small coupling

ω ' 1− α
2αcr
' 1−γm (γm(µ) ∼ A/ lnµ2) with A = 18C2/(11NC−2NF ) > 1, in sharp con-

trast to the pure (non-gauged) NJL model which is a trivial theory having a Landau pole.

2.5 Conformal phase transition

We now discuss a salient feature of the phase transition at α = αcr, what we call confor-

mal phase transition [66], which is characterized by the Miransky-BKT type non-analytic

scaling. Let us first discuss the exact chiral limit m0 ≡ 0.

In the conformal phase α ≤ αcr, there is no bound state (dubbed “unparticle” phase),

although there is a UV scale Λ which is identified with the intrinsic scale ΛTC generated

quantum mechanically (already by the perturbation) by the regularization as manifested

in a form of the (perturbative) trace anomaly. It should be emphasized that just on the

critical point α = αcr the SSB does not take place in the same way as for α < αcr, and

hence there are no bound states at all. In fact the solution of the ladder SD equation at

α = αcr takes the asymptotic form at x� m2
F :

Σ(x) = ξ · 2F1(1/2, 1/2.2;−x) ∼ 2ξ

π

m2
F√
x

(
ln

(
16x

m2
F

)
− 2

)
(α = αcr) , (2.52)

which cannot satisfy the UV boundary condition eq. (2.12) for m0 = 0, thus Σ(x) ≡ 0.14

14When m0 6= 0, this is an explicit breaking solution: m0 = (xΣ(x))′|x=Λ2 = ZmmR, with Zm =
2ξ
π
mR
Λ

ln( 4Λ
mR

). This yields γm(µ) = 1 − 1/ ln( 4µ
mR

) and the OPE: Σ(x) ∼ mRe
−

∫ t dt′γm(t′) ∼ m2
R√
x

ln( 16x
m2
R

) ,

with t ≡ ln(4
√
x/mR), in agreement with eq. (2.52) up to trivial factors. Appearance of the log factor is

peculiarity of the conformal phase at α = αcr due to the collide/cancellation of the two terms, ω and −ω,

at ω = 0 in eq. (2.18). In the SSB phase satisfying eq. (2.32), no such a log factor exists when α→ αcr + 0

(mF /Λ→ 0 ), as already noted in sub-subsection 2.4.2.
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On the other hand, in the SSB phase α > αcr, bound states do appear with the mass on

the order of the SSB scale O(mF )� Λ up to factors depending on NF and NC . Hence the

bound states spectra change discontinuously across the phase transition point, although

the order parameter mF smoothly is changed as mF → 0 as α↘ αcr to the value mF ≡ 0

for α ≤ αcr [66]. For α > αcr the massive bound states with masses proportional to mF

approach to zero when α ↘ αcr according to the Miransky-BKT scaling, while the NG

bosons of the chiral symmetry are exactly massless, all of which (including the NG bosons)

suddenly dissappear when we reach the point α = αcr. Hence it cannot be described by

the Ginzburg-Landau effective theory (linear sigma model) [66]. This peculiarity is closely

connected to the non-analytic form of the Miransky-BKT scaling in eq. (2.32): the mass of

the bound state A (other than the NG bosons of the chiral symmetry), MA, has a universal

scaling function f
(
α
αcr

)
in the same form as the dynamical mass of the technifermions mF

up to a constant CA(r) depending on the each bound state [47, 48]:

MA

Λ
' CA(r) · f

(
α

αcr

)
, f

(
α

αcr

)
= exp

− π√
α
αcr
− 1

� 1 (α > αcr) , (2.53)

where MA/Λ � 1 can be tuned only for α > αcr. This is an essential difference of

the walking theory from the ordinary QCD, where all the light bound states (except the

NG boson pions) have masses on the same order as the intrinsic scale MA = O(mF ) =

O(ΛQCD): MA/ΛQCD = O(1) having no limit going to zero, in sharp contrast to the walking

theory. In the case at hand, all the light bound states have vanishing masses towards the

criticality [106] in a universal way f
(
α
αcr

)
→ 0 as α → αcr up to a constant CA(r) above

as a consequence of the scale symmetry, and hence are a kind of “dormant NG bosons” of

spontaneously broken scale (or chiral) symmetry existing only in the broken phase (without

the exact massless point): MA/MB → const. 6= 0,∞ (α→ αcr).

As we shall discuss later, the coefficient CA(r) for the spectra other than the TD

may depend on r = NF /NC particularly in the anti-Veneziano limit, since only the TD

has the mass subject to the explicit breaking of the scale symmetry characterized by mF ,

Mφ ∼ mF , while others (except for technipions) reflect the SSB of the scale symmetry

characterized by the dilaton decay constant Fφ ∼
√
NFNC mF : (technipions have masses

Mπ � mF , see eq. (2.48))

Mφ

MA
∼ 1

CA(r)
� 1 (r → rcr). (2.54)

Thus the TD does tend to be massless (NG boson-like) faster than the others when ap-

proaching the criticality in a particular limit NC → ∞, λ ≡ NCα = fixed, r ≡ NF /NC =

fixed(� 1) (“anti-Veneziano limit” in distinction to the original Veneziano limit r � 1).

Note that the IR fixed point in the large NF QCD as a model of the ladder coupling

in the anti-Veneziano limit reads [107]

α

αcr
=
NCα∗
NCαcr

→ 66− 12r

13r − 34
, f

(
α

αcr

)
→ f̃(r)

(
NC →∞,

34

13
< r ≡ NF

NC
<

11

2

)
,

(2.55)
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which is an almost continuous parameter and hence α
αcr

(> 1) can be tuned arbitrarily close

to 1 by tuning the ratio r ≡ NF /NC ↗ rcr = 4.15 Thus the conformal phase transition

as a continuous (non-analytic) phase transition can also be realized in the large NF QCD

in the anti-Veneziano limit. Also note that the intrinsic scale ΛTC as well as mF scales as

∼ N0
F , N

0
C (fixed) in that limit, while the coupling scales like α∗ ' αcr = O(1/NC) (→ 0)

and hence the Spontaneous Symmetry Breaking is triggered by the weak coupling, although

the “effective coupling” NCα∗ ' NCαcr ' 2π/3 is strong. Hence the ladder approximation

is expected to give a better result in the anti-Veneziano limit. This is somewhat analogous

to the 1/NC expansion of the NJL model with the coupling G ∼ g/Λ2: although the

effective critical coupling is strong, geff
cr = NC · gcr = 1, the coupling g as well as gcr scales

like 1/NC , which justifies the NJL gap equation valid at the leading order of 1/NC .

This is the essence of the WTC where the explicit breaking of the scale symmetry

is tiny compared with the intrinsic scale ΛTC: mF � ΛTC, which is in contrast to the

ordinary QCD where mF ∼ ΛQCD with the scale symmetry violated completely. In fact

these properties are the universal features of the WTC not restricted to the ladder SD

equation. We in fact find that the ladder SD results are useful for describing the 125 GeV

Higgs as the TD, not merely qualitatively but also quantitatively in spite of the crude

approximation.

3 Nonperturbative trace anomaly

3.1 Nonperturbative trace anomaly and PCDC

When the chiral symmetry is spontaneously broken, 〈F̄F 〉 6= 0, the scale symmetry is

also spontaneously broken in the vacuum with the condensate of the chiral operator F̄F

transforming nontrivially under the scale transformation. This leads to the TD as a NG

boson of the scale symmetry. The TD is actually not massless and thus is a pseudo NG

boson, since the scale symmetry is broken also explicitly by the same chiral condensate as

that breaks it spontaneously with a mass scale small compared with the intrinsic scale,

mF � Λ = ΛTC. In fact such a small mass generation in eq. (1.2) washes out the would-be

IR fixed point α ' α∗ in the deep IR region µ < mF , namely breaks the scale-invariance

(nonrunning behavior or the perturbative IR fixed point) of the input coupling.

As we discussed in subsection 2.4.1, the nonperturbative running of the coupling is

induced by the generation of mF through the regularization of the same chiral condensate

as that breaks the scale symmetry spontaneously, where the intrinsic scale ΛTC (already

generated by the perturbative regularization as in eqs. (2.6) and (2.8)) plays a role of

regulator responsible for the nonperturbative trace anomaly [100] in distinction from the

15The value Ncr
F ' 4NC = 12 (NC = 3) [65] should not be taken seriously, since it is the result of two

crude approximations: the IR fixed point value α∗ of the two-loop beta function having a big error from

higher loops in a scheme-dependent way [107] is not reliable near the lower end of NF /NC where the loop

expansion breaks down as its value NCα∗ is of O(1), and could trigger the spontaneous chiral symmetry

breaking which washes out the IR fixed point (even though α∗ ∼ 1/NC � 1, since the critical coupling also

behaves as αcr ∼ 1/C2 ∼ 1/NC). Also the critical value αcr of the ladder SD equation is subject to 20–30

percent errors. Indeed lattice results suggest Ncr
F ' 8 for NC = 3 [57].
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usual trace anomaly in the perturbation in eq. (2.8):

〈∂µDµ〉 = 〈(θµµ)〉(NP) ≡ 〈θµµ〉(full) − 〈θµµ〉(perturbative) =
β(NP)(α)

4α
〈G2

µν〉(NP) ,

〈G2
µν〉(NP) ≡ 〈G2

µν〉(full) − 〈G2
µν〉(perturbative) . (3.1)

The formal proof of this relation was given [100] in terms of functional method for the

Cornwall-Jackiw-Tomboulis effective potential V [Σ(x)] whose stationary condition is the

SD equation. The solution of the SD equation Σ̄(x) yields the vacuum energy E = V [Σ̄(x)]

and 〈θ0
0〉 = 〈∂µDµ〉 = 〈(θµµ)〉(NP) = 4E. The IR conformality is manifested in the fact that

the relevant mass scale mF is tiny, compared with that of the perturbative trace anomaly,

mF � ΛTC, 〈θµµ〉(perturbative) = −O(NFNCΛ4
TC) in eq. (2.8). This is in sharp contrast

to the ordinary QCD, where mF ' ΛQCD and hence 〈θµµ〉 ' 〈θµµ〉perturbative, without the

walking region and the IR conformality.

