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Abstract. We study how statistical complexity depends on the system size and how the complexity of the
whole system relates to the complexity of its subsystems. We study this size dependence for two well-known
complexity measures, the excess entropy of Grassberger and the neural complexity introduced by Tononi,
Sporns and Edelman. We compare these results to properties of complexity measures that one might wish
to impose when seeking an axiomatic characterization. It turns out that those two measures do not satisfy
all those requirements, but a renormalized version of the TSE-complexity behaves reasonably well.

PACS. 89.75.-k Complex systems – 89.70.+c Information theory and communication theory

1 Introduction

One would expect that the topic of measuring complexity
is a central one in the field of complex systems. But this
is not the case. Instead, the notion of complexity is very
often used in an informal way with the hope that the read-
ers will understand what the authors mean. Even though
this is very often the case we believe that more care should
be devoted to the use of the notion of complexity, at least
in the field of complex systems itself and that a further
development of complexity measures would help this a lot.

The quest for complexity measures has already pro-
duced sound results in its long history. On a general level
one can distinguish between the complexity of describing
and the complexity of interpreting [1]. The first refers to
the problem of describing a system while the latter is re-
lated to the difficulty of the task to construct the system
given the description. One can consider these two aspects
as the encoding and the decoding aspect of complexity.
In the following we will only consider descriptional com-
plexity. Moreover, we will not consider the complexity of
a single object but the statistical complexity of an en-
semble of objects, which allows us to exclude all features
from the description, that are randomly distributed in the
ensemble. In the case of a single object, the algorithmic
complexity is the appropriate setting and the entropy it-
self is the appropriate statistical measure [2]. In case of
the ensemble, we are not interested in every detail of the
objects in our ensemble, but only in its structures, i.e. its
non-random part. The corresponding measures are often
called statistical or structural complexity [3,4].

Following the line of research started in [5], in this
paper we study two measures of statistical complexity,

a e-mail: olbrich@mis.mpg.de

the excess entropy [6], originally introduced as effective
measure complexity in a time series context [4], and the
TSE-complexity [7]. We will show that both measures are
closely related.

We study how both measures behave if the system size
is increased and will discuss three special cases: (i) adding
one independent element (ii) adding an independent sys-
tem and (iii) adding an exact copy of the first system.

We will discuss how these results correspond to what
we expect from a complexity measure and we propose a
modification of the TSE-complexity based on these re-
sults. Furthermore, we hope that the present results will
contribute to a better understanding and a specification
of our information-geometric class of complexity measures
that we introduced in [5].

2 Preliminaries from information theory

In this section, we recall some basic notions from infor-
mation theory; a reference is [8]. We consider a set V of
1 ≤ N < ∞ nodes with state sets Xv, v ∈ V . Given a
finite subset A ⊆ V , we write XA instead of ×v∈AXv, and
the total configuration set is XV . |XA| is the number of el-
ements in XA, that is, the number of different states that
can be attained on A. We have the natural projections

XA : XV → XA, (xv)v∈V �→ (xv)v∈A.

Given a probability vector p on XV , the XA become ran-
dom variables. For three subsets A, B, C of V , we shall
use the following information-theoretic quantities: The en-
tropy of XC is defined as

H(XC) := −
∑

z∈XC

Pr(XC = z) log2

(
Pr(XC = z)

)
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This quantity is a natural measure of the uncertainty that
one has about the outcome of measuring XC , that is, the
information one expects to gain by observing that out-
come. Another interpretation of H(XC) is to consider it
as the variety of XC .

Knowing the state of B reduces the uncertainty that
one has about the state of C. The remaining uncertainty
is then quantified by the conditional entropy of XC given
XB:

H(XC |XB) :=

−
∑

y∈XB
z∈XC

Pr(XB = y, XC =z) log2

(
Pr(XC =z|XB =y)

)
.

