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Abstract
Background: Telomeres are DNA repeat sequences necessary for DNA replication which
shorten at cell division at a rate directly related to levels of oxidative stress. Critical telomere
shortening predisposes to cell senescence and to epithelial malignancies. Type 2 diabetes is
characterised by increased oxidative DNA damage, telomere attrition, and an increased risk of
colonic malignancy. We hypothesised that the colonic mucosa in Type 2 diabetes would be
characterised by increased DNA damage and telomere shortening.

Methods: We examined telomere length (by flow fluorescent in situ hybridization) and oxidative
DNA damage (flow cytometry of 8 – oxoguanosine) in the colonic mucosal cells of subjects with
type 2 diabetes (n = 10; mean age 62.2 years, mean HbA1c 6.9%) and 22 matched control subjects.
No colonic pathology was apparent in these subjects at routine gastrointestinal investigations.

Results: Mean colonic epithelial telomere length in the diabetes group was not significantly
different from controls (10.6 [3.6] vs. 12.1 [3.4] Molecular Equivalent of Soluble Fluorochrome
Units [MESF]; P = 0.5). Levels of oxidative DNA damage were similar in both T2DM and control
groups (2.6 [0.6] vs. 2.5 [0.6] Mean Fluorescent Intensity [MFI]; P = 0.7). There was no significant
relationship between oxidative DNA damage and telomere length in either group (both p > 0.1).

Conclusion: Colonic epithelium in Type 2 diabetes does not differ significantly from control
colonic epithelium in oxidative DNA damage or telomere length. There is no evidence in this study
for increased oxidative DNA damage or significant telomere attrition in colonic mucosa as a
carcinogenic mechanism.

Background
Type 2 diabetes mellitus (T2DM) is associated with a 40–
60% increased risk of colorectal carcinoma [1,2]. The

mechanisms underlying this association remain unclear.
We have suggested recently [3] that one unexplored mech-
anism for this association is increased oxidative DNA
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damage and telomere attrition. Telomere-length abnor-
malities in epithelial cells occur very early in the develop-
ment of many epithelial-derived tumours [4], including
the transition from adenoma to carcinoma in colorectal
epithelial cells [4,5].

Telomeres are tandem repeats of the hexanucleotide DNA
sequence, TTAGGG at the end of eukaryotic chromo-
somes. Telomeres in somatic human cells shorten with
every cell division and once shortened to a critical length
become dysfunctional. Dysfunctional telomeres activate
p53 to initiate cellular senescence or apoptosis to suppress
tumorigenesis [6]. However, in the absence of p53, cells
can escape the senescence checkpoint and continue to
shorten their telomeres, resulting in entry into a phase of
chromosomal instability characterized by chromosomal
fusions and non-reciprocal translocations (NRTs) [7,8]
commonly found in human epithelial carcinomas [9]).
Loss of p53 function characterizes most human carcino-
mas and p53 mutations occur in 40–60% of colorectal
adenocarcinomas [10,11].

Rates of telomere shortening, and therefore telomere
length, are highly dependent on oxidatively-induced
strand breaks in telomeric DNA and on cellular oxidant
balance [12-15]. Telomeric DNA is particularly prone to
oxidative damage at the GGG sequence, and it is probable
that oxidatively induced single-and double strand DNA
breaks in people with type 2 diabetes [16,17] would trans-
late into accelerated telomere shortening and telomere
dysfunction. We and others have shown that monocyte
DNA from subjects with T2DM is characterised by
increased susceptibility to oxidative damage and telomere
shortening [16-18]. However we do not know if similar
changes occur in tissues at risk of epithelial cancer devel-
opment in T2DM. We hypothesized that patients with
T2DM would demonstrate shorter telomeres in colonic
epithelium compared with control subjects and this

would be directly related to markers of oxidative DNA
damage.

Methods
All subjects gave written informed consent to participate
in this study, which was approved by the local Research
Ethics Committee. The patients were recruited from sub-
jects attending our Gastroenterology Department for non
urgent diagnostic endoscopy for clinical reasons. Up to six
additional biopsies from the sigmoid colon were obtained
for the study.

Subjects and controls
Subjects were included if they were Caucasian non –
smokers in an intentionally narrow age range of 50 – 70
years to limit confounding by age and other variables.
Mean age in control group was 61.5 years and 62.2 among
patients with T2DM. Male sex dominated with 15 in con-
trol group and 8 among patients with diabetes (Table 1).
We excluded patients with abnormal lower GI endoscopy
or patients with a previous history of inflammatory bowel
disease, colon cancer or polyps. Subjects self medicating
with any dietary vitamin or fish oil supplements were
excluded. The T2DM patients were treated with met-
formin alone (n = 3), sulfonylureas alone (n = 1), met-
formin and sulfonylureas in combination (n = 3) or
subcutaneous insulin (n = 2). Three of the 10 T2DM
patients had background diabetic retinopathy (n = 2),
nephropathy with macroproteinuria (n = 1) or peripheral
neuropathy (n = 1). All subjects had a complete large
bowel examination either by a colonoscopy or a flexible
sigmoidoscopy and barium enema. The commonest indi-
cations for the evaluation of the large bowel were bleeding
per rectum (n = 12 in control and n = 5 in type 2 diabetics)
and change in bowel habit (n = 7 in control, n = 2 in dia-
betic subjects). Other indications for the test were family
history of colorectal cancer (n = 3 in controls), anaemia (n

