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Visual speech recognition is an emerging research field. In this paper, we examine the suitability of support vector machines for
visual speech recognition. Each word is modeled as a temporal sequence of visemes corresponding to the different phones realized.
One support vector machine is trained to recognize each viseme and its output is converted to a posterior probability through a
sigmoidal mapping. To model the temporal character of speech, the support vector machines are integrated as nodes into a Viterbi
lattice. We test the performance of the proposed approach on a small visual speech recognition task, namely the recognition of the
first four digits in English. The word recognition rate obtained is at the level of the previous best reported rates.
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1. INTRODUCTION

Audio-visual speech recognition is an emerging research field
where multimodal signal processing is required. The motiva-
tion for using the visual information in performing speech
recognition lays on the fact that the human speech produc-
tion is bimodal by its nature. In particular, human speech
is produced by the vibration of the vocal cords and depends
on the configuration of the articulatory organs, such as the
nasal cavity, the tongue, the teeth, the velum, and the lips. A
speaker produces speech using these articulatory organs to-
gether with the muscles that generate facial expressions. Be-
cause some of the articulators, such as the tongue, the teeth,
and the lips are visible, there is an inherent relationship be-
tween the acoustic and visible speech. As a consequence, the
speech can be partially recognized from the information of
the visible articulators involved in its production and in par-
ticular from the image region comprising themouth [1, 2, 3].

Undoubtedly, the most useful information for speech
recognition is carried by the acoustic signal. When the acous-
tic speech is clean, performing visual speech recognition and
integrating the recognition results from both modalities does

not bring too much improvement because the recognition
rate from the acoustic information alone is very high, if not
perfect. However, when the acoustic speech is degraded by
noise, adding the visual information to the acoustic one im-
proves significantly the recognition rate. Under noisy con-
ditions, it has been proved that the use of both modalities
for speech recognition is equivalent to a gain of 12 dB in the
signal-to-noise ratio of the acoustic signal [1]. For large vo-
cabulary speech recognition tasks, the visual signal can also
provide a performance gain when it is integrated with the
acoustic signal, even in the case of a clean acoustic speech
[4].

Visual speech recognition refers to the task of recogniz-
ing the spoken words based only on the visual examination
of the speaker’s face. This task is also referred to as lipreading,
since the most important visible part of the face examined
for information extraction during speech is the mouth area.
Different shapes of the mouth (i.e., different mouth open-
ings and different position of the teeth and tongue) realized
during speech cause the production of different sounds. We
can establish a correspondence between themouth shape and
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the phone produced, even if this correspondence is not one-
to-one, but one-to-many, due to the involvement of invisible
articulatory organs in the speech production. For small vo-
cabulary word recognition tasks, we can perform good qual-
ity speech recognition using the visual information conveyed
by the mouth shape only.

Several methods have been reported in the literature for
visual speech recognition. The adopted methods vary widely
with respect to: (1) the feature types, (2) the classifier used,
and (3) the class definition. For example, Bregler and Omo-
hundro [5] used time delayed neural networks (TDNN) for
visual classification and the outer lip contour coordinates as
visual features. Luettin and Thacker [6] used active shape
models to represent the different mouth shapes and gray level
distribution profiles (GLDPs) around the outer and/or inner
lip contours as feature vectors, and finally built whole-word
hidden Markov model (HMM) classifiers for visual speech
recognition. Movellan [7] employed also HMMs to build the
visual word models, but he used directly the gray levels of
the mouth images as features after simple preprocessing to
exploit the vertical symmetry of the mouth. In recent works,
Movellan et al. [8] have reported very good results when par-
tially observable stochastic differential equation (SDE) mod-
els are integrated in a network as visual speech classifiers in-
stead of HMMs, and Gray et al. [9] have presented a compar-
ative study of a series of different features based on princi-
pal component analysis (PCA) and independent component
analysis (ICA) in an HMM-based visual speech recognizer.

Despite the variety of existing strategies for visual speech
recognition, there is still ongoing research in this area at-
tempting to: (1) find the most suitable features and classifi-
cation techniques to discriminate effectively between the dif-
ferent mouth shapes, while preserving in the same class the
mouth shapes produced by different individuals that corre-
spond to one phone; (2) require minimal processing of the
mouth image to allow for a real time implementation of the
mouth shape classifier; (3) facilitate the easy integration of
audio and video speech recognition modules [1].

In this paper, we contribute to the first two of the afore-
mentioned aspects in visual speech recognition by examin-
ing the suitability of support vector machines (SVMs) for vi-
sual speech recognition tasks. The idea is based on the fact
that SVMs have been proved powerful classifiers in various
pattern recognition applications, such as face detection, face
verification/recognition, and so forth [10, 11, 12, 13, 14, 15].
Very good results in audio speech recognition using SVMs
were recently reported in [16]. No attempts in applying
SVMs for visual speech recognition have been reported so
far. According to the authors’ knowledge, the use of SVMs as
visual speech classifiers is a novel idea.

One of the reasons that partially explains why SVMs have
not been exploited in automatic speech recognition so far is
that they are inherently static classifiers, while speech is a dy-
namic process where the temporal information is essential
for recognition. A solution to this problem was presented in
[16] where a combination of HMMs with SVMs is proposed.
In this paper, a similar strategy is adopted.We will use Viterbi
lattices to create dynamically visual word models.