(1)

In terms of these entropy measures, the mutual informa-
tion of XC and XB is given by

I(XC : XB) := H(XC) − H(XC |XB)
= H(XC) + H(XB) − H(XC , XB) (2)

which measures the reduction of the uncertainty of the
outcome of XC given the outcome of XB and vice versa.

The conditional mutual information, which is de-
fined as

I(XC : XB|XA) := H(XC |XA) − H(XC |XA, XB), (3)

quantifies the average reduction of the uncertainty of the
outcome of measuring XC knowing the state of B, if the
state from A was already known.

The multi-information is a generalization of the mu-
tual information for more than two random variables. The
multi-information of the system XV with respect to its
nodes is defined as

I(XV ) :=
∑

v∈V

H(X{v}) − H(XV ). (4)

It is the difference between the sum of the variety of the
elements and the variety of the system as a whole. It is
often considered as a measure for the total statistical in-
terdependence of the nodes with respect to the joint dis-
tribution p, but it remains unclear at this point what total
statistical interdependence exactly means as long as one
does not consider (4) itself as its definition.

In the literature it is also referred to as integration
(see e.g. [7]). It becomes zero if and only if the probability
distribution p has the product structure

p(x) =
∏

v∈V

pv(xv), (5)

where each pv denotes the marginal distribution of the
projection X{v}. In particular, the multi-information van-
ishes in the case of complete randomness, given by the
uniform distribution, and in the case of complete deter-
minism, given by a distribution that is concentrated in
one configuration.

3 Information-theoretic complexity measures

The information-theoretic quantities of Section 2 can be
used to define complexity measures for random fields: we
shall consider here two measures of structural complexity
— the excess-entropy and the TSE complexity.

3.1 Excess entropy

One possibility to introduce a measure of statistical com-
plexity is to ask to which extent the state of a subsystem
remains uncertain if the state of the rest of the system
is known. This uncertainty is given by the conditional en-
tropy H(XA|XV \A). It quantifies the amount to which the
state cannot be explained by dependencies in the system
and is therefore considered as random.

In particular, one can ask this question for any single
element of our system. The excess entropy is then the dif-
ference between the uncertainty of the state of the whole
system and the sum of the unreducible uncertainties of
the state of the elements using all information available in
the system

E(XV ) := H(XV ) −
∑

v∈V

H(X{v}|XV \{v}). (6)

It quantifies the “explainable” part of the variety of the
system. The excess entropy as the non-extensive part of
the entropy was originally introduced as a complexity
measure for time series [3,4,9] and provides in this con-
text a lower bound for the amount of memory one needs
for an optimal prediction. The excess entropy (6) is, how-
ever, not a direct generalization of the measures for time
series, because in the latter case the conditioning in the
second term is restricted to observables from the past only.
Formula (6) can be rewritten using the average entropies
of subsets of size k denoted by H(k, N)

H(k, N) =
(

N

k

)−1 ∑

Y ⊆V
|Y |=k

H(XY ).

We get the following expression

E(XV ) = H(N, N) − N(H(N, N) − H(N − 1, N))

which is illustrated in Figure 1.
As a complexity measure for finite systems it was men-

tioned in passing in [10], see also [5] for a more comprehen-
sive discussion of the relation between the time series case
and the case of finite systems. The excess entropy (6) has
the following properties (for all proofs see Appendix A):
1. The excess entropy is monotonically increasing with

the system size because

E(XV ∪{v′}) − E(XV ) =
N∑

i=1

I(X{vi} : X{v′}|XV \{vi}) ≥ 0 (7)

with v′ denoting the additional element.
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Fig. 1. (Color online) The figure shows schematically for a
system with N elements the relationship between the mean
entropy of subsystems of size k, H(k, N), the integration I(N)
(4), the excess entropy E(N) (6), and the TSE-complexity
CTSE(N) (12).

2. The excess entropy of a system consisting of two sub-
systems A and B is always larger than the mutual
information between these two subsystems:

E(XA∪B) ≥ I(XA : XB).

