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Abstract

Most genomic variants associated with phenotypic traits or disease do not fall within gene coding regions, but in
regulatory regions, rendering their interpretation difficult. We collected public data on epigenetic marks and
transcription factor binding in human cell types and used it to construct an intuitive summary of regulatory regions
in the human genome. We verified it against independent assays for sensitivity. The Ensembl Regulatory Build will
be progressively enriched when more data is made available. It is freely available on the Ensembl browser, from the
Ensembl Regulation MySQL database server and in a dedicated track hub.
Background
Despite our increasing knowledge of genomes and their
variants, the downstream effects of sequence variants
and the affected cellular mechanisms are still poorly
understood. In particular, a large number of the variants
identified in genome-wide association studies are located
in non-protein coding regions [1], and are presumed to
affect gene expression regulation. Similarly, it has been
proposed that a significant fraction of the potential for
phenotypic adaptation lies within the regulatory ele-
ments of the genome [2,3].
There is still much to learn about the dynamic regu-

lation of gene expression [3,4]. Cis-regulatory elements
are short segments of the genome that either recruit
transcription factors (TFs) or affect the properties of
the messenger RNA as it is being transcribed [5]. Gene
expression is also highly tied to transmissible epigen-
etic marks [6-8]. The DNA molecule and the histone
proteins it is wrapped around can be modified with
various additions, such as methyl, acetyl or phosphate
groups. These alterations have been shown to provide
crucial markers of developmental diseases [9] and
cancer [10]. Finally, the three-dimensional conform-
ation of the DNA molecule also affects its activity. In
particular, it determines which regions are accessible to
outside molecules [11], and which regions are in physical
proximity to each other despite being distant in the gen-
omic sequence [12].
Various experimental techniques help us identify the

epigenetic markers of the genome and the putative
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underlying cis-regulatory elements. Chromatin immuno-
precipitation (ChIP) coupled with either genome-wide
tiling microarrays (ChIP-chip [13]) or direct high-
throughput sequencing (ChIP-Seq [14-16]) make it pos-
sible to perform genome-wide and protein-specific mea-
surements of DNA binding, as well as detect a range of
histone modifications. Other methodologies have been
developed to identify modified cytosine bases, ranging
from array-based approaches such as MeDIP-chip [17],
through to more exhaustive approaches such as whole-
genome bisulphite sequencing [18]. Regions of open
chromatin can be mapped using formaldehyde-assisted
isolation of regulatory elements (FAIRE) [19], nuclease
digestion by DNase1 coupled with high-throughput se-
quencing (DNase-seq) [20] or assaying transposase-
accessible chromatin (ATAC-seq) [21].
Significant efforts to provide genome-wide maps of his-

tone modifications have already proved successful in eluci-
dating some of the basic patterns associated with promoter
and enhancer regions [14,15,22,23]. In addition to an explo-
sion of small and medium-scale studies producing this type
of data, large-scale projects like ENCODE [24,25], Road-
map Epigenomics [26], and Blueprint [27] are releasing
large amounts of valuable data into the public domain.
With the promise of even higher sequencing throughput,
genome-wide epigenomic datasets will only become more
abundant.
One important challenge is to bring together and

standardize these studies, in order to integrate all the
information into a coordinated regulatory annotation
of the genome. To address this challenge we developed
the Ensembl Regulatory Build, within the Ensembl
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project [28], to provide a high-level overview of the
regulatory activity of the genome. Through this process,
we annotate putative regulatory regions from public ex-
perimental data, and associate these regions with regula-
tory function.
Figure 1 The Regulatory Build process. In a first step we run segmentat
base pair, the genome is assigned a state, identified by an arbitrary numbe
non-unique functional label, represented by its color on the browser, as show
of cell types sharing that state at that position, as shown in the center of the
regions of interest, which are the foundation of the regulatory build. These re
factor binding site peaks and unannotated DNase1 hypersensitivity sites.
Results
We defined genomic regions of interest characterised by
biochemical activity through a four-step Regulatory
Build process that combined all available data, sum-
marised in Figure 1.
ion software across multiple cell types. For each cell type and at each
r assigned by the segmentation software. We assign to each state a
n at the top. For each state at each base pair, we compute the number
figure. Having selected relevant states and set some thresholds, we define
gions are then complemented with unannotated ChIP-Seq transcription
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We first reduced all the experimental data for each cell
type into a cell type-specific annotation of the genome.
This can be done with segmentation tools, such as Seg-
way [29] or ChromHMM [30]. In a first training pass,
these algorithms take as input a set of genome-wide as-
says, and detect recurring signal patterns (referred to as
'states'). In a segmentation pass, for each cell type at
each base pair of the genome, they determine the most
likely underlying state, based on local experimental
measurements.
By overlapping these segmentation states, produced by