Based on this approximate scale symmetry in WTC, the light TD as a pseudo NG

boson was predicted [9, 10] via the anomalous WT identity for the scale symmetry, so-

called the PCDC relation (eqs. (6), (8) and (9) of ref. [10]):

M2
φF

2
φ = −Fφ〈0|∂µDµ|φ〉 = −dθ〈0|θµµ|0〉(NP) = −β

(NP)(α)

α
〈G2

µν〉(NP) = O(NFNCm
4
F )

� −dθ〈θµµ〉(perturbative) = O(NFNCΛ4
TC) ,

(3.2)

whereDµ is the dilatation current and Fφ is the decay constant of φ defined as 〈0|Dµ|φ(q)〉 =

−iFφqµ, and dθ (= 4) is the dimension of θµν . This is in sharp contrast to the ordinary

QCD where mF ∼ ΛQCD and hence |〈θµµ〉| = O(m4
F ) = O(Λ4

QCD) = |〈θµµ〉(perturbative)|, to-

tally lacking the scale symmetry. Note that α ∼ α∗ ∼ αcr ∼ 1/NC and β(NP)(α) ∼ 1/NC

in the anti-Veneziano limit NC → ∞ with r ≡ NF /NC = fixed (� 1), so that we have
β(NP)(α)

α ∼ N0
C . (This is also the case for the perturbative beta function, see eq. (2.4).)

3.2 RG invariance of the nonperturbative trace anomaly

Here we show the RG invariance of the nonperturbative trace anomaly β(NP)(α)
4α 〈G2

νλ〉(NP)

in the ladder approximation:

〈∂µDµ〉 = 〈(θµµ)〉(NP) =
β(NP)(α(µ))

4α(µ)
〈G2

νλ〉
(NP)
(µ) . (3.3)

Based on the result of ref. [69], we shall show that the RG invariance is realized in a

nontrivial manner: the dependence of the renormalization point µ is precisely cancelled

among β(NP)(α(µ))/(4α(µ)) ∼ −(α(µ)
αcr
− 1)3/2 ∼ −1/ ln3(µ/mF ) and 〈G2

νλ〉
(NP)
(µ) ∼ (α(µ)

αcr
−

1)−3/2 ∼ ln3(µ/mF ) for mF < µ < ΛTC, thereby yielding the same result as that of the

vacuum energy calculation in ref. [73]. Comparing eq. (3.3) with eq. (2.8), we see that

the resultant trace anomaly of order O(m4
F ) is much smaller than the trace anomaly of

order O(Λ4
TC) related to the fundamental scale ΛTC of the theory, and hence the use of the

PCDC eq. (3.2) is justified.
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Let us first calculate the nonperturbative gluon condensate induced not from the gluon

loop (already subtracted out) but from the fermion loop with the technifermion having

dynamical mass mF , which is calculated at the two-loop level with the technifermion prop-

agator as given in the ladder SD equation [100]:

〈G2
µν〉(NP) = −2ig2NFNC

(2π)8

∫
d4kd4p tr[SF (p)γµSF (k)γν ]Dµν(p− k) . (3.4)

By using the ladder SD equation for SF (p) in eq. (2.1) with the nonrunning coupling,

eq. (3.4) can be rewritten into a simpler form

〈G2
µν〉(NP) = −2ig2NFNC

(2π)4

∫
d4p tr[1− SF (p)S−1(p)]

=
NFNC

2π2

∫ Λ2

0
dx

xΣ2(x)

x+ Σ2(x)
=
NFNC

2π2

∫ Λ2

dx

[
Σ2(x)− Σ4(x)

x+ Σ2(x)

]
, (3.5)

where the second term of the integral yields correction of order O(m8
F /Λ

4), since Σ(x) ∼
m2
F /
√
x, and hence can be ignored. For the high energy region where x � m2

F , the

mass function Σ(x) takes the form given by eq. (2.30). Using Σ(x) in eq. (2.30), we find∫ Λ2

dxΣ2(x) ' ξ2m4
F

8 cthπω̃
2

πω̃(ω̃2+1)
ln
(

4Λ
mF

)
= 16ξ2

π2ω̃2m
4
F ln

(
4Λ
mF

) [
1 +O(ω̃2)

]
. From eq. (3.5),

we find

〈G2
µν〉(NP) ' NFNC

2π2
·m4

F

16ξ2

π2ω̃2
ln

(
4Λ

mF

)
' NFNC

8ξ2

π3
m4
F ·
(

1

π
ln

(
4Λ

mF

))3

' NFNC
8ξ2

π3
m4
F ·
(
α

αcr
− 1

)−3/2

, (3.6)

up to factor of (1 + O(ω̃2)), where we have used the Miransky scaling eq. (2.32): ω̃ =√
α/αcr − 1 = π/ ln(4Λ/mF ). Thus the gluon condensate is diverging as

(
ln Λ

mF

)3
much

faster than the QCD-like theory with divergence ln Λ
mF

as noted in ref. [69].

Note that the divergence of 〈G2
µν〉(NP) is of the same origin as that for the amplification

of the symmetry violation such as the technipion mass coming from the UV contributions

enhanced by the large anomalous dimension: Σ(x) ∼ m3
F
x ( x

m2
F

)γm/2 ∼ m2
F /
√
x . Do not

confuse it from the log divergence of the gluon condensate in the ordinary QCD, which

comes from the gluon loop in contrast to the present case coming from the fermion loop.

We shall discuss it later.

Actually, it was found [69] that the divergence ∼
(

ln
(

4Λ
mF

))3
in eq. (3.6) is precisely

cancelled by the vanishing factor of the nonperturbative beta function in eq. (2.33):

β(NP)(α) = −2αcr

π

(
1

π
ln(

4Λ

mF
)

)−3

= −2α

π

(
α

αcr
− 1

)3/2 [
1 + ω̃2

]−1
, (3.7)

such that the trace anomaly of the energy momentum tensor 〈θµµ〉 is given by

〈θµµ〉(NP) =
β(NP)(α)

4α
〈G2

µν〉(NP) ' −NFNC
4ξ2

π4
m4
F

[
1 +O(ω̃2)

]
. (3.8)
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Thus the smallness of β(NP)(α) as manifestation of the approximate scale symmetry is in

fact operative by canceling the otherwise amplified symmetry violation effects of the large

anomalous dimension, and hence keeping the nonperturbative trace anomaly, the explicit

breaking of the scale symmetry, on the order of m4
F .

On the other hand, the direct computation of 〈θµµ〉 through the vacuum energy 〈θµµ〉 =

4〈θ0
0〉 is [73]:

〈θµµ〉(NP) = 4V [Σ(x)] = −NFNC

4π2

[
Λ4 ln

(
1 +

Σ(Λ2)

Λ2

)]
' −NFNC

4π2
Λ2Σ2(Λ2)

' −NFNC

4π2
ξ2m4

F

8 cthπω̃2
πω̃(ω̃2 + 1)

sin ω̃2 = −NFNC
4ξ2

π4
m4
F

[
1 +O(ω̃2)

]
. (3.9)

Let us take Λ→∞ such that α(Λ)→ αcr (ω̃ → 0), then eq. (3.8) precisely coincides with

eq. (3.9). Thus the three independent calculations of different quantities are consistent

with each other within the ladder approximation.16

This is reformulated in terms of the nonperturbative running α(µ) in the renormaliza-

tion defined in eq. (2.33) as

〈θµµ〉(NP) =
β(NP)(α(µ))

4α(µ)
〈G2

νλ〉
(NP)
(µ) = −NFNC

4ξ2

π4
m4
F . (3.10)

Then the nonperturbative trace anomaly 〈θµµ〉 is written in the manifestly RG-independent

way in the ladder approximation as it should be.

Such an RG invariance by cancellation is a well-known fact for the perturbative trace

anomaly but is explicitly recognized for the first time for the nonperturbative trace anomaly.

It is in fact well-known that the perturbative trace anomaly is RG invariant, i.e., indepen-

dent of the renomalization point µ. In the chiral limit it reads 〈θµµ〉 = β(α)/(4α)〈G2
µν〉

which is RG invariant in such a way that β(α)/(4α) ∼ α ∼ 1/ ln(µ/ΛQCD) precisely can-

cels the divergence in 〈G2
µν〉 ∼ ln(µ/ΛQCD) as µ→∞. This is also applied to the WTC in

the UV region µ > ΛTC, where the perturbative trace anomaly in eq. (2.8) is obviously RG

invariant in the same way as in the ordinary QCD. Note that in the usual QCD the scale-

invariance appear to exist “formally” in the UV region µ � ΛQCD due to the vanishing

β(α)/(4α) ∼ 1/ ln(µ/ΛQCD) → 0 at the trivial UV fixed point α∗ = 0, which is however

compensated by the diverging gluon condensate 〈G2
µν〉 ∼ ln(µ/ΛQCD), and hence the scale

invariance in QCD exists nowhere.

3.3 Inclusion of small bare mass of technifermions: basis for the dilaton chiral

perturbation theory

For completeness we here show that with inclusion of the small bare mass m0 or the renor-

malized mass (“current mass” mR(� mF )) of the technifermion, the ladder calculations of

16For idealized large NC in the anti-Veneziano limit, ladder calculation becomes more reliable, as we

demonstrated in figure 2. The result of eq. (3.9) based on the ladder thus becomes more reliable in the

anti-Veneziano limit. As in the case of usual large Nc arguments in QCD (Nc = 3→∞), the quantitative

check of the validity of the anti-Veneziano limit for the realistic value of NF and NC is of course subject to

the fully nonperturbative check by the lattice studies.