The approaches for building the wordmodels can be clas-
sified into the approaches where whole word models are de-
veloped [6, 7, 16] and those where viseme-oriented word
models are derived [17, 18, 19]. In this paper, we adopt the
latter approach because it is more suitable for an SVM imple-
mentation and offers the advantage of an easy generalization
to large vocabulary word recognition tasks without a signif-
icant increase in storage requirements. It maintains also the
dictionary of basic visual models needed for word modeling
into a reasonable limit.

The word recognition rate obtained is on the level of
the best previous reported rates in literature, although we
will not attempt to learn the state transition probabilities.
When very simple features (i.e., pixels) are used, our word
recognition rate is superior to the ones reported in the litera-
ture. Accordingly, SVMs are a promising alternative for visual
speech recognition and this observation encourages further
research in that direction. It is well known that the Morton-
Massaro law (MML) holds when humans integrate audio
and visual speech [20]. Experiments have demonstrated that
MML holds also for audio-visual speech recognition systems.
That is, the audio and visual speech signals may be treated
as if they were conditionally independent without significant
loss of information about speech categories [20]. This ob-
servation supports the independent treatment of audio and
visual speech and yields an easy integration of the visual
speech recognition module and the acoustic speech recog-
nition module.

The paper is organized as follows. In Section 2, a short
overview on SVM classifiers is presented. We review the con-
cepts of visemes and phonemes in Section 3. We discuss the
proposed SVM-based approach to visual speech recognition
in Section 4. Experimental results obtained when the pro-
posed system is applied to a small vocabulary visual speech
recognition task (i.e., the visual recognition of the first four
digits in English) are described in Section 5 and compared to
other results published in the literature. Finally, in Section 6,
our conclusions are drawn and future research directions are
identified.

2. OVERVIEWON SVMS AND THEIR APPLICATIONS
IN PATTERN RECOGNITION

SVMs constitute a principled technique to train classifiers
that stems from statistical learning theory [21, 22]. Their root
is the optimal hyperplane algorithm. Theyminimize a bound
on the empirical error and the complexity of the classifier at
the same time. Accordingly, they are capable of learning in
sparse high-dimensional spaces with relatively few training
examples. Let {xi, yi}, i = 1, 2, . . . , N , denote N training ex-
amples where xi comprises an M-dimensional pattern and
yi is its class label. Without loss of generality, we will con-
fine ourselves to the two-class pattern recognition problem.
That is, yi ∈ {−1,+1}. We agree that yi = +1 is assigned to
positive examples, whereas yi = −1 is assigned to counterex-
amples.

The data to be classified by the SVM might or might not
be linearly separable in their original domain. If they are
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separable, then a simple linear SVM can be used for their
classification. However, the power of SVMs is demonstrated
better in the nonseparable case when the data cannot be sep-
arated by a hyperplane in their original domain. In the lat-
ter case, we can project the data into a higher-dimensional
Hilbert space and attempt to linearly separate them in the
higher-dimensional space using kernel functions. Let Φ de-
note a nonlinear map Φ : RM → � where � is a higher-
dimensional Hilbert space. SVMs construct the optimal sep-
arating hyperplane in �. Therefore, their decision boundary
is of the form

f (x) = sign

( N∑
i=1

αi yiK
(
x, xi

)
+ b

)
, (1)

whereK(z1, z2) is a kernel function that defines the dot prod-
uct between Φ(z1) and Φ(z2) in �, and αi are the nonnega-
tive Lagrange multipliers associated with the quadratic op-
timization problem that aims to maximize the distance be-
tween the two classes measured in � subject to the con-
straints

wTΦ
(
xi
)
+ b ≥ 1 for yi = +1,

wTΦ
(
xi
)
+ b ≤ 1 for yi = −1,

(2)

where w and b are the parameters of the optimal separating
hyperplane in �. That is, w is the normal vector to the hy-
perplane, |b|/‖w‖ is the perpendicular distance from the hy-
perplane to the origin, and ‖w‖ denotes the Euclidian norm
of vector w.

The use of kernel functions eliminates the need for an
explicit definition of the nonlinear mapping Φ, because the
data appears in the training algorithm of SVM only as dot
products of their mappings. Frequently used, kernel func-
tions are the polynomial kernel K(xi, x j) = (mxTi x j + n)q

and the radial basis function (RBF) kernel K(xi, x j) =
exp{−γ|xi − x j|2}. In the following, we omit the sign func-
tion from the decision boundary (1) that simply makes the
optimal separating hyperplane an indicator function.

To enable the use of SVM classifiers in visual speech
recognition when we model the speech as a temporal se-
quence of symbols corresponding to the different phones
produced, we will employ the SVMs as nodes in a Viterbi
lattice. But the nodes of such a Viterbi lattice should generate
the posterior probabilities for the corresponding symbols to
be emitted [23] and the standard SVMs do not provide such
probabilities as output. Several solutions are proposed in the
literature to map the SVM output to probabilities: the cosine
decomposition proposed by Vapnik [21], the probabilistic
approximation by applying the evidence framework to SVMs
[24], and the sigmoidal approximation by Platt [25]. Here we
adopt the solution proposed by Platt [25] since it is a simple
solution which was already used in a similar application of
SVMs to audio speech recognition [16].