3. The excess entropy of the union of two subsystems is
always larger than the excess entropy of one of the
subsystems.

E(XA∪B) ≥ E(XA) E(XA∪B) ≥ E(XB)

4. In general the sum of the excess entropies of the sub-
systems is neither a lower nor an upper bound for the
excess entropy of the whole system.

E(XA∪B) = E(XA) + E(XB)

+
∑

v∈A

I(X{v} : XB|XA\{v})

+
∑

v∈XB

I(X{v} : XA|XB\{v})

−I(XA : XB). (8)

3.2 TSE complexity

Tononi et al. [7] introduced a complexity measure called
“neural complexity”. It was motivated by the attempt to
measure the potential ability of a neural system to produce
consciousness in the framework of the information integra-
tion theory of consciousness and the dynamical core hy-
pothesis1 [11]. Starting from the intuition that conscious
experience is very rich, they first required that a corre-
sponding neural system should have a large number of

1 In their more recent work (e.g. [12]) Tononi et al. used a
different measure which also takes into account causal effects.

available states. On the other hand, consciousness is ex-
perienced as a unity. Tononi et al. translated this intu-
ition into the requirement that the corresponding systems
should have both high entropy and a high integration or
multi-information (4) on the system level. In the follow-
ing we will denote their complexity measure by CTSE ,
where TSE stands for Tononi-Sporns-Edelman. They de-
fined it as

CTSE(XV ) :=
N∑

k=1

(
k

N
I(XV ) − I(k, N)

)
, (9)

with the abbreviations I(N) = I(XV ) for the multi-in-
formation of the whole system and

I(k, N) =
(

N

k

)−1 ∑

Y ⊆V
|Y |=k

I(XY )

for the average multi-information of subsystems of size k.
This complexity is the higher the larger the increase of the
integration with the size of the subsystems deviates from
a linear one.

One can express CTSE also using the mean entropies of
the subsystems of size k or the mean mutual information
for bipartitions into subsystems of size k and N − k. A
particular interesting representation shows its relation to
the excess entropy. If we denote the mean excess entropy
of all subsystems with k elements by E(k, N) we get for
the TSE-complexity

CTSE(XV ) =
1
2

N∑

k=1

E(k, N). (10)

For the proof see Appendix B. Using

E(k, N) =
1(
N
k

)
∑

Y ⊆X,|Y |=k

E(XY )

we can write the TSE-complexity also as a weighted sum
over the excess entropy of all subsets

CTSE(XV ) =
1
2

∑

Y ⊂V

1(
N
|Y |
)E(XY ). (11)

If we interpret the excess entropy as the complexity of a
system with respect to its elements, the TSE-complexity
measures the sum over the complexities on all levels with
respect to its basic level. Maximizing the TSE complexity
should therefore lead to systems which are “complex” on
all levels.

How does the TSE-complexity grow with system size?
To investigate this question it might be useful to start
with the most basic representation using the entropies

CTSE(XV ) =
N∑

k=1

(
H(k, N) − k

N
H(XV )

)
(12)

which is illustrated in Figure 1. After adding one element
we not only have to replace N by N+1, but we also have to
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Fig. 2. Same as in Figure 1 for a system maximizing the
integration (left) and the excess entropy (right).

take into account that the averages now include additional
subsets. In fact, because

(
N
k

)
is the number of subsets

with k elements out of N elements, we have
(
N+1

k

)
=(

N
k

)
+
(

N
k−1

)
, where the second term is the number of new

subsystems containing v′. Thus with H(k, N) denoting the
mean entropy of subsystems of size k in the system with
N elements
(

N + 1
k

)
H(k, N + 1) =

(
N

k

)
H(k, N)

+
(

N

k − 1

)
H(k − 1, N) +

∑

Y ⊆V
|Y |=k−1

H(X{v′}|XY ). (13)