– 28 –



J
H
E
P
1
2
(
2
0
1
5
)
0
5
3

various quantities yield a consistent trace anomaly for the anomalous WT identity, which

is the basis of the sChPT [46]. It is vital for the lattice calculations of the flavor-singlet

scalar bound state as a candidate for the technidilaton, whose observed mass and decay

constant should be extrapolated to the chiral limit.

Here we explicitly check that the ladder approximation is consistent with the anomalous

WT identity for the SSB of the approximate scale symmetry (for γm = 1):

〈θµµ〉 =
β(NP)(α)

4α
〈G2

µν〉+(1+γm)NFmR〈F̄F 〉R =
β(NP)(α)

4α
〈G2

µν〉+2NFmR〈F̄F 〉R . (3.11)

The formal proof of this relation was also given in ref. [100] in terms of functional method

for the Cornwall-Jackiw-Tomboulis effective potential V [Σ(x)]. The relation is the basis of

the sChPT [46] for the TD mass in the presence of the technifermion explicit mass (current

mass) mR. The current mass mR and the associated-renormalized chiral condensate 〈F̄F 〉R
are related to the bare mass m0 in eq. (2.12) and the bare-chiral condensate 〈F̄F 〉0 involving

the renormalization constant Zm in eq. (2.42) as

mR = Z−1
m m0 . (3.12)

〈F̄F 〉R = Zm〈F̄F 〉0 . (3.13)

We then see that eq. (3.11) is nothing but the chiral expansion of 〈θµµ〉 and/or the dilaton

mass mφ (sChPT [46]):

〈θµµ〉 = 〈θµµ〉

∣∣∣∣∣
mR=0

+
∂〈θµµ〉
∂m0

∣∣∣∣∣
mR=0

·mR ,

〈θµµ〉

∣∣∣∣∣
mR=0

=
βNP(α)

4α
〈G2

µν〉

∣∣∣∣∣
mR=0

= −4ξ2

π4
NFNCm

4
F ,

∂〈θµµ〉
∂m0

∣∣∣∣∣
m0=0

·mR = 2NFmR〈F̄F 〉R , (3.14)

where 〈θµµ〉

∣∣∣∣∣
mR=0

= −4ξ2

π4 NFNCm
4
F is given by eq. (3.8).

We shall check eq. (3.14) by evaluating both sides with use of the ladder results. The

bare-chiral condensate for mR = 0 is given as [100]

〈F̄F 〉0 ' −
4NC

π3
ξm2

FΛ , (3.15)

which is converted into the renormalized condensate through the scaling relation in eq. (3.13)

with the Zm = 2ξ
π
mF
Λ in eq. (2.42):

〈F̄F 〉R = Zm · 〈F̄F 〉0 ' −
8NC

π4
ξ2m3

F . (3.16)
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On the other hand, the 〈θµµ〉, with the small current mass mR(� mF ) included into the

full mass of the technifermion mP ' mF +mR, is given as [100]

〈θµµ〉 ' −ξ2 4NFNC

π4
(mR +mF )4 ' βNP(α)

4α
〈G2

µν〉

∣∣∣∣∣
mR=0

+
∂〈θµµ〉
∂mR

∣∣∣∣∣
mR=0

mR , (3.17)

with
∂〈θµµ〉
∂mR

∣∣∣∣∣
mR=0

' −16NFNC

π4
ξ2m3

F = 2NF 〈F̄F 〉R , (3.18)

which reproduces eq. (3.11).

It is straightforward to write down the effective theory to realize the relation, in

eq. (3.11) namely the sChPT [46]:

L = Linv
(2) + LS(2)anomaly + LS(2)mass + L(4) ,

Linv
(2) =

F 2
φ

2
(∂µχ)2 +

F 2
π

4
χ2tr[∂µU

†∂µU ] ,

LS(2)anomaly = −
F 2
φ

4
m2
φχ

4

(
log

χ

S
− 1

4

)
,

LS(2)mass =
F 2
π

4

(χ
S

)3−γm
· S4tr[M†U + U †M]− (3− γm)F 2

π

8
χ4 ·

(
NF tr[〈M†M〉]

)1/2
,

(3.19)

where U(x) = e2iπ(x)/Fπ , χ(x) = eφ(x)/Fφ (〈χ〉 = 1, 〈φ〉 = 0) are nonlinear bases for

the chiral and scale transformations, and M and S(x) are chiral and scale spurion fields

transforming in the same way as U(x) and χ(x), respectively, with 〈M〉 = mR, 〈S(x)〉 = 1.

L(4) contains the O(p4) counter terms of the ChPT with M2
φ = O(p2) and explicitly given

in ref. [46]. The O(p2) terms in eq. (3.19) lead to the TD mass formula [46]:

M2
φ = m2

φ +
(3− γm)(1 + γm)

4
· 2NFF

2
π

F 2
φ

m2
π ' m2

φ +
2NFF

2
π

F 2
φ

m2
π, (3.20)

where mφ = Mφ|mR=0 is the TD mass in the chiral limit. The same result is also derived

directly from the anomalous WT identity for the scale symmetry and chiral WT identity.

The result is useful for determining the mass and decay constant of TD by the lattice

simulations through chiral extrapolation.

Note that the nonperturbative trace anomaly is given by 〈θµµ〉=〈∂µDµ〉=〈δDLS(2)anomaly〉
= −m2

φF
2
φ〈χ〉4/4 = −m2

φF
2
φ/4 for S(x) = 1, in accord with the PCDC relation, eq. (3.2),

where δDχ = χ+xµ∂µχ is the dilatation transformation. The form of LS(2)anomaly is unique

in the sense that it correctly reproduces the nonperturbative trace anomaly through the

log factor and the factor −1/4 in the parenthesis is crucial both for eliminating the φ tad

pole (linear term in φ) so as to have the correct vacuum 〈χ〉 = 1 (〈φ〉 = 0) and the correct

vacuum energy E = 〈θ0
0〉 = 〈θµµ〉/4 = −m2

φF
2
φ/16, as well as the correct mass term of φ,

see later eq. (4.17). The form has a characteristic log form of reflecting the trace anomaly

generated by the nonperturbative dynamics, similarly to the Coleman-Weinberg potential

which is generated by the perturbative trace anomaly.
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Figure 4. The Feynman graph and the large NC and NF countings for the fermion loop contri-

bution to the correlation function of gluon condensate operators reflecting the anti-Veneziano limit.

4 Mass and decay constant of the technidilaton

From eq. (3.10) the PCDC relation in the ladder approximation reads

M2
φF

2
φ =−Fφ〈0|∂µDµ|φ〉=−4〈0|θµµ|0〉(NP) =−β

(NP)(α(µ))

α(µ)
〈G2

µν〉
(NP)
(µ) =NFNC

(
16ξ2

π4
m4
F

)
.

(4.1)

Let us consider the saturation of the anomalous WT identity for the scale symmetry in the

anti-Veneziano limit:

F 2
φM

2
φ=F .T . 〈T (∂µDµ(x) · ∂µDµ(0))〉=F .T .

〈
T

(
β(NP)(α)

4α
G2
µν(x)(NP) · β

(NP)(α)

4α
G2
µν(0)(NP)

)〉
,

(4.2)

which is dominated by the fermion loop in figure 4 and hence scales like NF N
3
C α

2 ∼
NF NC , in accord with the explicit ladder computation in eq. (4.1).

Instead of the notion of the nonperturbative running coupling, eq. (1.4), one may use

the ladder SD solution Σ(x) in eq. (2.30) and the Miransky scaling eq. (2.53), in terms

of the parameter NF , with Λ = ΛTC fixed (� mF ), through the CBZ IR fixed point

α∗(& α & αcr) [65]:

mF = 4ΛTC exp

− π√
α∗
αcr
− 1

 , 0 <
α

αcr
− 1 .

α∗
αcr
− 1 =

π2

ln2(4ΛTC
mF

)
∝ N cr

F −NF � 1 .

(4.3)

Then eq. (3.6) and eq. (3.9) read for α∗ & α & αcr:
17

〈G2
µν〉(NP) ∼ NCNFm

4
F · (N cr

F −NF )−3/2 , 〈θµµ〉(NP) = −NFNC
4ξ2

π4
m4
F , (4.4)

from which for consistency with the trace anomaly we necessarily have the nonperturbative

beta function in the broken phase NF < N cr
F :

β(NP)(α) ∼ −(N cr
F −NF )3/2 (< 0 for NF < N cr

F ) . (4.5)

This agrees with β(NP)(α) = − ∂α
∂ lnmF

along with eq. (4.3), in contrast to the arguments

based on the two-loop beta function eq. (2.4), β(2−loop)(α) ∼ −(N cr
F −NF ) [108, 109], which

17More precisely, α∗
αcr
−1 ∝ rcr− r instead of ∝ Ncr

F −NF in the anti-Veneziano limit, where r = NF /NC .

The two-loop CBZ value of α∗ plus ladder SD value of αcr implies rcr = 4 and α∗
αcr
− 1 ' (25/18)(4− r) in

that limit.
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cannot cancel the divergence of ln3(ΛTC/mF ) ∼ (N cr
F −NF )−3/2 . Hence our results arrive

at the same for the TD mass as eq. (4.1):

β(NP)(α) ∼ −(N cr
F −NF )3/2 , 〈G2

µν〉(NP) ∼ NCNFm
4
F · (N cr

F −NF )−3/2 , (4.6)

s.t. M2
φF

2
φ '

β(NP)(α)

α
〈G2

µν〉(NP) = NFNC

(
16ξ2

π4
m4
F

)
. (4.7)

Note that the two-loop beta function eq. (2.4) having the linear zero at the CBZ IR fixed

point α∗, β
(2−loop)(α) ∼ −(N cr

F − NF ), is obviously invalid in the broken phase α∗ > αcr

(NF < N cr
F ), where tuning mF /ΛTC � 1 should be made through the Miransky scaling

eq. (4.3) as α∗/αcr ↘ 1 (NF ↗ N cr
F ). See the discussions below eq. (2.33).