The solution proposed by Platt shows that having a
trained SVM, we can convert its output to probability by
training the parameters a1 and a2 of a sigmoidal mapping
function, and that this produces a good mapping from SVM

margins to probability. In general, the class-conditional den-
sities on either side of the SVM hyperplane are exponential.
So, Bayes’ rule [26] on two exponentials suggests the use of
the following parametric form of a sigmoidal function:

P
(
y = +1 | f (x)) = 1

1 + exp
(
a1 f (x) + a2

) , (3)

where

(i) y is the label for x, given by the sign of f (x) (y = +1 if
and only if f (x) > 0),

(ii) f (x) is the function value on the output of an SVM
classifier for the feature vector x to be classified,

(iii) a1 and a2 are the parameters of the sigmoidal mapping
to be derived for the currently trained SVMunder con-
sideration with a1 < 0.

P(y = −1 | f (x)) could be defined similarly. However, since
each SVM represents only one data category (i.e., the positive
examples), we are interested only in the probability given by
(3). The latter equation gives directly the posterior probabil-
ity to be used in a Viterbi lattice. The parameters a1 and a2
are derived from a training set ( f (xi), yi) using maximum
likelihood estimation. In the adopted approach, we use the
training set of the SVM, (xi, yi), i = 1, 2, . . . , N , to estimate
the parameters of the sigmoidal function. The estimation
starts with the definition of a new training set, ( f (xi), ti),
i = 1, 2, . . . , N , where ti are the target probabilities. The target
probabilities are defined as follows.

(i) When a positive example (i.e., yi = +1) is observed at
a value f (xi), we assume that this example is probably in the
class represented by the SVM, but there is still a small finite
probability ε+ for getting the opposite label at the same f (xi)
for some out-of-sample data. Thus, ti = t+ = 1− ε+.

(ii) When a negative example (i.e., yi = −1) is observed
at a value f (xi), we assume that this example is probably not
in the class represented by the SVM, but there is still a small
finite probability ε− for getting the opposite label at the same
f (xi) for some out-of-sample data. Thus, ti = t− = ε−.

Denote by N+ the number of positive examples in the
training set (xi, yi), i = 1, 2, . . . , N . Let N− be the number of
negative examples in the training set. We set t+ = 1 − ε+ =
(N+ + 1)/(N+ + 2) and t− = ε− = 1/(N− + 2).

The parameters a1 and a2 are found by minimizing the
negative log likelihood of the training data which is a cross-
entropy error function given by

�
(
a1, a2

) = − N∑
i=1

ti log
(
pi
)
+
(
1− ti

)
log
(
1− pi

)
, (4)

where

ti =


t+, for yi = +1,

t−, for yi = −1,
(5)

pi = 1
1 + exp

(
a1 f

(
xi
)
+ a2

) . (6)



A Support Vector Machine-Based Dynamic Network for Visual Speech Recognition Applications 1251

In (4) and (6), pi, i = 1, 2, . . . , N , is the value of the sigmoidal
mapping for the training example xi, where f (xi) is the real-
valued output of the SVM for this example. Due to the neg-
ative sign of a1, pi tends to 1 if xi is a positive example (i.e.,
f (xi) > 0) and to 0 if xi is a negative example (i.e., f (xi) < 0).

3. VISEMES AND PHONEMES

3.1. Phonetic word description

The basic units of the acoustic speech are the phones. Roughly
speaking, a phone is an acoustic realization of a phoneme, a
theoretical unit for describing how speech conveys linguistic
meaning. The acoustic realization of a phoneme depends on
the speaker’s characteristics, the word context, and so forth.
The variations in the pronunciation of the same phoneme
are called allophones. In the technical literature, a clear dis-
tinction between phones and phonemes is seldom made.

In this paper, we are dealing with speech recognition in
English, so we will focus on this particular case. The num-
ber of phones in the English language varies in the litera-
ture [27, 28]. Usually there are about 10–15 vowels or vowel-
like phones and 20–25 consonants. The most commonly
used computer-based phonetic alphabet in American En-
glish is ARPABET which consists of 48 phones [2]. To con-
vert the orthographic transcription of a word in English to
its phonetic transcription, we can use the publicly available
Carnegie Mellon University (CMU) pronunciation dictio-
nary [29]. The CMU pronunciation dictionary uses a subset
of the ARPABET consisting of 39 phones. For example, the
CMU phonetic transcription of the word “one” is “W-AH-
N”.

3.2. The concept of viseme

Similarly to the acoustic domain, we can define the basic
unit of speech in the visual domain, the viseme. In general,
in the visual domain, we observe the image region of the
speaker’s face that contains the mouth. Therefore, the con-
cept of viseme is usually defined in relation to the mouth
shape and the mouth movements. An example where the
concept of viseme is related to the mouth dynamics is the
viseme OW which represents the movement of the mouth
from a position close to O to a position close to W [2]. In
such a case, to represent a viseme, we need to use a video
sequence, a fact that would complicate the processing of the
visual speech to some extent. However, fortunately, most of
the visemes can be approximately represented by station-
ary mouth images. Two examples of visemes defined in re-
lation to the mouth shape during the production of the cor-
responding phones are given in Figure 1.

3.3. Phoneme to visememappings

To be able to perform visual speech recognition, ideally we
would like to define for each phoneme its corresponding
viseme. In this way, each word could be unambiguously de-
scribed according to its pronunciation in the visual domain.
Unfortunately, invisible articulatory organs are also involved
in speech production that renders the mapping of phonemes

(a) (b)

Figure 1: (a) Mouth shape during the realization of phone /O/; (b)
mouth shape during the realization of phone /F/, by the subject An-
thony in the Tulips1 database [7].