Table 1: Clinical features of type 2 diabetes and control groups

Control subjects Type 2 diabetes P

N 22 10
Age (years) 61.5 ± 5.5 62.2 ± 7.5 P = 0.76

M:F 15:7 8:2
Diabetes duration (years) - 6.5 (7.75)

BMI (kg/m2) 26.6 ± 4.5 28.1 ± 6.9 P = 0.46
HbA1c (%) - 6.9 ± 0.7

Systolic blood pressure(mmHg) 145.8 ± 21.8 144.7 ± 16.9 P = 0.88
Diastolic blood pressure(mmHg) 89.6 ± 11.3 80.1 ± 9.3 P = 0.03

Statin use (n) 5 9 P = 0.0005
ACE inhibitors (n) 2 4 P = 0.05

Aspirin (n) 3 6 P = 0.01

Data are means ± SD or median (interquartile range).
BMI – body Mass Index
HbA1c – glycosylated hemoglobin
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= 2 in diabetics) and colorectal cancer screening (n = 1 in
diabetics).

Isolation of Cells
Six biopsies obtained from the sigmoid colon were imme-
diately placed in Hanks Balanced Salt Solution (HBSS)
(Sigma, UK) and transported on ice to the laboratory.
Upon arrival (<60 min) biopsies were minced using a sur-
gical scalpel and incubated with 3 mg collagenase (Roche
Applied Science, UK) and 6 mg proteinase K (Sigma, UK)
in 3 ml HBSS at 37°C for 1 – 1.5 h. Samples were resus-
pended every 15 min and once digested made up to 15 ml
with HBSS. The suspension was then passed through a 70
um cell strainer (BD Falcon, UK) and centrifuged for 5
min 1400 rpm. The resulting pellet was resuspended in 1
ml cell freezing medium (Sigma UK) and divided equally
between 2 cryovials. Cells were stored in liquid nitrogen
prior to analysis.

Telomere length
Telomere length of isolated mucosal cells was measured
using a Dako Telomere PNA (Peptide Nucleic Acid) Kit/
FITC (fluorescein isothiocyanate) for flow cytometry
(Dako Cytometry, Ely, UK), as we have previously
described [18], in combination with an anti-cytokeratin
(CAM 5.2) (BD Biosciences, San Jose, CA) epithelial
marker.

Thawed, cryopreserved cells were aliquoted into 2 tubes
and resuspended in either 100 ul of hybridisation buffer
containing the FITC/PNA probe or 100 ul of hybridisation
buffer without probe. Both aliquots were then heated in a
water bath at 82°C for 10 min, before being left in the
dark at room temperature overnight to hybridise. After
washing twice with wash buffer, 10 min at 40°C, 20 ul of
PE (phycoerythrin) – labeled anti – CK (cytokeratin) was
added to identify the epithelial population. Cells were
then incubated at room temperature in the dark for 30
min before washing with PBS. Finally 125 ul of propid-
ium iodide (PI) was added to each tube and incubated in
the dark at 4°C for a minimum of 2 h prior to analysis.
The mean telomere fluorescence of CK positive single cells
was recorded by flow cytometry (Cytomics FC500MPL,
Beckman Coulter) and calculated as the difference
between the mean fluorescence of cells hybridised in the
presence of the FITC-PNA probe and those hybridised in
buffer. Telomere fluorescence data were then converted
into molecular equivalent of soluble fluorochrome units
(MESF) using Quantum premixed low level MESF beads
(Bang Laboratories, Inc. Fishers, IN) which were run with
each experiment.

Oxidative DNA damage
Oxidative DNA damage in epithelial cells was assessed
using a Biotrin OxyDNA test kit (Biotrin, Dublin, Ireland)

in combination with the anti-CK epithelial marker.
Immediately after cryopreserved cells were thawed and
washed in phosphate buffered saline (PBS) they were
fixed and permeablised using a Fix and Perm kit (Caltag
Labs, Burlingame, CA). Oxidative DNA damage was deter-
mined using a FITC-labeled 8-oxoguanine probe as
directed by manufacturer, as we have used previously
[18]. However 30 min from the end of incubation with
the FITC probe 20 ul of PE – labeled anti – cytokeratin
(CAM 5.2) was added to label the epithelial population.
Cells were then washed twice in PBSAA (PBS + 0.1% BSA
+ 0.02% azide) and the mean fluorescent intensity (MFI)
of CK positive cells recorded by flow cytometry (Cytomics
FC500MPL, Beckman Coulter).