Thus as note in ref. [69], the suppression effect by the small beta function β(NP)(α)/(4α)

� 1 as naively expected [10, 108, 109] for the M2
φF

2
φ is actually compensated by the

enhancement of 〈G2
µν〉(NP) due to the large anomalous dimension γm = 1, both being the

two sides of the same coin, characteristic to the approximate scale invariance for α ' α∗ ≈
αcr (mF � µ < ΛTC). Actually, it is in a more sophisticated way that the smallness of

the beta function or the approximate scale symmetry is responsible for the lightness of the

TD: lightness of the TD is guaranteed first by the hierarchy mF � ΛTC corresponding

to the smallness of β(α), which implies the nonpertubative trace anomaly of order of

O(m4
F ) is much smaller than the perturbative trace anomaly on the order of O(Λ4

TC) [31].

Additional small hierarchy Mφ � Fφ (Mφ � vEW) comes from the NC , NF scaling related

with the same requirement mF � ΛTC via more concrete setting of the anti-Veneziano

limit NC →∞ with tuning of r ≡ NF /NC (� 1).

We now discuss the TD mass based on the PCDC relation, eq. (4.1), in the ladder

approximation. From eq. (3.10) with mF � ΛTC, we in fact have a small nonperturbative

explicit breaking of the scale symmetry: |〈(θνν )(NP)| � |〈θνν 〉(perturbative)|, and hence a small

TD mass compared with the intrinsic scale ΛTC. Such a small pseudo NG boson mass can

be estimated by the anomalous WT identity for the PCDC [10] as in eq. (4.1).

As already noted in the Introduction, mF is independent of NF , NC , since it is related

to the NF , NC-independent quantity Λ = ΛTC via the Miransky scaling in eq. (2.53),

which is NF , NC -independent, with α/αcr and/or α∗/αcr is independent of NF , NC . Since

the dilatation current Dµ(x) is sum of contributions from NFNC fermions, and |φ〉 is a

flavor/color singlet state normalized as 1/
√
NFNC , it follows that Fφ = O(

√
NFNCmF )

by definition of Fφ, 〈0|Dµ|φ〉 = −iqµFφ.18 Hence eq. (4.1) generically implies that Mφ

18This can also be seen explicitly in the linear sigma model where TD can be a radial mode φ (Higgs

in the SM) under certain condition [88]. In the polar decomposition of the chiral filed M = HU , where

M ∼ F̄RFL is a NF ×NF complex matrix transforming as M → gLMg†R with gL,R ∈ SU(NF )L×SU(NF )R,

and Hαβ = (φ + Fπ)δαβ and U are hermitian and unitary matrix, respectively. The decay constant of

φ in the linear sigma model (SM) is given by F 2
φ = (3 − γm)2NF

2
F 2
π [100], where γm is the anomalous

dimension of the filed M (γm = 1 for the case that M is a composite field F̄RFL in the WTC). Under the

condition that the linear sigma model is regarded as an effective theory of the WTC [88], this would yield

F 2
φ ' NFNC 2ξ2

π2 m
2
F = O(NFNCm

2
F ), when combined with the Pagels-Stokar formula in the ladder. (When

the nonlinear sigma model limit is taken, the relation of F 2
φ/[(3− γm)Fπ]2 = NF

2
would become arbitrary,

in agreement with our PCDC relation for TD.) In passing, the linear sigma model result coincides with the

holographic estimate of the Fφ [39].
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is independently of NF and NC . From the above rough estimate F 2
φ = O(NFNCm

2
F ),

eq. (4.1) reads

Mφ = O
(

4

π2
mF

)
= O

(mF

2

)
. (4.8)

Furthermore the Pagels-Stokar formula for F 2
π ' (NCξ

2/2π2)m2
F in the ladder approxima-

tion (see eq. (B.4)),

v2
EW = (246 GeV)2 = NDF

2
π ' NFNC

ξ2

4π2
m2
F ' m2

F

[
NF

8

NC

4

]
, (4.9)

with ND(= NF /2) being the number of the electroweak doublets, which combined with

eq. (4.1), leads to

Fφ = O
(

2π

ξ
vEW

)
= O (5 vEW) . (4.10)

Note that both eqs. (4.8) and (4.10) are independently of NF and NC , as far as the PCDC

makes sense (as in WTC in the anti-Veneziano limit).

At this point, we should comment on a widely spread folklore claiming that the natural

scale of the technicolor would be O(TeV) and hence the Higgs mass 125 GeV cannot be

obtained without fine tuning. This is totally unjustified statement tinted by the naive

scale up of the QCD with NF = 2, NC = 3 where mF = O(650 GeV) from eq. (4.9), in

sharp contrast to mF ' 246 GeV in our walking theory with NF = 8, NC = 4 based on

the same PS formula. Moreover, the folklore presumes the naive non-relativistic estimate

Mφ ∼ 2mF which would give Mφ = O(TeV) for NF = 2 NC = 3 in the QCD scale-up,

where the PCDC does not make sense and no particular constraint on the flavor-singlet

scalar bound state (no longer a dilaton-like object), since the ordinary QCD has no scale

symmetry at all. In contrast, the approximate scale symmetry in the walking theory

dictates the PCDC relation, which yields Mφ ' 125 GeV � 2mF , instead of the above

naive non-relativistic guess.

The result in fact reflects a generic scaling law,

Mφ

vEW
∼
Mφ

Fφ
∼ 1√

NCNF
→ 0 , (4.11)

independently of the ladder approximation, since it is a direct consequence of the the

anti-Veneziano limit, NF , NC scaling of the PCDC relation M2
φF

2
φ ∝ NFNCm

4
F and of

F 2
φ ∝ v2

EW ∝ NFNCm
2
F coming from the definition of Fφ and vEW in terms of the dy-

namical mass of the technifermions. Then in the “anti-Veneziano limit” NC → ∞ with

NF /NC = fixed (� 1, in accord with the IR conformality near the conformal window), the

TD parametrically has a vanishing mass compared with the spontaneous scale-symmetry

breaking scale Fφ (� ΛTC): Mφ/Fφ (�Mφ/ΛTC)→ 0 [49, 51].

Thus the light TD with the mass of 125 GeV can be regarded as a pseudo NG boson in

the anti-Veneziano limit near the conformal window [51]: such a light TD is in fact similar

to the η′ meson in the sense that η′ is widely accepted to be a pseudo-NG boson having a
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Figure 5. The loop diagrams contributing to the correlation function of αGµνG̃
µν coming from

the gluon loop (left panel) and fermion loop (right panel). The large NC and NF scalings have also

been specified.

parametrically vanishing mass Mη′/Fπ = O(
√
NF /NC) < Mη′/ΛQCD = O(

√
NF /NC)→ 0

in the large NC limit with NF /NC fixed (� 1) in the ordinary QCD (original Veneziano

limit), a la Witten-Veneziano. In fact the anomalous chiral WT identity for A0
µ(x) =∑NF

i=1 q̄i(x)γµγ5qi(x) reads:

NFF
2
πM

2
η′ = F .T .

〈
T
(
∂µA0

µ(x) · ∂µA0
µ(0)

)〉
= F .T .

〈
T
(
NF

α

4π
GµνG̃µν(x) ·NF

α

4π
GµνG̃µν(0)

)〉
∼ N2

Fα
2 ×

[
N2
C (gluon loop , figure 5) +N3

CNF α
2 (fermion loop , figure 5)

]
. (4.12)

In the Veneziano limit NF /NC � 1 the gluon loop dominates the fermion loop, and hence

we have

M2
η′ ∼

NF

F 2
π

Λ4
QCD ∼

NF

NC
Λ2

QCD � Λ2
QCD

M2
η′

F 2
π

∼ NF

N2
C

� 1 . (4.13)

Thus the TD in the anti-Veneziano limit and η′ in the Veneziano limit are resemblant.

What about the η′ in the anti-Veneziano limit, then? (No TD exists in the Veneziano

limit, since it is not a walking theory.) From eq. (4.2) and figure 5, we see the fermion loop

dominates the gluon loop, contrary to the Veneziano limit. Then we infer

M2
η′ ∼ N3

CNF α2m2
F ∼

NF

NC
mF � mF , (4.14)

where we have again subtracted the perturbative contribution to the U(1)A anomaly. This

could be tested on the lattice simulation [110]. In the anti-Veneziano limit the η′ mass does

not go to zero and hence has no NG boson nature in contrast to the TD. In the walking

case with NC/NF � 1 and mF � ΛTC, a simple scaling suggests that M2
φ = O(m2

F ) and

M2
η′ = O(N2

F /N
2
C)m2

F (�M2
φ).

For the phenomenological studies, the PCDC in eq. (4.1) together with the Pagels-

Stokar formula in eq. (4.9) yields a more concrete result:

M2
φ '

(vEW

2

)2
·
(

5 vEW

Fφ

)2

·
[

8

NF

4

NC

]
. (4.15)

which is in accord with [69] based on the improved ladder result (with the two-loop cou-

pling as the input coupling). It was first pointed out in ref. [35] that this ladder PCDC

– 34 –



J
H
E
P
1
2
(
2
0
1
5
)
0
5
3

result accommodates the 125 GeV Higgs with Fφ = O (TeV) for the one-family model with

NF = 8.