Table 1: The most used viseme groupings for the English conso-
nants [1].

Viseme group index Corresponding consonants

1 /F/; /V/

2 /TH/; /DH/

3 /S/; /Z/

4 /SH/; /ZH/

5 /P/; /B/; /M/

6 /W/

7 /R/

8 /G/; /K/; /N/; /T/; /D/; /Y/

9 /L/

to visemes into many-to-one. Thus, there are phonemes that
cannot be distinguished in the visual domain. For example,
the phonemes /P/, /B/, and /M/ are all produced with a closed
mouth and are visually indistinguishable, so they will be rep-
resented by the same viseme. We also have to consider the
dual aspect corresponding to the concept of allophones in
the acoustic domain. The same viseme can have different re-
alizations represented by different mouth shapes due to the
speaker variability and the context.

Unlike the phonemes, in the case of visemes there are
no commonly accepted viseme tables by all researchers [1],
although several attempts toward this direction have been
undertaken. For example, it is commonly agreed that the
visemes of the English consonants can be grouped into 9 dis-
tinct groups, as in Table 1 [1]. To obtain the viseme group-
ings, the confusions in stimulus-response matrices measured
on an experimental basis are analyzed. In such experiments,
subjects are asked to visually identify syllables in a given con-
text such as vowel-consonant-vowel (V-C-V) words. Then,
the stimulus-response matrices are tabulated and the visemes
are identified as those clusters of phonemes in which at least
75% of all responses occur. This strategy will lead to a sys-
tematic and application-independent mapping of phonemes
to visemes. Average linkage hierarchical clustering [18] and
self-organizing maps [17] were employed to group visually
similar phonemes based on geometric features. Similar tech-
niques could be applied for raw images from mouth regions
as well.
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However, in this paper, we do not resort to such strategies
because our main goal is the evaluation of the proposed vi-
sual speech recognition method. Thus, we define only those
visemes that are strictly needed to represent the visual real-
ization of the small vocabulary used in our application and
manually classify the training images to a number of prede-
fined visemes, as explained in Section 5.

4. THE PROPOSED APPROACH TO VISUAL SPEECH
RECOGNITION

Depending on the approach used to model the spoken words
in the visual domain, we can classify the existing visual
speech recognition systems to systems using word-oriented
models and those using viseme-oriented models [4]. In this
paper, we develop viseme-oriented models. Visemic-based
lipreading was investigated also in [17, 18]. Each visual word
model can be represented afterwards as a temporal sequence
of visemes. Thus, the structure of the visual word modeling
and recognition system can be regarded as a two-level struc-
ture.

(1) At the first level, we build the viseme classes, one class
of mouth images for each viseme defined. This implies the
formulation of the mouth shape recognition problem as a
pattern recognition problem. The patterns to be recognized
are the mouth shapes, symbolically represented as visemes.
In our approach, the classification of mouth shapes to viseme
classes is formulated as a two-class (binary) pattern recogni-
tion problem and there is one SVMdedicated for each viseme
class.

(2) At the second level, we build the abstract visual word
models described as temporal sequences of visemes. The vi-
sual word models are implemented by means of the Viterbi
lattices where each node generates the emission probability
of a certain viseme at one particular time instant.

Notice that the aforementioned two-level approach is
very similar to some techniques employed for acoustic speech
recognition [16], justifying thus our expectation that the
proposedmethod will ensure an easy integration of the visual
speech recognition subsystem with a similar acoustic speech
recognition subsystem.

In this section, we focus on the first level of the proposed
algorithm for visual speech modeling and recognition. The
second level involves the development of the visual symbolic
sequential word models using the Viterbi lattices. The latter
level is discussed only in principle.

4.1. Formulation of visual speech recognition
as a pattern recognition problem

The problem of discriminating between different mouth
shapes during speech production can be viewed as a pattern
recognition problem. In this case, the set of patterns is a set
of feature vectors {xi}, i = 1, 2, . . . , P, each of them describ-
ing some mouth shape. The feature vector xi is a represen-
tation of the mouth image. The feature vector xi can repre-
sent the mouth image at low level (i.e., the gray levels from
a rectangular image region containing the mouth). It can
comprise geometric parameters (i.e., mouth width, height,

perimeter, etc.) or the coefficients of a linear transformation
of the mouth image. All the feature vectors from the set have
the same number of componentsM.

Denote the pattern classes by � j , j = 1, 2, . . . , Q, where
Q is the total number of classes. Each class � j is a group of
patterns that represent mouth shapes corresponding to one
viseme.

A network of Q parallel SVMs is designed where each
SVM is trained to classify test patterns in class � j or its com-
plement �C

j . We should slightly deviate from the notation
introduced in Section 2 because a test pattern xi could be as-
signed to more than one class. It is convenient to represent
the class label of a test pattern, xk, by a (Q × 1) vector yk
whose jth element, yk j , admits the value 1 if xk ∈ � j and
−1 otherwise. It may occur more than one element of yk to
have the value 1 if f j(xk) > 0, where f j(xk) is the decision
function of the jth SVM. To derive an unambiguous classi-
fication, we will use SVMs with probabilistic outputs, that
is, the output of the jth SVM classifier will be the posterior
probability for the test pattern xk to belong to the class � j ,
P(yj = 1 | f j(xk)), given by (3). This pattern recognition
problem can be applied to visual speech recognition in the
following way:

(i) each unknown pattern represents the image of the
speaker’s face at a certain time instant;

(ii) each class label represents one viseme.