Inserting this in equation (12) and rearranging the sum-
mation we get (see Appendix C):

CTSE(XV ∪{v′}) = (1 +
1

N + 1
)CTSE(XV )

+
N+1∑

k=1

(
N + 1

k

)−1 ∑

Y ⊆V
|Y |=k−1

I(X{v′} : XV \Y |XY ). (14)

3.3 Maximizer for the the integration and the excess
entropy

A representation similar to Figure 1 can also be used
to understand the properties of the distributions that
maximize the integration (4) and the excess entropy (6)
for a system with a fixed number of binary elements
(xv ∈ {0, 1}). For a more detailed discussion of this topic
see [5]. Figure 2 shows the behaviour of H(k, N) as a func-
tion of k. If the integration is maximized, the entropy of
the whole system is equal to the marginal entropy of a
single element, which has to be maximal, i.e. 1 bit. The
fact that the entropy does not increase further with in-
creasing k implies that the state of the other elements is a
function of the state of a single element. One can say that
the system is synchronized.

On the other hand, the excess entropy is maximized by
a distribution which looks like independent random vari-
ables up to subsets of size N −1, but the Nth element is a
function of the other N −1 elements. These conditions are
fulfilled by the parity function xN =

(∑N−1
i=1 xi

)
mod 2.

A distribution that maximizes the TSE-complexity has
to be somewhere between the two cases. One might expect

that for such maximizers H(k, N) increases with the max-
imal possible slope of 1 up to a subsystem size of N/2 and
then remains constant. Such a behaviour of H(k, N) is,
however, in general not achievable due to combinatorical
constraints.

4 Special cases

Let us now consider three special cases of (i) adding an in-
dependent element, (ii) two independent subsystems, and
(iii) two identical copies. What would we require for a
reasonable complexity measure?

(i) additional independent element: The element has no
structure itself, so it has no own complexity. Because it
is independent on the rest of the system the complexity
should not change;

(ii) union of two independent systems: Because there are
no dependencies between the two systems the com-
plexity of the union should be simply the sum of the
complexities of the subsystems;

(iii) union of two identical copies: Because there is no
need for additional information to describe the second
system one could argue that the complexity should be
equal to the complexity of one system. One has,
however, to include the fact in the description that the
second system is a copy of the first one. At least this
part should not be extensive with respect to the system
size.

4.1 Adding an independent node

From (7) we get

E(XV ∪{v′}) = E(XV ), (15)

i.e. the excess entropy remains constant. Because the ex-
cess entropy of a single node is zero, adding an indepen-
dent node leaves the excess entropy unchanged.

For the TSE-complexity we can use (Eq. (14)). The
second term of the sum vanishes because of the indepen-
dence.

CTSE(XV ∪{v′}) =
(

1 +
1

N + 1

)
CTSE(XV ). (16)

This shows that the TSE-complexity is increased by
adding an independent element.

4.2 Two independent subsystems

For the excess entropy we have from (8) the general result
that the excess entropy of a system composed of two in-
dependent subsystems is the sum of the excess entropies
of the subsystems

E(XA∪B) = E(XA) + E(XB) (17)

if pA∪B(xA, xB) = pA(xA)pB(xB).
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For the TSE-complexity this case is already a non-
trivial one because the subsystems of the whole system
can contain elements from both subsystems. But using the
result (17), we have for an arbitrary subset Y ⊆ A ∪ B

E(XY ) = E(XY ∩A) + E(XY ∩B).

By using this property, we can show (see Appendix D)
that

CTSE(XA∪B) =
NA + NB + 1

NA + 1
CTSE(XA)

+
NA + NB + 1

NB + 1
CTSE(XB) (18)

with NA denoting the number of elements in A and NB

the number of elements in B. Obviously, in contrast to the
excess entropy the TSE-complexity of the unification of
two independent compounds is not the sum of the TSE-
complexities of the parts. But, we can re-establish this
result for a renormalized version of the TSE-complexity

C̃TSE(XV ) =
1

N + 1
CTSE(XV ) with N = |V |. (19)

Note that this renormalization also restores the intuitive
property that the complexity remains unchanged if a sin-
gle independent node is added.