Phenomenologically, the most interesting case is the one-family model (NF = 8) [30, 60]

with NC = 4, where we have mF ' vEW = 246 GeV (eq. (4.9)), and eq. (4.15) quite

naturally accommodates the realistic point [36–38]:

Mφ '
vEW

2
' mF

2
' 125 GeV, Fφ ' 5 vEW ' 1.25 TeV (NC = 4, NF = 8) , (4.16)

which is in accord with the above rough estimate Fφ ∼
√
NCNF mF =

√
4× 8 vEW. Amaz-

ingly, this value of Fφ turned out to be consistent with the current LHC Higgs data [37, 38],

as we shall discuss later.

In passing, the TD potential in LS(2)anomaly of eq. (3.19) (with mφ denoted as Mφ here)

written in terms χ = eφ/Fφ is rewritten in the TD field φ as [36]

V (φ) = −LS(2)anomaly = −
M2
φF

2
φ

16
+

1

2
M2
φ φ

2 +
4

3

M2
φ

Fφ
φ3 + 2

M2
φ

F 2
φ

φ4 + · · · . (4.17)

It is remarkable to notice that in the anti-Veneziano limit the TD self couplings (trilinear

and quartic couplings) are highly suppressed:

4

3

M2
φ

Fφ
∼ 1√

NFNC
, 2

M2
φ

F 2
φ

∼ 1

NFNC
(4.18)

by Mφ/Fφ ∼ 1/
√
NFNC and Mφ ∼ N0

FN
0
C . It is also interesting to numerically compare

the TD self couplings for the one-family model (NF = 8, NC = 4) having vEW/Fφ ' 1/5

with the self couplings of the SM Higgs with mh = Mφ, by making the ratios:

gφ3

gh3
SM

∣∣∣∣∣
Mφ=mh

=

4M2
φ

3Fφ

m2
h

2vEW

∣∣∣∣∣
Mφ=mh

' 8

3

(
vEW

Fφ

)
' 0.5 ,

gφ4

gh4
SM

∣∣∣∣∣
Mφ=mh

=

2M2
φ

F 2
φ

m2
h

8v2
EW

∣∣∣∣∣
Mφ=mh

= 16

(
vEW

Fφ

)2

' 0.6 . (4.19)

This shows that the TD self couplings, although generated by the strongly coupled interac-

tions, are even smaller than those of the SM Higgs, a salient feature of the approximate

scale symmetry in the ant-Veneziano limit. This is in sharp contrast to the widely-believed

folklore, “Strong coupling solutions like Technicolor tend to lead to a strongly coupled

Higgs” [45], as noted in the Introduction.

Finally, we should stress that the above estimated TD mass is stable against the

feedback effects of the ETC (Gc term) through particularly the top quark loop, because of

the large Fφ ' 5vEW. The loop corrections at the effective theory level including the SM

sector and ETC effects were estimated to be [36]

δM2
φ|φ4

M2
φ

' 24
m2
F

(4πFφ)2
' 6× 10−3 ,

δM2
φ|ETC/Yukawa

M2
φ

' −12(3− γm)2 m2
F

(4πFφ)2

m2
t

M2
φ

' −(3− γm)2
δM2

φ|φ4

M2
φ

, (4.20)
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which cancels each other as δM2
φ/M

2
φ ≈ 0 for γm = 2 (see the comments of the last section),

and are within 1% corrections to Mφ (δM2
φ/M

2
φ ' −1.8 × 10−2) even for γm = 1. Other

loop effects are negligibly small.

5 The LHC phenomenology of technidilaton

Now that we have established ladder estimate of the mass and the decay constant of the TD,

eq. (4.15) and eq. (4.16), we now discuss up-dating the previous analyses of the TD [37–39]

in view of the latest LHC data of the 125 GeV Higgs.

One can obtain the TD couplings to the SM gauge bosons and the SM fermions just

by scaling from the SM Higgs as vEW → Fφ [36–38]:

gφWW/ZZ

ghSMWW/ZZ
=

gφff
ghSMff

(for f = t, b, τ)

=
vEW

Fφ

[
' 1

5
� 1 (NF = 8 , NC = 4)

]
. (5.1)

On the other hand, in the one-family model with NF = 8 the couplings to digluon and

diphoton include the colored/charged techni-fermion loop contributions along with a factor

NC [36–38],

Lγγ,ggeff =
φ

Fφ

{
βF (gs)

2gs
G2
µν +

βF (e)

e
F 2
µν

}
, (5.2)

βF (gs) =
g3
s

(4π)2

4

3
NC , βF (e) =

e3

(4π)2

16

9
NC ,

where the beta functions have been evaluated at the one-loop level. Thus one finds the scal-

ing from the SM Higgs [37, 38] (detailed formulae are given in the appendix of ref. [36]),19

gφgg
ghSMgg

' vEW

Fφ
· (1 + 2NC) ,

gφγγ
ghSMγγ

' vEW

Fφ
·
(

63− 16

47
− 32

47
NC

)
, (5.3)

where in estimating the SM contributions we have incorporated only the top (the terms of

1 and 16/47 for gg and γγ rates, respectively) and the W boson (the term of 63/47 for γγ

rate) loop contributions. In table 1 the branching fractions for relevant decay channels of

the TD at 125 GeV are listed in the case of the one-family model with NC = 4. Note that

the total width Γtot = 1.15 MeV is smaller than the SM Higgs, which reflects the weaker

couplings than the those of the latter, in contrast to the widely spread folklore mentioned

in the Introduction.

19One might think that the QCD interaction, which could be significant for the technidilaton, could spoil

the walking picture based on the fixed point structure in the underlying one-family walking-technicolor

dynamics. However, it is not the case since the QCD coupling is extremely small in magnitude for the

energy region relevant to the walking technicolor dynamics, and the fixed point structure should be more

sensitive to the higher-loops of the pure technicolor dynamics [107] rather than the QCD effects, if any.
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BR[%] gg bb WW ZZ ττ γγ Zγ µµ

Γtot = 1.15 MeV 75.1 19.6 3.56 0.38 1.19 0.068 0.0048 0.0042

Table 1. The TD branching ratios at 125 GeV in the one-family model with NC = 4. The total

width is also given.

NC [vEW/Fφ]best χ2
min/d.o.f.

3 0.27 25/17 ' 1.5

4 0.23 16/17 ' 0.92

5 0.17 32/17 ' 2.0

0 [SM Higgs] 1 8.0/18 ' 0.44

Table 2. The best fit values of vEW/Fφ for the one-family model with NC = 3, 4, 5 displayed

together with the minimum of the χ2 (χ2
min) normalized by the degree of freedom. Also has been

shown in the last column the case of the SM Higgs corresponding to NC = 0 and vEW/Fφ = 1.

Calculating the signal strengths for the LHC production categories (gluon gluon fu-

sion (ggF), vector boson fusion (VBF), vector boson associate production (VH) and top

associate production (ttH)),

µiX1X2
=

σiφ × BR(φ→ X1X2)

σihSM
× BR(h→ X1X2)

, (5.4)

as a function of the overall coupling vEW/Fφ for given the number of NC , we may fit the

µiX1X2
to the latest data on the Higgs coupling measurements [111–122]. to determine

the best-fit value of vEW/Fφ. The result of the goodness of fit is shown in table 2, which

updates the analysis in ref. [37, 38]. The table 2 shows that the TD in the one-family model

with NC = 4 is favored by the current LHC Higgs data as much the same level as the SM

Higgs. Remarkably, the best fit value [vEW/Fφ]best ' 0.2, i.e. Fφ ' 5vEW for NC = 4 is in

excellent agreement with the ladder estimate of the TD mass ' 125 GeV in eq. (4.16)!

In table 3 we also make a list of the predicted signal strengths for each production

category for the best fit value of vEW/Fφ ' 0.23 in the case with NC = 4, along with

the latest result reported from the ATLAS and CMS experiments [111–122]. Note the TD

signal strengths in the dijet category (VBF), which involves the contamination by about

30% from the ggF + gluon jets, gg → φ + gg. The contribution from the ggF is highly

enhanced compared to the SM Higgs case, due to the extra techni-quark loop contribution,

which compensates the overall suppression by the direct VBF coupling vEW/Fφ ' 0.2 to

lift the event rate up to be comparable to the SM Higgs case. (The detailed estimate of

the ggF contamination is given in appendix C.) Note also the suppression of the VH-bb̄-

channel, which would be the characteristic signature of the TD to be distinguishable from

the SM Higgs. More data from the upcoming LHC Run-II will draw a conclusive answer

to whether or not the LHC Higgs is the SM Higgs, or the TD.

The ATLAS and CMS have made a plot of the LHC Higgs couplings to the SM particles

against the SM particle masses [123], shown that the LHC Higgs couplings to fermions have
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TD signal strengths (vEW/Fφ = 0.23, NC = 4) ATLAS CMS

µggF
γγ ' 1.4 1.32± 0.38 1.13± 0.35

µggF
ZZ ' 1.0 1.7± 0.5 0.83± 0.28

µggF
WW ' 1.0 0.98± 0.28 0.72± 0.37

µggF
ττ ' 1.0 2.0± 1.4 1.1± 0.46

µVBF
γγ ' 0.87 (0.019) 0.8± 0.7 1.16± 0.59

µVBF
ZZ ' 0.61 (0.014) 0.3± 1.3 1.45± 0.76

µVBF
WW ' 0.61 (0.014) 1.28± 0.51 0.62± 0.53

µVBF
ττ ' 0.61 (0.014) 1.24± 0.57 0.94± 0.41

µVH
bb ' 0.014 0.52± 0.40 1.0± 0.50

Table 3. The predicted signal strengths of the TD with vEW/Fφ = 0.23 in the case of the one-

family model with NC = 4. The numbers in the parentheses correspond to the amount estimated

without contamination from the ggF process. Also have been displayed the latest data on the Higgs

coupling measurements reported from the ATLAS and CMS experiments [111–122].

aligned very well with the SM Higgs boson properties. The plot has been made by assuming

no contributions beyond the SM in loops, i.e., no contributions beyond SM to diphoton and

digluon couplings. However, as explicitly seen from eq. (5.3), the technidilaton couplings

to diphoton and digluon significantly include the terms beyond the SM, technifermion

contributions charged under the U(1)em or QCD color. In this respect, such a plot cannot

be applied to the technidilaton. In fact, the successful consistency with the LHC Higgs

coupling measurement, as shown in table 3, is due to those beyond SM contributions, which

especially enhance the ggF production cross section, balanced by the overall suppression

due to the coupling Fφ larger than vEW by a factor of 5.