Accordingly, we will identify what the probability of a
viseme to be produced at any time instant in the spoken se-
quence is. This gives the solution required at the first level of
the proposed visual speech recognition system to be passed to
the second level. The network ofQ parallel SVMs is shown in
Figure 2.

4.2. The basic structure of the SVMnetwork for visual
speech recognition

The phonetic transcription represents each word by a left-to-
right sequence of phonemes. Moreover, the visemic model
corresponding to the phonetic model of a word can be easily
derived using a phoneme-to-viseme mapping. However, the
aforementioned representation shows only which visemes
are present in the pronunciation of the word, not the dura-
tion of each viseme. Let Ti, i = 1, 2, . . . , S, denote the dura-
tion of the ith viseme in a word model of S visemes. Let T
be the duration of the video sequence that results from the
pronunciation of this word.

In order to align the video sequence of duration T with
the symbolic visemic model of S visemes, we can create a
temporal Viterbi lattice [23] containing as many states as the
frames in the video sequence, that is, T . Such a Viterbi lattice
that corresponds to the pronunciation of the word “one” is
depicted in Figure 3. For this example, the visemes present
in the word pronunciation have been denoted with the same
symbols as the underlying phones.

Let D be the total number of visemic models defined
for the words in the vocabulary. Each visemic model wd,
d = 1, 2, . . . , D, has its own Viterbi lattice. Each node in the
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p(yQ = 1 | fQ(xk))

p(y3 = 1 | f3(xk))

p(y2 = 1 | f2(xk))

p(y1 = 1 | f1(xk))

...

SVMQ

SVM3

SVM2

SVM1

xkVisual
features

Figure 2: Illustration of the parallel network of binary classifiers for viseme recognition.

Temporal
frame

54321

W

AH

N

Visemic
symbolic model

Figure 3: A temporal Viterbi lattice for the pronunciation of the
word “one” in a video sequence of 5 frames.

lattice of Figure 3 is responsible for the generation of one
observation that belongs to a certain class at each time in-
stant. Let lk = 1, 2, . . . , Q be the class label where the obser-
vation ok generated at time instant k belongs to. Let us de-
note the emission probability of that observation by blk (ok).
Each solid line between any two nodes in the lattice repre-
sents a transition probability between two states. Denote by
alk,lk+1 the transition probability from the node correspond-
ing to the class lk at time instant k to the node corresponding
to the class lk+1 at time instant k + 1. The class labels lk and
lk+1 may or may not be different.

Having a video sequence of T frames for a word and
a Viterbi lattice for each visemic word model wd, d =
1, 2, . . . , D, we can compute the probability that the visemic
word model wd is realized, following a path � in the Viterbi
lattice as

pd,� =
T∏

k=1
blk
(
ok
) · T−1∏

k=1
alk,lk+1 . (7)

The probability that the visemic word model wd is realized
can be computed by

pd = �
max
�=1

p�, (8)

where � is the number of all possible paths in the lattice.
Among the words that can be realized following any possible
path in any of the D Viterbi lattices, the word described by
the model whose probability pd, d = 1, 2, . . . , D, is maximum
(i.e., the most probable word) is finally recognized.

In the visual speech recognition approach discussed in
this paper, the emission probability blk (ok) is given by the
corresponding SVM, SVMlk . To a first approximation, we as-
sume equal transition probabilities alk,lk+1 between any two
states. Accordingly, it is sufficient to take into account only
the probabilities blk (ok), k = 1, 2, . . . , T , in the computa-
tion of the path probabilities pd,� which yields the simplified
equation

pd,� =
T∏

k=1
blk
(
ok
)
. (9)

Of course, learning the probabilities alklk+1 from word models
would yield a more refined modeling. This could be a topic
of future work.

5. EXPERIMENTAL RESULTS

To evaluate the recognition performance of the proposed
SVM-based visual speech recognizer, we choose to solve the
task of recognizing the first four digits in English. Towards
this end, we used the small audiovisual database Tulips1
[7] frequently used in similar visual speech recognition ex-
periments. While the number of the words is small, this
database is challenging due to the differences in illumina-
tion conditions, ethnicity, and gender of the subjects. Also
we must mention that, despite the small number of words
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Table 2: Viseme classes defined for the four words of the Tulips1 database [7].

Viseme group index Symbolic notation Viseme description

1 (W) Small-rounded open mouth state

2 (AO) Larger-rounded open mouth state

3 (WAO) Medium-rounded open mouth state

4 (AH) Medium ellipsoidal mouth state

5 (N) Medium open, not rounded, mouth state; teeth visible

6 (T) Medium open, not rounded, mouth state; teeth and tongue visible

7 (TH) Medium open, not rounded

8 (IY) Longitudinal open mouth state

9 (F) Almost closed mouth position; upper teeth visible, lower lip moved inside

pronounced in the Tulips1 database compared to vocabular-
ies for real-world applications, the portion of phonemes in
English covered by these four words is large enough: 10 out
of 48 appearing in the ARPABET table, that is, approximately
20%. Since we use viseme-oriented models and the visemes
are actually just representations of phonemes in the visual
domain, we can consider the results described in this section
as significant.