unsupervised machine learning, with known genomic
features, we assigned them functional labels, such as ‘pre-
dicted promoter with TSS’ (where TSS is transcription
Figure 2 Experimental marks associated with different labels. This hea
each state. The states were defined by Segway, and the labels assigned by
assignment relies mainly on overlaps with known features, the states with
exception are the promoter flanking states, which cluster either with prom
to represent a mixture of the other two.
start site), ‘predicted transcribed region’, ‘predicted pro-
moter flank’, ‘predicted enhancer’, ‘CTCF enriched’, ‘pre-
dicted repressed’, ‘predicted low activity’, ‘predicted
heterochromatin’. To ensure the broadest applicability of
our approach, we minimized the use of known epigenetic
marks when assigning labels, rather using prior annota-
tions. We nonetheless verified after the fact that states
with similar labels display similar histone marks, as shown
in Figure 2.
We then defined consensus regions of interest, re-

ferred to as ‘MultiCell’ regulatory features. To do so, for
each of the labels ‘predicted promoter with TSS’, ‘pre-
dicted promoter flank’, ‘predicted enhancer’ and ‘CTCF
enriched’, we computed a summary function, which
tmap represents the experimental marks and the label associated with
the Ensembl Regulatory Build a posteriori. Although the label
the same labels co-cluster based on their experimental marks. The main
oters or with distal cis-regulatory elements. In effect, these states tend
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represents at any given base pair how many cell types
have one of the corresponding segmentation states. We
then computed contiguous regions where this summary
function is above a threshold, set to optimally fit the glo-
bal TF binding signal (see Materials and methods sec-
tion). In addition to these regions, we added regions
where TF binding or open chromatin were reported, yet
were not covered by the previous annotations.
Finally, the MultiCell features defined above were an-

notated with cell type-specific activity levels. This activ-
ity level was obtained by querying, for each feature, the
presence or absence of cell type-specific evidence associ-
ated with that feature’s label.
We examined the properties of the consensus annota-

tion, as shown in Table 1. The overall coverage of the
genome is 12.9%, which is commensurate with previous
estimates [25]. The promoters, including attached flank-
ing regions, are by far the largest elements (mean length
4.4 kb), whereas distal enhancers and CTCF binding
sites are shorter (respectively 547 and 622 bp on aver-
age), but far more numerous (respectively 127,786 and
117,711 elements). Finally, proximal enhancers, defined
as flanking regions detached from any promoter, cover
the greatest number of bases (160 Mbp in total).
To corroborate our annotation, we compared it with

other reference annotations. Of the 217,516 strict TSS
calls found with CAGE tags by the FANTOM 5 consor-
tium [31], 88.9% were recovered. Of the 882 validated
human VISTA enhancers [32], 92.4% were recalled in
our build. Finally, 80.3% of the 38,533 robust enhancers
called by FANTOM 5 [33] were covered by one of our
annotations.

Discussion
By design, this annotation of the genome is focused on
the pragmatic need to define epigenomic markers across
samples. Its regulatory features are phenomenological,
that is, defined by biochemical signal alone [34]. If only
because of the resolution of epigenetic marks (generally
at nucleosome scale), they are probably a broad extension
of the biochemically active bases in the genome. At the
Table 1 Summary details for the regulatory build in Ensembl

Type Number Average length (bp) Sta

Promoters 16,488 4,369 2,74

Proximal enhancers 85,526 1,876 1,74

Distal enhancers 127,786 547 482

CTCF binding 117,711 622 1,20

Unannotated transcription
factor binding site

27,523 528 628

Unannotated open chromatin 71,568 502 346

Total 446,602
same time, we focused exclusively on the marks associated
with transcriptional regulation. This compromise led us to
annotating 12.9% of the human genome.
A key parameter that can distort the segmentation is

the number of states used by the machine-learning algo-
rithm. Instead of trying to optimize the number of
states, we circumvented this issue by focusing on the
biologically meaningful labels that are ultimately pro-
vided to the user. There are only eight such labels, and
Figure 2 illustrates that nearly all labels have more than
one underlying state. This suggests that the granularity
of the segmentation was sufficient for our purpose, that
is, distinguishing these eight labels.
The build process reduces inherently noisy and com-

plex biological data into a tidy and easy to understand
summary. Consequently, subtle patterns can be masked
from the user. To mitigate this loss of information, all
the data used in the Regulatory Build, namely the experi-
mental signal and the segmentations, are available through
the Ensembl Browser.
The Ensembl Regulatory Build is by no means a final