4.3 Two copies of the same system

Now we consider again two subsystems XA and XB but
now XB is an exact copy of XA. Thus

pA∪B(xA, xB) = pA(xA)δxA(xB).

It follows that H(XA, XB) = H(XA) and for any vA ∈ A
and vB ∈ B

H(XvA |XA\{vA}, XB) = H(XvB |XB\{vB}, XA) = 0.

Therefore we get for the excess entropy

E(XA∪B) = H(XA) = H(XB) = I(XA : XB). (20)

The main problem with this result is that the “complex-
ity” of two identical copies measured by the excess en-
tropy is independent of the complexity of the single sys-
tem which is clearly counterintuitive and shows a severe
limitation of the excess entropy as a complexity measure
for finite systems.

The situation for the TSE-complexity is more compli-
cated. Using a reasoning similar to the case of the two
independent subsystems (see Appendix E) one finally ar-
rives at

CTSE(XA∪B) =
2NA + 1
NA + 1

CTSE(XA)

+
∑

YA⊆A

∑

YB⊆B

(
N

|YA| + |YB|
)−1

H(XYB |XYA). (21)

which leads to a very reasonable lower bound for the renor-
malized TSE-complexity

C̃TSE(XA∪B) ≥ C̃TSE(XA). (22)

The single summands in the second term of (21) cannot
be simplified further, one can, however, try to derive an
upper bound by using

H(XYB |XYA) ≤ H(XYB\(YA∩YB)).

According to our requirements for a complexity measure
the second term in (21) should grow at least more slowly
than the system size. At the moment, however, it is an
open problem under which conditions this applies.

5 Discussion

We studied how two established measures of statistical
complexity behave if the system size is increased and com-
pared the results with intuitive requirements for complex-
ity measures in three special cases: (i) adding one element,
(ii) adding an independent system and (iii) adding a per-
fect copy of the original system.

While the excess entropy behaves according to what
one should expect in the cases (i) and (ii), the result in
case (iii) did not meet our intuitions: the excess entropy of
the two copies does not depend on the complexity of the
original system at all. This indicates a possible limitation
of the excess entropy as a general complexity measure, be-
cause it only relates two levels to each other: the level of
the elements and the system level, but ignores the inter-
mediate levels.

This disadvantage might be avoided in the TSE-
complexity because it considers all possible subsets of a
given system. We could show this by writing the TSE-
complexity as a sum over all subsystem sizes of the mean
excess entropies of subsystems of this size. The further
analysis of the behavior of the TSE-complexity revealed
however, that it grows even if one adds independent ele-
ments which again is a counterintuitive and therefore un-
wanted property. The detailed analysis of the case of two
independent systems showed that this unwanted property
can be avoided by dividing the TSE-complexity by N + 1
if the system has N elements. Therefore we argue that
the normalized version (19) provides a better measure of
statistical complexity than the original TSE-complexity.
It is however, not clear, to which extent the normalized
TSE-complexity avoids the problem of the excess entropy
in the case of two identical copies, because we found no
simple interpretation of the second term in (21).

We hope that the insights obtained in this paper will
also help to advance our geometric approach to complex-
ity presented in [5]. This, however, requires more sophis-
ticated mathematical considerations and will therefore be
presented elsewhere.

Funded by Volkswagen Foundation.
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Appendix A: Excess entropy of two subsystems

The excess entropy of a random variable XV = XA∪B is
defined as

E(XA∪B) = H(XA∪B) −
∑

v∈XA∪B

H(X{v}|X(A∪B)\{v}).