Solving the proposed task requires first the design of a
particular visual speech recognizer according to the strat-
egy presented in Section 4. The design involves the following
steps:

(1) to define the viseme to phoneme mapping;
(2) to build the SVM network;
(3) to train the SVMs for viseme classification;
(4) to generate and implement the word models as Viterbi

lattices.

Then, we use the trained visual speech recognizer to assess its
recognition performance in test video sequences.

5.1. Experimental protocol

We start the design of the visual speech recognizer with the
definition of the viseme classes for the first four digits in En-
glish. We first obtain the phonetic transcriptions of the first
four digits in English using the CMU pronunciation dictio-
nary [29]:

“one”→ “W-AH-N”
“two”→ “T-UW”
“three”→ “TH-R-IY”
“four”→ “F-AO-R”.

We then try to define the viseme classes so that

(i) a viseme class includes as few phonemes as possible;
(ii) we have as few different visual realizations of the same

viseme as possible.

The definition of viseme classes was based on the visual
examination of the video part from the Tulips1 database.
The clustering of the different mouth images into viseme
classes was done manually on the base of the visual similarity

Table 3: Phoneme-to-viseme mapping used in the experiments
conducted on the Tulips1 database [7].

Viseme group index Corresponding phonemes

1, 2, or 3
(depending on speaker’s /W/, /UW/, /AO/

pronunciation)

1 or 3
(depending on speaker’s /R/

pronunciation)

4 /AH/

5 /N/

6 /T/

7 /TH/

8 or 4
(depending on speaker’s /IY/

pronunciation)

9 /F/

of these images. By this procedure, we obtained the viseme
classes described in Table 2 and the phoneme-to-viseme
mapping given in Table 3.

We have to define and train one SVM for each viseme.
To employ SVMs, we should define the features to be used to
represent each mouth image and select the kernel function
to be used. Since the recognition and generalization perfor-
mance of each SVM is strongly influenced by the selection
of the kernel function and the kernel parameters, we devoted
much attention to these issues. We trained each SVM using
the linear, the polynomial, and the RBF as kernel functions.
In the case of the polynomial kernel, the degree of the poly-
nomial q was varied between 2 and 6. For each trained SVM,
we compared the predicted error, precision, and recall on the
training set, as computed by SVMLight [30], for the different
kernels and kernel parameters. We finally selected the sim-
plest kernel yielding the best values for these estimates. That
kernel was the polynomial kernel of degree q = 3. The RBF
kernel gave the same performance estimates with the poly-
nomial kernel of degree q = 3 on the training set but at the
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cost of a larger number of support vectors. A simple choice
of a feature vector such as the collection of the gray levels
from a rectangular region of fixed size containing the mouth,
scanned row by row, is proved suitable whenever SVMs have
been used for visual classification tasks [15]. More specifi-
cally, we used two types of features to conduct the visual
speech recognition experiments.

(i) The first type comprised the gray levels of a rectangu-
lar region of interest around the mouth, downsampled to the
size 16 × 16. Each mouth image is represented by a feature
vector of length 256.

(ii) The second type represented each mouth image
frame at the time Tf by a vector of double size (i.e., 512) that
comprised the gray levels of the rectangular region of interest
around the mouth downsampled to the size 16 × 16, as pre-
viously. The temporal derivatives of the gray levels normal-
ized to the range [0, Lmax − 1], where Lmax is the maximum
gray level value in mouth image. The temporal derivatives
are simply the pixel by pixel gray level differences between
the frames Tf and Tf − 1. These differences are the so-called
delta features.

Some preprocessing of the mouth images was needed be-
fore training and testing the visual speech recognition sys-
tem. It concerns the normalization of the mouth in scale, ro-
tation, and position inside the image. Such a preprocessing
is needed due to the fact that the mouth has different scale,
position in the image, and orientation toward the horizon-
tal axis from utterance to utterance depending on the subject
and on its position in front of the camera. To compensate for
these variations, we applied the normalization procedure of
mouth images with respect to scale, translation, and rotation
described in [6].

The visual speech recognizer was tested for speaker-
independent recognition using the leave-one-out testing
strategy for the 12 subjects in the Tulips1 database. This im-
plies training the visual speech recognizer 12 times, each time
using only 11 subjects for training and leaving the 12th out
for testing. In each case, we trained first the SVMs, and then
the sigmoidal mappings for converting the SVMs output to
probabilities. The training set, for each SVM in each system
configuration is defined manually. Only the video sequences,
from the so-called Set 1 from the Tulips1 database, were used
for training. The labeling of all the frames from Set 1 (a total
of 48 video sequences) was done manually by visual exami-
nation of each frame. We examined the video only to label all
the frames according to Table 3 except the transition frames
between two visemes denoting differently the same viseme
class for each subject. Finally, we compared the similarity of
the frames corresponding to the same viseme and different
subjects and decided if the classes could be merged. The dis-
advantage of this approach is the large time needed for la-
beling, which would not be needed if HMMs were used for
segmentation. A compromise solution for labeling could be
the use of an automatic solution for phoneme-level segmen-
tation of the audio sequence and the use of this segmentation
on the aligned video sequence also.