6 Beyond technidilaton: other technihadrons?

As we discussed in subsection 2.5 (see discussions below eq. (2.53)), other techni-hadron

(techni-ρ, techni-a1, technibaryon, etc.) masses also have masses of order, MA =

O(CA(r)mF ) = CA(r) · ΛTC · f
(
α
αcr

)
(� ΛTC), with the universal scaling of Miransky-

BKT type, f
(
α
αcr

)
∼ f̃(r), up to the non-universal coefficient CA(r) depending on the

each techni-hadron A, with possible dependence on r = NF /NC in the anti-Veneziano

limit. This is in sharp contrast to the ordinary QCD where Fπ = O(mF ) = O(ΛQCD). The

TD as a pseudo NG boson has the mass solely due to the explicit breaking of the scale

symmetry via the PCDC just in the same way as the pion does. As mentioned above, the

TD mass Mφ = O(mF /2) is independent of NC , NF as the PCDC relation dictates.

In contrast, all the non-NG boson techni-hadrons have no constraints from the PCDC

as the explicit breaking of the scale symmetry but do have constraints from the SSB of

the scale symmetry, so that they should have masses on the scale of the SSB of the scale

symmetry, characterized by Fφ ∼
√
NFNCmF which is much larger than 2mF of the naive

– 38 –



J
H
E
P
1
2
(
2
0
1
5
)
0
5
3

nonrelativistic quark model picture, particularly in the anti-Veneziano limit of the walking

case, NC → ∞ with λ ≡ NCα = constant (α > αcr)), and with r ≡ NF /NC = constant

(� 1). We naturally expect that their masses are generally of order of O(TeV′s):

MA = O(CA(r)mF ) = O(TeV′s)� 2mF �Mφ (6.1)

with CA(r) � 1 for r → rcr. This is consistent with the straightforward computation of

large NF QCD based on the ladder BS equation combined with the ladder SD equation,

Mρ ' 4mF ' 12Fπ (for NC = 3) [47, 48] (This corresponds to ' 6vEW in the one-

family model with NF = 8, NC = 4.) , which is somewhat larger than the QCD case

Mρ ∼ 8Fπ. Being highly strong-coupling relativistic result, it is contrasted to the naive

weak-coupling non-relativistic quark-model view MA ∼ 2mF . This is also compared with

the NC counting of the bound state masses O(ΛQCD) in the ordinary QCD, where the

gluon loop is dominant, while the fermion loop dominates in the anti-Veneziano limit in

the walking theory. Also the holographic calculations tend to give MA � Mφ, and so do

the recent lattice calculations [58, 124, 125].

As usual, the IR conformal physics of the WTC should be described by the low-lying

composite fields as effective fields, in a way to realize all the symmetry structure of the

underlying theory. Such an effective theory of WTC having higher resonances together with

the 125 GeV TD is already constructed as a straightforward extension of sChPT [36, 46],

i.e, the scale-invariant version [49] of the Hidden Local Symmetry (HLS) model [80–84],

(the “sHLS model”), where the technirho mass terms have the scale-invariance non-linearly

realized by the TD field χ = eφ/Fφ , with the SSB of the scale invariance characterized by

the scale of Fφ, while the Higgs (TD) mass term in the TD potential, on the order of

mF (� Fφ), is the only source of the explicit breaking of the scale symmetry related (via

PCDC) to the nonperturbative trace anomaly of the underlying theory.

Interesting candidate for such techni-hadrons may account for the diboson excesses

recently observed at LHC at 2 TeV [85, 86], which can be identified with the walking

technirho [87]. A smoking gun of the walking technirho is the absence of the decay to the

125 GeV Higgs (TD), which is forbidden by the scale symmetry explicitly broken only by

the Higgs (TD) mass term (corresponding to the nonperturbative trace anomaly in the

underlying WTC) [88]. Actually, the salient feature of the scale symmetry of the generic

effective theory not just the sHLS model, containing the SM gauge bosons and the Higgs

plus new vector bosons (any other massive particles as well), is the absence of the decay

of the new vector bosons such as the technirho (and also other higher resonances) into

the 125 GeV Higgs plus the SM gauge bosons [88]. If such a decay of new particles is not

found at LHC Run II, then the 125 GeV Higgs is nothing but the dilaton (TD in the case

of the WTC) responsible for the nonlinearly realized scale symmetry, i.e., the SSB of the

scale symmetry, no matter what underlying theory may be beyond the SM. This should

be tested in the future LHC experiments.

7 Summary and discussions

In conclusion we have shown that the technidilaton in the walking technicolor, typically

realized in the one-family model (NF = 8, NC = 4), is a naturally light composite Higgs
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to be identified with the 125 GeV Higgs, and is a weakly coupled composite state out of

the strongly coupled conformal gauge dynamics, with its each coupling being even weaker

than the SM Higgs.

In this paper, the walking technicolor with γm = 1, originally based on the ladder

SD equation, is reformulated in terms of the Caswell-Banks-Zaks infrared fixed point α∗
of the SU(NC) gauge theory for NF massless flavors, with the intrinsic scale ΛTC, in the

anti-Veneziano limit eq. (1.1):

NC →∞ , λ ≡ NC α = fixed , with r ≡ NF /NC = fixed� 1 , (7.1)

where the input coupling in the SD kernel is given by the constant coupling eq. (2.9) and

figure 2:

α(x) = α∗ θ(Λ
2
TC − x) , (x = −p2 > 0) . (7.2)

We have shown in the anti-Veneziano limit that the SSB of the chiral (electroweak) and

scale symmetries takes place due to the technifermion condensate in eq. (2.43), 〈F̄F 〉R '
−NC

π2 m
3
F , at strong coupling, α = α∗ > αcr (r < rcr), in such a way that it is essen-

tially a continuous phase transition at criticality r = rcr as the conformal phase transition

characterized by the Miransky-BKT scaling of the essential singularity, eq. (2.32):

mF ∼ ΛTC · exp

− π√
α
αcr
− 1

� ΛTC

(
0 <

α

αcr
− 1 =

α∗
αcr
− 1 ∼ (rcr − r)� 1

)
.

(7.3)

Here the CBZ IR fixed point (viewed from µ > ΛTC) is now regarded as the UV fixed point

(viewed from µ < ΛTC. The corresponding nonperturbative beta function has a multiple

zero with the zero curvature at α(µ) = α∗ = αcr as in eq. (2.33), where the coupling turns

over to the weak coupling region α(µ) < α∗ = αcr. See figure 3.

Accordingly, while there are no bound states in the conformal window α < αcr (un-

particle phase), bound states exist only in the SSB phase, all of order mF up to the factors

depending on r = NF /NC in the anti-Veneziano limit.

First, the pseudo NG boson masses come only from explicit breakings of the internal

symmetry, the chiral SU(8)L×SU(8)R in the car of one-family model, through the Dashen

formula. The technipions (uneaten pseudo NG bosons of the chiral symmetry) pick up

the explicit breaking of SU(8)L × SU(8)R by the SM gauge interactions and ETC gauge

interactions,

M2
π = 〈π|Hbreaking|π〉 =

1

F 2
π

〈0|δπδπHbreaking|0〉 ,

Hbreaking = g2
(SM/ETC)

∫
d4xD(SM/ETC)

µν (x) T
(
Jµ(SM/ETC)(x)Jν(0)(SM/ETC)

)
. (7.4)

with enhancement due to the large anomalous dimension, where δπO ≡ [iQ5π, O], with

the broken generator charge Q5π corresponding to the π, and D
(SM/ETC)
µν is the SM/ETC

gauge boson propagator coupled to the source current Jµ(SM/ETC). They all have mass of

& O(mF ), see eq. (2.48).
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Similarly, the technidilaton, the pseudo NG boson of the scale symmetry, acquires

the mass from the explicit breaking of the scale symmetry, mF , since the SSB of the scale

symmetry due to the mass generation of mF also breaks the scale symmetry explicitly. The

mass is also evaluated through the Dashen formula for the nonperturbative trace anomaly,

eq. (3.10), this time the PCDC relation, eq. (4.1):

M2
φ = 〈φ|Hbreaking|φ〉 = 〈φ|1

4
θµµ|φ〉 =

1

4F 2
φ

〈0|δDδDθµµ|0〉

=
1

F 2
φ

· 〈0|4 θµµ|0〉 ∼
1

NFNCm2
F

·
(
NFNC

16ξ2

π4
m4
F

)
'
(mF

2

)2
� F 2

φ , (7.5)

where δDθ
µ
µ = dθθ

µ
µ (dθ = 4) is the dilatation transformation. Note that the technidilaton

decay constant Fφ is the order parameter of the SSB of the scale symmetry, F 2
φ ∼ NFNCm

2
F

by definition, while the explicit breaking scale is mF which is much smaller than the SSB

scale Fφ of the scale symmetry in the anti-Veneziano limit (see text).

We have particularly seen that the nonperturbative trace anomaly is RG-invariant:

〈θµµ〉 =
β(NP)(α(µ))

4α(µ)
〈G2

µν〉NP
(µ) = µ− independent, (7.6)

in a way that the techni-gluon condensate is enhanced by the anomalous dimension as in

eq. (3.6), which is precisely compensated as the vanishing beta function eq. (3.7), finally to

arrive at the RG-invariant finite result as in eq. (3.8). Thus the small beta function near

the criticality is only operative for the large hierarchy mF � ΛTC, while further hierarchy

Mφ � mF � Fφ is due to the anti-Veneziano limit:20

Mφ

Fφ
∼ mF

Fφ
∼ 1√

NFNC
→ 0 . (7.7)

It is a salient feature of the anti-Veneziano limit that the technidilaton has a limit of

vanishing mass in units of Fφ, eq. (4.11), though not the exact massless point at the

criticality of the conformal phase transition point where no bound states exist for the

exactly zero explicit breaking mF ≡ 0, i.e., no nonperturbative trace anomaly (see text).