product, rather a continuing process that will be extended
and enriched in the coming years. In future Ensembl re-
leases, we will be importing more and more datasets, cov-
ering more cell types, as they are made available. This will
provide greater sensitivity to detect transient elements
that are only active in a few cell types. Also, we are start-
ing to receive normal cell and tissue data, as opposed to
cell lines. Coupled with knowledge of cell differentiation
pathways, these data will help illuminate the key epige-
nomic marks associated with cell fate.
We will also be refining our annotation of regulatory

features. The architecture of the Ensembl Regulatory
Build process will allow us to take full advantage of ongoing
research in machine learning, and genome segmentation in
particular. We hope to extend the vocabulary used to de-
scribe the elements and the activity levels. For example, we
wish to distinguish poised, repressed and closed elements,
instead of applying a binary active/inactive notation.
The remaining open question is how to confidently as-

sign gene targets to cis-regulatory elements. A number
release 76

ndard deviation (bp) Total length (Mbp) Genome coverage (%)

6 72 2.3%

1 160 5.2%

70 2.3%

6 73 2.4%

15 0.5%

36 1.2%

399 12.9%
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of experimental assays are being investigated, such as
statistical correlation [35], chromatin conformation
assays [36-38] or expression quantitative trait loci
studies [39,40]. The Ensembl framework, which cur-
rently holds a consistent relation database of gene
transcripts [41], variants [42], and now regulatory ele-
ments will be a natural home for this key component
of cell biology.

Conclusions
The Ensembl Regulatory Build aims to provide the
most up-to-date and comprehensive survey of the
regulatory elements of the genome, in the same way
the Ensembl Genebuild maintains a reliable summary
of known gene sequences. Centralizing datasets from
various large-scale projects, we process them with a
uniform pipeline, then compute an exhaustive and ro-
bust annotation of the regulatory elements of the gen-
ome. Although this annotation will likely evolve in the
years to come, the regions are already assigned stable
identifiers, providing a solid framework for ongoing
epigenomic research.
Materials and methods
Source data
We chose to run our segmentation (see below) on a pre-
selected set of ChIP-Seq assays (CTCF, H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K27me3,
H3K36me3, H4K20me1) along with DNaseI hypersensi-
tivity and a control ChIP-Seq experiment. We therefore
downloaded from ENCODE 2 and Epigenomics Road-
map all the raw read datasets produced by ChIP-Seq and
DNaseI hypersensitivity experiments on the 18 cell types
that had all of the above required assays: A549, DND-41,
GM12878, H1-hESC, HeLa-S3, HepG2, HMEC, HSMM,
HSMMtube, HUVEC, IMR90, K562, Monocytes-CD14+,
NH-A, NHDF-AD, NHEK, NHLF, Osteoblast. Including
replicates and control samples, this amounted to 740 data-
sets, all referenced in the Ensembl homo_sapiens_func-
gen_76_38 MySQL database.

Uniform processing of sequencing data
Most studies using epigenomic data present their own
analysis and results, which often differ from each other
in small, but relevant details. In the current absence of
standardized practices, and to make all data as homoge-
neous as possible, raw sequencing reads from these exper-
iments were processed with a uniform in-house analysis
pipeline.
For each ChIP-Seq experiment, the raw sequencing

reads were mapped to the GRCh38 human genome assem-
bly using bwa samse [43] with default parameters.
We called punctate peaks using SWEMBL [44]. We
filtered SWEMBL peaks on their score, using a fixed
permissive threshold (-f 150 -R 0.0005 -d 150), then
retained the highest scoring peaks, as defined by the EN-
CODE Irreproducibility Discovery Rate (IDR) process
[45] with an IDR threshold of 0.01 for datasets with
more than 100,000, and 0.05 for smaller datasets, as rec-
ommended by the IDR developers. To account for large
differences in the number of reads between replicates,
the number of retained peaks was scaled linearly to half
the ratio between the largest and smallest estimated
numbers of peaks.
To detect broader regions, such as H3K36me3 and

H3K27me3 enrichment, we used CCAT [46]. We filtered
out peaks falling within known problematic regions, de-
fined on GRCh38 using the same process as the Duke
ENCODE excluded regions [47].

Genome segmentation
The coverage signal was normalized within each dataset
using align2rawsignal [48], with options (-w = 180 -n = 5).
The segmentation was run across all the resulting datasets
using Segway, with options (–num-labels = 25 –num-
instances = 10 –resolution = 200 –prior-strength =
1000 –ruler-scale = 200 -m 1,2,3,4,5,6,7,8,9,10,11,12).
For performance reasons, training was only computed
on the ENCODE pilot regions. The segmentations
were masked across the same problematic regions as
the peaks.