Once the labeling was done, only the unambiguous posi-
tive and negative viseme examples were included in the train-

ing sets. The feature vectors used in the training sets of all
SVMs were the same. Only their labeling as positive or neg-
ative examples differs from one SVM to another. This leads
to an unbalanced training set in the sense that the negative
examples are frequently more than the positive ones.

The configuration of the Viterbi lattice depends on the
length of the test sequence through the number of frames
Ttest of the sequence (as illustrated in Figure 3). It was gen-
erated automatically at runtime for each test sequence. The
number of Viterbi lattices can be determined in advance, be-
cause it is equal to the total number of visemic word models.
Thus, taking into account the phonetic descriptions for the
four words of the vocabulary and the phoneme-to-viseme
mappings in Table 3, we have 3 visemic word models for the
word “one,” 3 models for “two,” 4 models for “three,” and 6
models for “four.” The multiple visemic models per word are
due to the variability in speakers’ pronunciation.

In each of the 12 leave-one-out tests, we have as test se-
quences, the video sequences corresponding to the pronun-
ciation of the four words and there are two pronunciations
available for each word and the speaker. This leads to a subto-
tal of 8 test sequences per system configuration, and a total of
12× 8 = 96 test sequences for the visual speech recognizer.

The complete visual speech recognizer was implemented
in C++. We used the publicly available SVMLight toolkit
modules for the training of the SVMs [30]. We implemented
in C++, the module for learning the sigmoidal mappings of
the SVMs output to probabilities and the module for gener-
ating the Viterbi lattice models based on SVMs with prob-
abilistic outputs. All these modules were integrated into the
visual speech recognition system whose architecture is struc-
tured into two modules: the training module and the test
module.

Two visual speech recognizers were implemented,
trained, and tested with the aforementioned strategy. They
differ in the type of features used. The first system (with-
out delta features) did not include temporal derivatives in
the feature vector, while the second (with delta features) in-
cluded also temporal derivatives between two frames in the
feature vector.

5.2. Performance evaluation

In this section, we present the experimental results obtained
with the proposed system with or without using delta fea-
tures. Moreover, we compare these results to others reported
in the literature for the same experiment on the Tulips1
database. The word recognition rates (WRR) have been aver-
aged over the 96 tests obtained by applying the leave-one-out
principle. Five figures of merit are provided.

(1) The WRR per subject, obtained by the proposed
method when delta features are used, is measured and com-
pared to that by Luettin and Thacker [6] (Table 4).

(2) The overall WRR for all subjects and pronunciations,
with and without delta features, is reported compared to that
obtained by Luettin and Thacker [6], Movellan [7], Gray et
al. [9], and Movellan et al. [8] (Table 5).

(3) The confusion matrix between the words actually
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Table 4: WRR for each subject in Tulips1 using: (a) SVM dynamic network with delta features; (b) active appearance model (AAM) for
inner and outer lip contours and HMM with delta features [6].

Subject 1 2 3 4 5 6 7 8 9 10 11 12

Accuracy [%] (SVM-based dynamic network) 100 75 100 100 87.5 100 87.5 100 100 62.5 87.5 87.5

Accuracy [%] (AAM&HMM [6]) 100 87.5 87.5 75 100 100 75 100 100 75 100 87.5

Table 5: The overall WRR of the SVM dynamic network compared to that of other techniques.

Method

SVM-based
dynamic network
without delta
features

SVM-based
dynamic network
with delta
features

AAM and HMM
shape + intensity
inner + outer lip contour
without delta features [6]

AAM and HMM
shape + intensity
inner + outer lip contour
with delta features [6]

HMMs [7]
without delta
features

HMMs [7]
with delta
features

WRR [%] 76 90.6 87.5 90.6 60 89.93

Method
Global PCA and
HMMs [9]

Global ICA and
HMMs [9]

blocked filter bank
PCA/ICA (local) [9]

unblocked filter bank
PCA/ICA (local) [9]

Diffusion network shape +
intensity [8]

WRR [%] 79.2 74 85.4 91.7 91.7

presented to the classifier and the words recognized is shown
in Table 6 and compared to the average human confusion
matrix [7] (Table 7) in percentages.

(4) The accuracy of the viseme segmentations resulting
from the Viterbi lattices.

(5) The 95% confidence intervals for the WRRs of the
several systems included in the comparisons (Table 8) that
provide an estimate of the performance of the systems for a
much larger number of subjects.

We would like to note that human subjects untrained in
lipreading achieved, under similar experimental conditions,
a WRR of 89.93%, whereas the hearing impaired had an av-
erage performance of 95.49% [7]. From the examination of
Table 5, it can be seen that our WRR is equal to the best rate
reported in [6] and just 1.1% below the recently reported
rates in [8, 9]. However, the features used in the proposed
method are simpler than those used with HMMs to obtain
the same or higher WRRs. For the shape + intensity models
[6], the gray levels should be sampled in the exact subregion
of the mouth image containing the lips and around the in-
ner and outer lip contours. It should also exclude the skin
areas. Accordingly, the method reported in [6] requires the
tracking of the lip contour in each frame which increases the
processing time of visual speech recognition. For the method
reported in [9], a large amount of local processing is needed,
by the use of a bank of linear shift invariant filters with un-
blocked selection whose response filters are ICA or PCA ker-
nels of very small size (12× 12 pixels). The obtained WRR is
higher than those reported in [7] where similar features are
used, namely the gray levels of the region of interest (ROI)
comprising themouth after some simple preprocessing steps.
The preprocessing in [7] was vertical symmetry enforcement
of the mouth image by averaging, followed by low pass filter-
ing, subsampling, and thresholding.