Data analysis and power calculations
Data are expressed as mean ± SD or as median (interquar-
tile range) as appropriate. Differences between groups
were analyzed by unpaired t test or Mann-Whitney U tests
as appropriate and significance taken as P < 0.05. Differ-
ences between distributions of variables between groups
were analyzed by Fishers exact text. No adequate previous
data were available to allow sample size calculations.
However, a total sample size of at least 40 between 2
groups would give 80% power at the 5% level to detect a
one standard deviation difference between group means,
which appears to be a biologically relevant difference
[19,20].

Results
Clinical features
Clinical details of the two groups are shown (Table 1). The
T2DM subjects were in good glycemic control (mean
HbA1c 6.9%) after a median diabetes duration of 6.5
years.

Telomere length by flow-fluorescent in situ hybridization 
and oxidative DNA damage
In the T2DM group, colonic epithelial cell (CK+) MESF
was not significantly different than in control subjects
(10.6 [3.6] vs. 12.1 [3.4]; p = 0.5). Similarly the MESF of
total mucosal cell populations in the diabetic subjects
were non significantly lower than in control subjects (8.2
[2.8] vs. 9.2 [2.8]; p = 0.6). Oxidative DNA damage (8-
oxoguanine levels) in the colonic epithelial cells (CK+)
was similar in both the diabetic and control subjects (2.6
[0.6] vs. 2.5 [0.6] MFI) (Table 2).

Determinants of telomere length
There was no significant relationship between epithelial
cell oxidative DNA damage and telomere length in either
T2DM (r = +0.24, p = 0.5) or control groups (r = 0.32, p =
0.1). The relationship between age or BMI (Body Mass
Index) and telomere length was not significant in either
group.
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Discussion
The main findings in this study are that colonic epithelial
cell telomere length and oxidative DNA damage were not
significantly different in T2DM compared to controls, and
that there was no significant relationship between oxida-
tive DNA damage and telomere length in either group.

Colorectal cancer is characterized by sequential morpho-
logical changes of the colonic mucosa spanning the ade-
noma-carcinoma transition coupled with increasing
genetic alterations. Telomere shortening, characterizes the
adenoma-carcinoma transition, is apparent in the earliest
detectable epithelial carcinoma stage [4,5], and in pre
malignant states for colonic carcinomas [19,20].

Oxidative damage to DNA is widely thought to be a signif-
icant contributor to the age related development of major
cancer [2,19,21]. We have recently shown an inverse asso-
ciation of telomere shortening and oxidative DNA dam-
age [18] in circulating mononuclear cells in T2DM that
could be due to increased oxidative DNA damage to
monocyte precursors during cell division [18]. A number
of other studies have also shown that systemic oxidative
stress assessed by various biomarkers [23,24] is associated
with shorter telomere lengths in peripheral blood leuko-
cytes (PBL). These studies have used PBL telomere length
as a systemic measure supported by the observation that
telomere length is to a large extent conserved among dif-
ferent tissues. Telomere length could offer a link between
oxidative stress and the predisposition to epithelial can-
cers in T2DM [3].

This is the first study measuring the telomere length and
oxidative DNA damage in the colonic epithelium in type
2 diabetics, but we found no significant differences. The
strength of this study is that the T2DM group was selected
to limit confounding by variables that influence the risk of
colorectal cancer such as race, age, smoking, polyps and
inflammatory bowel disease. Moreover, the whole of the
large bowel was imaged. This ensured that the measure-
ments were truly from normal colonic mucosa. The main
limitation of the study was small sample size in the dia-
betic patients. However, post hoc analysis suggests that

this small study had 80% power to detect a difference of
2.66 MESF (0.7 SD) in the mean telomere length differ-
ence between the controls and T2DM at the 5% level.

Another possible confounding is the significantly higher
use of aspirin, ACE and statins in the T2DM group. Avail-
able data suggest a neutral or protective effect of statins on
telomere length or damage in vitro [25,26]. Aspirin has
anti-inflammatory properties by inhibiting cyclooxygen-
ase enzymes and substantially lower the risk of colon can-
cer [27]. ACE inhibitors have free radical scavenging
properties and reduce oxidative stress [28,29]. It should
also be stressed that the T2DM groups were in good glyc-
emic control and glycemic control is an important risk fac-
tor for colorectal cancer [30]. The median duration of
diabetes was 6.5 years. This may be another confounding
factor as perhaps a longer duration of diabetes may be
needed to demonstrate a toxic effect on the colonic epi-
thelium.

Conclusion
The present study therefore, found no data to support a
substantially increased oxidative DNA damage or tel-
omere attrition in the colonic mucosa in T2DM. This is an
important area for investigation in view of growing inter-
est in increased epithelial malignancy rates in T2DM.
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