This is somewhat similar to the η′ meson in ordinary QCD, which is regarded as

the pseudo NG boson having mass from the U(1)A anomaly, Mη′/ΛQCD ∼ NF
NC
� 1 and

Mη′/Fπ ∼
√
NF
NC

→ 0 in the original Veneziano limit (r = NF /NC � 1 instead of the

anti-Veneziano limit r � 1). Fate of the η′ in the anti-Veneziano limit was discussed in

the text, see eq. (4.14). The exact massless point is also absent for η′, since the anomaly

cannot be identically zero in the quantum theory. Also note that the realistic value of the

η′ meson is far from light in the real-life QCD, which corresponds to the technipions in

our case.

20Note that other explicit breakings, quark/lepton mass mq/l (eq. (2.39)), technipion mass Mπ

(eq. (2.48)), also scale like mq/l/Fφ,Mπ/Fφ ∼ 1/
√
NFNC → 0 in the anti-Veneziano limit. They have

an exactly massless point (switching off the ETC gauge interaction), in contrast to the technidilaton,

though.
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For the phenomenological issue of the technidilaton to be identified with the 125 GeV

Higgs, we first noticed that the Pagels-Stokar formula for the weak scale vEW in eq. (4.9)

implies (246 GeV)2 = v2
EW = NFNC

ξ2

4π2 m
2
F . Then we have a conceptual feature of the

technidilaton in the anti-Veneziano limit:

Mφ

vEW
∼
Mφ

Fφ
∼ 1√

NFNC
→ 0 . (7.8)

More quantitatively, we showed the ladder estimate of the PCDC relation together with

the Pagels-Stokar formula leads to eq. (4.15):

M2
φ '

(vEW

2

)2
·
(

5 vEW

Fφ

)2

·
[

8

NF

4

NC

]
. (7.9)

Hence in the particular case, the one-family model with NF = 8, NC = 4, we have mF '
vEW and in fact realize the reality of 125 GeV Higgs as in eq. (4.16):

Mφ '
vEW

2
, Fφ ' 5 vEW (NF = 8 , NC = 4) . (7.10)

The result yields in fact a best fit to the current LHC data for the 125 GeV Higgs as

was explained in details in section 5. See table 2 and 3. The couplings of the technidilaton

to the SM particles are small by a factor of vEW
Fφ
' 1

5 , which is compensated by the

enhancement by the extra contributions from the charged/colored technifermions in the

one-family model, see eqs. (5.1)–(5.3). Then the net results happened to be similar to that

of the SM Higgs within the errors of the current data at LHC.

As to the non-NG boson technihadons, {A}, they all have the mass MA characterized

by the coefficient CA(r) depending on the ratio r = NF /NC in the anti-Veneziano limit:

MA & O(CA(r)mF )� mF &Mφ , (7.11)

which takes the form of the universal scaling of essential singularity: MA ∼ CA(r) ΛTC ·
e−π/
√
α/αcr−1 → 0 (α/αcr → 1, or r → rcr). In the anti-Veneziano limit at α→ αcr we have

Mφ

MA
∼ 1

CA(r)
� 1 ,

MA

MB
→ CA(r)

CB(r)
6= 0,∞ . (7.12)

Interesting candidate for such techni-hadrons may explain the diboson excesses recently

observed at LHC at 2 TeV [85, 86], which can be identified with the walking technirho

with Mρ ' 2 TeV [87]. The excesses suggest a characteristically small width Γtotal <

100 GeV [85], which can be naturally realized in the anti-Veneziano limit:

Γtotal

Mρ
' Γ(ρ→WW/WZ)

Mρ
' 1

48π

g2
ρππ

ND
∼ 1

NFNC
→ 0 , (7.13)

where ND = NF /2 is the number of the weak-doublets. In fact our one-family model

NF = 8, NC = 4 can reproduces the features of the excesses very well [87]. The fact that

Γtotal ' Γ(ρ→WW/WZ) is related to a smoking gun of the walking technirho, namely the

absence of the decay to the 125 GeV Higgs (TD), which is forbidden by the scale symmetry
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explicitly broken only by the Higgs (TD) mass term (corresponding to the nonperturbative

trace anomaly in the underlying WTC) [88]. Actually, it was shown [88] that the salient

feature of the scale symmetry of the generic effective theory not just the sHLS model,

containing the SM gauge bosons and the Higgs plus new vector bosons (any other massive

particles as well), is the absence of the decay of the new vector bosons into the 125 GeV

Higgs plus the SM gauge bosons, invalidating the so-called “Equivalence Theorem”. It was

further shown that if such a decay of new particles is not found at LHC Run II, then the

125 GeV Higgs is nothing but the dilaton (technidilaton in the case of the WTC) responsible

for the nonlinearly realized scale symmetry, i.e., the SSB of the scale symmetry, no matter

whatever underlying theory may be beyond the SM. This should definitely be tested in

the future LHC experiments. We will see.

Several comments are in order:

1. The S parameter: The ladder BS calculation of the S parameter from the techni-

sector alone was done near the criticality [101, 126], suggesting a sizable reduction,

up till the 40% reduction per one weak doublet compared with the QCD. Including

a (weak) ETC effects among technifermions (Gb terms in eq. (2.38)) for α/αcr > 1

in the ladder BS calculation further reduces it to S
NFNC

' 0.03, which would imply

S ' 1 for the one-family model (NF = 8, NC = 4). This is still in conflict with

the bound from electroweak precision experiments, S < 0.1. The S parameter from

the TC sector, however, is not necessarily in conflict with the experimental value

of the S from the electroweak precision measurements, since the contributions from

the TC sector can easily be cancelled by the strong mixing with the SM fermion

contribution through the ETC interactions [61, 62] (Gc terms in eq. (2.38)), as in

the fermion delocalization of the Higgsless model [127–129]. the inclusion of the

strong ETC effects plus the induced four-fermion effects of WTC, and/or the strong

ETC mixing effects between the technicolor and SM sectors (Gc terms in eq. (2.38)).

This should be studied explicitly in the ladder BS equation. Moreover, even within

the TC sector alone, there exists a way to resolve this problem as demonstrated in

the holographic model [39, 50], where we can reduce S by tuning the holographic

parameter of strength of the techni-gluon condensate G through the zm (position

of the infrared brane) in a way consistent with the TD mass of 125 GeV and all the

current LHC data for the 125 GeV Higgs [39]. This approach can be constrained from

the technipion mass bound from experiments [51]. Such a large gluonic effects cannot

be incorporated into the ladder calculations in principle, and should be checked by

the lattice calculations. The more straightforward calculations on the lattice are

highly desired anyway.

2. The top quark mass: the top mass is too small for the anomalous dimension γm = 1.

There are possible resolutions: first, the ETC breaking takes place in a step-wise,

with the smallest scale for the third family Λ3 � Λ2 � Λ1, and Λ3 is less constrained

by the FCNC limit than Λ2,1(> 103 TeV), as commonly used in the ETC model

building [30, 130]. Another way out [15, 104] is the even larger anomalous dimension

1 < γm = 1 +
√

1− α
αcr

< 2 [15] in the ladder calculation of the gauged NJL model,

eq. (2.50), due to the strong ETC coupling (Gb terms in eq. (2.38)). Note that the
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Ga term for the third family in eq. (2.38) is much stronger than those for the first

and second families, and comparable to Gb, Gc terms at the scale Λ3. The strong

Ga term for the top quark triggers the top quark condensate [4, 5] as well as the

technifermion condensate, with γm ' 2, but would lead to a different picture than

the “top-colored assisted TC” [131], which had a serious problem of the light top

pion not absorbed into W/Z [132], since the the W/Z mass is already generated

by the TC condensate. In the case at hand, along the critical line of the system

together with almost comparable Gb, Gc terms, only a single combination of the top

and technifermions may condense, so that no extra NG bosons would be formed.

3. Straightforward ladder BS calculations: the walking techni-hadrons spectra by the

BS and SD equations were calculated for scalar, vector, axialvector mesons: MS , Mρ,

Ma1 , together with the decay constants GS , Fρ, Fa1 [47]. The result shows MS/fπ ∼ 4,

Mρ/Fπ 'Ma1/Fπ ' 12, which is compared with the real-life QCD, mf0(1370)/fπ ' 15

(mf0(500)/fπ ' 5: may not be q̄q bound state), mρ/fπ ' 8,ma1/fπ ' 13. The near

degeneracy Mρ ' Ma1 is also consistent with the lattice results for NF = 8 NC =

3 [58, 124, 125]. Since the calculation does not distinguish between the flavor singlet

and nonsinglet states, the scalar state S does not corresponds to the technidilaton as

a flavor singlet F̄F bound state. Nevertheless, it would be suggestive that the scalar

state S has the mass much smaller than in the QCD. It is well known [133, 134] that

the singlet-nonsinglet splitting can be done by introducing the Kobayashi-Maskawa-’t

Hooft determinant [135, 136] arising from the instanton in such a way as to push the

flavor-singlet scalar down and nonsinglet up. It would be interesting to see the same

thing near criticality of the walking theories in the ladder BS equation. Another

interesting feature of the result of [47] is that Fρ/Fπ ' 2 compared with the QCD

value Fρ/fπ '
√

2, which could be relevant to the 2 TeV diboson excesses at the

LHC [87].