Computing transcription factor binding densities
For each TF t, we computed a summary function pt
across the genome representing the number of overlap-
ping peak calls at that position divided by the number of
assays. This function represents an approximate bino-
mial estimator for the existence of a peak across the ob-
served experiments.
We then computed an overall TF binding probability

function assuming approximate independence between
the binding probabilities of the different transcription
factors:

pTF ¼ 1−
Y
t∈TF

1−ptð Þ

Assigning labels to segmentation states
For each segmentation state s we constructed a sum-
mary function fs representing for each base pair the
number of cell types that are in state s at that position.
We computed the enrichment of contiguous regions
where fs was strictly positive for TF binding, TSSs and
exonic regions. We also computed the Pearson correlation
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of fs to the CTCF density. The state s was then assigned a
label using the decision tree represented in Figure 3.

Defining regions of interest through cutoff
optimization
We assume that the labels we are interested in, namely
cis-regulatory elements, promoters and insulators, are
Does the state 
summary have a 

Pearson correlation 
greater than 0.25 with 

the average CTCF 
track?

CTCF

Are the enrichments in 
exonic and TF binding 

regions both lower 
than 1?

Hetero-
chromatin

A
e

Is the enrichment in 
TS sites greater than 

10?

TSS

e
t

Is the enrichment in 
TS sites greater than 

2?

YES

YES

YES

YES

NO

NO

NO

Figure 3 Decision tree assigning labels to unsupervised segmentation
correlated to TF binding. Given a cutoff k we computed
the enrichment for TF binding signal pTF of regions where
fs was strictly greater than k. If we found a value of k such
that this enrichment was greater than 2, then the segmen-
tation state was retained for the next step.
For each label l, we then set a cutoff kl that maxi-

mized the F-score Fl,k where Sl is the set of states
Do the state 
emissions contain 
known repression 

marks, above 50% of 
the maximum 

observed value?

Repressed

re the enrichments in 
xonic and TF binding 
regions both lower 

than 2?

Low activity

Is the enrichment in 
xonic regions greater 

han the enrichment in 
TF binding?

Transcribed 
region

Enhancer

NO

YES

YES

YES

NO

NO

NO

states.
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which were assigned that label and passed the above
test, and:

f l ¼
X
s∈Sl

f s

δl;k ¼
(

1 if f l > k
0 otherwise

Se ¼

Z
pTF :δl;kZ
pTF

Sp ¼

Z
pTF :δl;kZ
δl;k

Fl;k ¼ 2
Se:Sp
Seþ Sp

Having computed k, we computed the contiguous re-
gions where fl was greater than kl.
For simplicity, enhancer elements that overlapped pro-

moter flanks were merged into the latter. Promoter-
flanking regions that overlapped promoters were merged
into the flanks of the promoter element. Because of their
structural significance, CTCF binding sites were not
merged into overlapping elements.
If any contiguous regions where pTF was greater than

0 did not overlap one of the segmentation-based annota-
tions defined above, it was added into the Build, marked
as ‘TF binding site’.
Finally, we computed the overlap of all observed open

chromatin regions. If one of those did not overlap any of
the annotations defined above, it was added into the
Build, labeled as ‘Open Chromatin’.

Determining cell-specific activity
We then annotated the activity of these features in each
cell type with a binary active/inactive label. For each re-
gion defined by segmentation data, we searched for an
overlap in that cell type’s segmentation with a state that
had the same label. For each region defined from TF
binding sites, we searched for an overlap with a TF bind-
ing site detected on that cell type. Finally, for each re-
gion defined from open chromatin peaks, we searched
for overlap with an open chromatin peak observed in
that cell type.

Comparisons
The VISTA enhancers were downloaded from the
Ensembl database. The FANTOM5 enhancers and pro-
moters were downloaded from the FANTOM5 servers
[49]. These three sets of regions were remapped from
GRCh37 to GRCh38 using liftOver [50]. They were then
compared with the Ensembl Regulatory Build using bed-
tools [51].

Software tools
The Ensembl eHive framework [52] was used to maximize
the efficient use of available compute resources. All the
statistical calculations were performed with the Wiggle-
Tools library [53].

Availability and requirements
All Ensembl data and source code are freely available
and may be downloaded in their entirety from the
Ensembl website [54]. Additionally, the data are available
through programmatic Perl, REST interfaces and through
the web based Ensembl Biomart. Finally, a track hub [55]
contains segmentations, intermediary summary functions
and annotations that can be downloaded in bulk. The
code used to compute the build is available in script form
within the Ensembl Funcgen codebase [56], freely avail-
able under an Apache 2 license.
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