Another measure of the performance assessment is given

Table 6: Confusion matrix for visual word recognition by the dy-
namic network of SVMs with delta features.

Digit recognized

Digit
presented

One Two Three Four

One 95.83% 0.00% 0.00% 4.17%

Two 0.00% 95.83% 4.17% 0.00%

Three 16.66% 12.5% 70.83% 0.00%

Four 0.00% 0.00% 0.00% 100%

Table 7: Average human confusion matrix [7].

Digit recognized

One Two Three Four

One 89.36% 0.46% 8.33% 1.85%
Digit

presented
Two 1.39% 98.61% 0.00% 0.00%

Three 9.25% 3.24% 85.64% 1.87%

Four 4.17% 0.46% 1.85% 93.52%

by comparing the confusion matrix of the proposed system
with the average human confusion matrix provided in [7].

The accuracy of the viseme segmentation that results
from the best Viterbi lattices was computed using, as refer-
ence, the manually performed segmentation of frames into
the viseme classes (Table 3) as a percentage of the correctly
classified frames. We obtained an accuracy of 89.33%, which
is just 1.27% lower than the WRR.

The results obtained demonstrate that the SVM-based
dynamic network is a very promising alternative to the exist-
ing methods for visual speech recognition. An improvement
of the WRR is expected, when the training of the transition
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Table 8: 95% confidence interval for the WRR of the proposed system compared to that of other techniques.

Method

SVM-based
dynamic network
without delta
features

SVM-based
dynamic network
with delta
features

AAM and HMM
shape + intensity
inner + outer lip contour
without delta features [6]

AAM and HMM
shape + intensity
inner + outer lip contour
with delta features [6]

HMMs [7]
without delta
features

HMMs [7]
with delta
features

Confidence
interval [%]

[66.6,83.5] [83.1,94.7] [79.4,92.7] [83.1,94.7] [49.9,69.2] [82.3,94.5]

Method Global PCA
& HMMs [9]

Global ICA
& HMMs [9]

blocked filter bank
PCA/ICA (local) [9]

unblocked filter bank
PCA/ICA (local) [9]

Diffusion network shape +
intensity [8]

Confidence
interval [%]

[70.0,86.1] [64.4,81.7] [76.9,91.1] [84.4,95.7] [84.4,95.7]

probabilities is implemented and the trained transition prob-
abilities are incorporated in the Viterbi decoding lattices.

To assess the statistical significance of the rates ob-
served, we model the ensemble {test patterns, recognition
algorithm} as a source of binary events, 1 for correct recog-
nition and 0 for an error, with a probability p of drawing a
1 and (1 − p) of drawing a 0. These events can be described
by Bernoulli trials. We denote by p̂ the estimate of p. The ex-
act ε confidence interval of p is the segment between the two
roots of the quadratic equation [31]

(
p − p̂

)2 = z2(1+ε)/2
K

p(1− p), (10)

where zu is the u percentile of the standard Gaussian distri-
bution having zero mean and unit variance, and K = 96 is
the total number of tests conducted. We computed the 95%
confidence intervals (ε = 0.95) for the WRR of the pro-
posed approach and also for the WRRs reported in literature
[6, 7, 8, 9], as summarized in Table 8.

5.3. Estimation of the SVM structure complexity

The complexity of the SVM structure can be estimated by
the number of SVMs needed for the classification of each
word as a function of the number of frames T in the cur-
rent word pronunciation. For the experiments reported here,
if we take into account the total number of symbolic word
models, that is, 16 and the number of possible states as a
function of the frame index, we get: 6 SVMs for the clas-
sification of the first frame, 7 for the second one, 8 for
the one before the last, 6 for the last one, and 9 SVMs
for all remaining ones. This leads to a total of 9 × T − 9
SVMs. As we can see, the number of SVM outputs to be
estimated at each time instant is not large. Therefore, the
recognition could be done in real-time, since the number
of frames per word is small (on the order of 10) in gen-
eral. Of course, when scaling the system to a large vocabulary
continuous speech recognition (LVCSR) application, a sig-
nificantly larger number of context dependent viseme SVMs
will be required, thus affecting both training and recognition
complexity.

6. CONCLUSIONS

In this paper, we proposed a new method for a visual speech
recognition task. We employed SVM classifiers and inte-
grated them into a Viterbi decoding lattice. Each SVMoutput
was converted to a posterior probability, and then the SVMs
with probabilistic outputs were integrated into Viterbi lat-
tices as nodes. We tested the proposed method on a small
visual speech recognition task, namely the recognition of
the first four digits in English. The features used were the
simplest possible, that is, the raw gray level values of the
mouth image and their temporal derivatives. Under these cir-
cumstances, we obtained a word recognition rate that com-
petes with that of the state of the art methods. Accord-
ingly, SVMs are found to be promising classifiers for visual
speech recognition tasks. The existing relationship between
the phonetic and visemic models can also lead to an easy
integration of the visual speech recognizer with its audio
counterpart. In our future research, we will try to improve
the performance of the visual speech recognizer by training
the state transition probabilities of the Viterbi decoding lat-
tice. Another topic of interest in our future research would
be the integration of this type of visual recognizer with an
SVM-based audio recognizer to perform audio-visual speech
recognition.
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