4. One-family model on the lattice: we have shown that the ladder results for the one-

family model with NF = 8, NC = 4 give the technidilaton as the 125 GeV Higgs the

best fit to the current LHC data. The holographic estimate also yields a similar result

as far as the realistic point is concerned [39]. It was further shown that a natural

setting of the ETC model building prefers NC = 4. Although many lattice results

indicate the walking behavior with γm ' 1 [57–59] and a light flavor-singlet as a

candidate for the technidilaton [52, 53] in the NF = 8, NC = 4 theory, so far no lattice

studies for NF = 8, NC = 4 have been done. Lattice results for NF = 8, NC = 4 are

highly desired.
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A Ladder estimate of the chiral condensate, anomalous dimension,

and OPE

The bare chiral condensate can be directly estimated from the SSB solution eq. (2.30) at

x = Λ2 with the UV boundary condition eq. (2.31), ω̃ ln
(
16Λ2/m2

F

)
' π, for m0 = 0. It

follows:

Λ2Σ(Λ) = −Λ4Σ′(Λ) ' 2ξ

πω̃
Λm2

F sin
(
ω̃ ln(16Λ2/m2

F )− 2ω̃
)
' 4ξ

π
Λm2

F , (A.1)

which is also consistent with eq. (2.35). Hence the chiral condensate can be evaluated

through the formula eq. (2.21) with m0 = 0 (or eq. (2.22)) [100]:

〈F̄F 〉0 = −NC

π2

αcr

α(Λ2)
Λ2Σ(Λ) ' −4ξNC

π3
m2
F Λ , (A.2)

without logarithmic factor, which in fact implies Z−1
m ∝ Λ

mF
, and hence

γm = Λ
∂

∂Λ
lnZ−1

m = 1 (A.3)

consistently with eq. (2.37) obtained in comparison with the OPE.

In the case of m0 6= 0, the result Zm ∼ mF
Λ was also noted in the SSB phase [40]

before the advent of WTC, through the UV boundary condition. More specifically, using

the expression for m0 6= 0 in eq. (2.31) with Σ(x = m2
P ) = mP ' mF +mR for mR � mF ,

we have [100]

m0 ≡ ϕ(m2
P )=(xΣ(x))′|x=Λ2 =

ξ

πω̃

m2
P

Λ
sin

(
ω̃ ln

16 Λ2

m2
P

)
'ϕ(m2

F ) +mR
∂ϕ(mP )

∂mP

∣∣∣∣∣
mP=mF

(A.4)

' mR

(
2ξ

π

mF

Λ

)
, (A.5)

Zm '
2ξ

π

mF

Λ
, (A.6)

which agrees with the result obtained directly performing the integral eq. (2.19) [100]. This

again yields the same result as eq. (A.3), γm = 1. From eq. (A.6) we have the renormalized

condensate at µ = mF :

〈F̄F 〉R = 〈F̄F 〉0 Zm ' −
8ξ2NC

π4
m3
F , (A.7)

so that the multiplicative renormalization follows, i.e., m0〈F̄F 〉0 = mR〈F̄F 〉R.

This large anomalous dimension provides an enhancement of the quark/lepton mass

through the ETC having the scale Λ = ΛETC(∼ ΛTC):

mq/l ∼ −ci
〈F̄F 〉0
NCΛ2

ETC

'
(
ci

4ξ

π3

m2
F

ΛETC

)
=

[
ci
NF

(
4

ξπ

4vEW

NCΛETC

)]
vEW ≡ yeff · vEW, (A.8)

yeff ∼ ci
NF

(
4

ξπ

4vEW

NCΛETC

)
, (A.9)
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where ci is a model-dependent numerical constant of O(1) and the Pagels-Stokar formula

m2
F ' v2

EW
4π2

NFNC
in eq. (B.4) was used. This is roughly 0.1 GeV for the typical quark/lepton

mass (except for the top quark) with the effective Yukawa coupling yeff . 10−3, in accord

with the FCNC constraints ΛETC & 103 TeV ' 4vEW. Then the WTC with this ladder

solution provides a concrete dynamics for a solution of the FCNC problem by the large

anomalous dimension, the solution [24] based on a pure assumption of existence of a theory

having UV fixed point (without concrete dynamics nor a concrete value of the anomalous

dimension).

The asymptotic form of Σ(x) (m0 6= 0) takes the same form as eq. (2.30), with replace-

ment of mF to mP .

Σ(x) ∼ 2ξ

π

1

ω̃

m2
P√
x

sin

(
ω̃ ln

(
16x

m2
P

)
−2ω̃

)
' 2ξ

π

1

ω̃

m2
P√
x

sin

(
ω̃ ln

(
16x

m2
F

)
−2ω̃ ln

(
1−mR

mF

)
−2ω̃

)
(A.10)

' 4ξ

π

(mF +mR)2

√
x

(
1− mR

mF

)
' 4ξ

π

[
mF mR√

x
+
m2
F√
x

]
(A.11)

This is perfectly consistent with the OPE with γm = 1:

Σ(x) ∼ 4ξ

π
mR

(
x

m2
F

)−γm/2
− π3

2ξNC

〈F̄F 〉R
x

(
x

m2
F

)γm/2
∼ 4ξ

π

[
mRmF√

x
+
m2
F√
x

]
. (A.12)

Such a large anomalous dimension is due to the UV fixed point at αcr whose effective

coupling C2αcr = π/3 remains strong all the way up to the scale ΛTC.

B Pagels-Stokar formula

The Pagels-Stokar formula [137] is given as

4π2

NC

F 2
π

m2
F

=

∫ Λ2→∞

0
dxx

Σ(x)2 − x
4
d(Σ(x)2)

dx

(x+ Σ(x)2)2
. (B.1)

The integral is dominated by the infrared region and converges quickly for the ladder SSB

solution with γm = 1, Σ(x) ∼ m2
F /
√
x, and hence is insensitive to the value of Λ2 as far

as it is very large, say Λ2/m2
F > 106. Rather, the integral depends on the precise form

in the infrared region x < Λ2. Here we take the mass function of the ladder SD solution,

eq. (2.30):

Σ(x) ' ξ
m2
F√
x

√
cthπω̃

πω̃(ω̃2 + 1/4)
sin

(
ω̃ ln

(
16x

m2
F

)
− 2ω̃

)
. (B.2)

Then we get
4π2

NC

F 2
π

m2
F

' 2.00 ξ2 . (B.3)

From this we get

v2
EW = NDF

2
π =

NF

2

ξ2

2π2
NCm

2
F '

ξ2

4π2
NFNCm

2
F . (B.4)

The result is compared with that obtained by using a naive mass function, Σ(x) = m2
Fx
−1/2

for x > m2
F and Σ(x) = mF for x < m2

F : 4π2

NC

F 2
π

m2 ' 1.00.
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C Estimate of ggF contamination for technidilaton production with for-

ward dijet at LHC

The h+2j production at the LHC arises dominantly from two processes, i.e., VBF and ggF:

σ(h+ 2j) = σVBF(h+ qq) + σggF(h+ gg) . (C.1)

In ref. [138] the h+gg cross section has been estimated, at
√
s = 14 TeV with a kinematical

cut set, as a function of the Higgs mass mh. At mh = 125 GeV it reads

σcut
ggF(h+ gg) ' 10 pb , (C.2)

which is about 70%–80% amount of the full phase space due to the kinematical cut. Taking

into account the phase space cut one can evaluate the full cross section as

σfull
ggF(h+ gg) ∼

(
10

8
− 10

7

)
× σcut

ggF(h+ gg)

∼ 13–14 pb . (C.3)

On the other hand, the h + 0j ggF production cross section at
√
s = 14 TeV can be read

off from ref. [139] as

σfull
ggF(h+ 0j) ' 49 pb , (C.4)

which corresponds to the number obtained by integrating the full phase space. Eqs. (C.3)

and (C.4) allow us to numerically write the ratio

rggF+jj ≡
σfull

ggF(h+ gg)

σfull
ggF(h+ 0j)

' 0.3 . (C.5)

Note that the dependence of the gluon-gluon-Higgs coupling is canceled in this ratio, so

the value of the ratio can be applied to any Higgs candidate including the technidilaton.

We shall assume that the 8 TeV cross sections are also applicable to eq. (C.5). Then

the signal strength of the technidilaton decaying to X1X2 through the dijet production

channel can be evaluated as

µX1X2
2j =

σ(φ+ 2j)× BR(φ→ X1X2)

σ(h+ 2j)× BR(h→ X1X2)

∼
[σVBF(φ+ qq) + rggF+jj × σggF(φ+ 0j)]× BR(φ→ X1X2)

[σVBF(h+ qq) + rggF+jj × σggF(h+ 0j)]× BR(h→ X1X2)

= RVBF ·
1 + rcontam(φ)

1 + rcontam(h)
· rX1X2

BR , (C.6)

where

RVBF =
σVBF(φ+ qq)

σVBF(h+ qq)
=

(
vEW

Fφ

)2

,

rcontam(φ/h) =
rggF+jj × σggF(φ/h+ 0j)

σVBF(φ/h+ qq)
,

rX1X2
BR =

BR(φ→ X1X2)

BR(h→ X1X2)
. (C.7)
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Note that at the leading oder of perturbative computations the ratios rcontam(φ) and rX1X2
BR

depend only on NC once the Higgs mass is fixed to be 125 GeV. At the 8 TeV LHC, for

NC = 4 we have

rcontam(φ) ' 106 ,

rWW
BR = rZZBR = rττBR =' 0.26 , rγγBR ' 0.37 (C.8)

and for the SM Higgs,

rcontam(h) ' 1.4 . (C.9)

Thus we estimate the signal strengths,

µ
WW/ZZ/ττ
V BF ' 0.6

(
vEW/Fφ

0.23

)2

.

µγγV BF ' 0.8

(
vEW/Fφ

0.23

)2

. (C.10)
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