(23)
Now let us label the elements of A in an arbitrary order
as vA

j , j = 1, . . . , NA and the elements in B as vB
k , k =

1, . . . , NB. Moreover, be Ak the set containing vA
j with

1 ≤ j ≤ k and Bk the set containing vB
j with 1 ≤ j ≤ k.

Using

H(XA∪B) = I(XA : XB) + H(XA|XB) + H(XB|XA)
(24)

with

H(XA|XB) =
NA∑

j=1

H(X{vA
j }|XAj−1 , XB) (25)

and

H(XB|XA) =
NB∑

j=1

H(X{vB
j }|XBj−1 , XA) (26)

we can rewrite the excess entropy as

E(XA∪B) = I(XA : XB)

+
NA∑

j=1

I(X{vA
j } : XA\Aj

|XAj−1 , XB)

+
NB∑

j=1

I(X{vB
j } : XB\Bj

|XBj−1 , XA). (27)

The conditional mutual information is always larger than
zero and therefore

E(XA∪B) ≥ I(XA : XB). (28)

To compare the excess entropy of the whole system with
the excess entropy of one of its parts we have using the
same notation

E(XA∪B) = H(XA) + H(XB|XA)

−
∑

v∈A

H(X{v}|XA\{v}) −
∑

v∈B

H(X{v}|XA∪B\{v})

+
∑

v∈A

I(X{v} : XB|XA\{v}).

By writing H(XB|XA) as a sum according to (26) we can
express the right hand side as a sum of E(XA) and a sum
of conditional mutual informations:

E(XA∪B) = E(XA) +
∑

v∈A

I(X{v} : XB|XA\{v})

+
NB∑

j=1

I(X{vB
j } : XB\Bj

|XBj−1 , XA) (29)

Thus E(XA∪B) ≥ E(XA) and similarly E(XA∪B) ≥
E(XB). By combining equations (27) and (29) we can also
relate the excess entropy of the system to the sum of the
excess entropy of its subsystems

E(XA∪B) = E(XA) + E(XB) +
∑

v∈A

I(X{v} : XB|XA\{v})

+
∑

v∈B

I(X{v} : XB|XA\{v}) − I(XA : XB).

Appendix B: TSE-complexity and excess
entropy

It was already noted in [10] that the last summand in (12)
is equal to the excess entropy. But it is also possible to
express the whole sum as a sum over excess entropies:

CTSE(XV ) =
1
2

N∑

k=1

E(k, N).

E(k, N) and H(k, N) denote the average excess entropy
or entropy, respectively, of subsystems with k elements of
a system with N elements. Moreover we use the abbrevi-
ations E(N) = E(N, N) and H(N) = H(N, N). First we
rewrite the excess entropy as

E(N) = H(N) − N(H(N) − H(N − 1, N))
= NH(N − 1, N) − (N − 1)H(N).

which leads to

H(N) =
N

N − 1
H(N − 1, N) − 1

N − 1
E(N).

Now we can apply this formula again for all subsystems
of size N − 1

H(N) =
N

N − 2
H(N − 2, N)

− N

(N − 1)(N − 2)
E(N − 1, N) − 1

N − 1
E(N).

Here we used that for k ≤ N − k′

H(k, N) =
(

N

k

)−1 ∑

A⊆V
|A|=k

H(XA)

=
(

N

N − k′

)−1 ∑

V ′⊆V

|V ′|=N−k′

(
N − k′

k

)−1 ∑

A⊆V ′
|A|=k

H(XA)

meaning that averaging the entropy of subsystems of size k
over the whole system gives the same result than averaging
first for a subsystem of size N −k′ ≥ k and then averaging
over all these subsystems. Repeating the recursion we get

H(N) =
N

N − k
H(N − k, N) +

k∑

j=1

N · E(N − j + 1, N)
(N − j + 1)(N − j)
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or with k′ = N − k

H(k′, N) − k′

N
=

N−k′∑

j=1

k′ · E(N − j + 1, N)
(N − j + 1)(N − j)

.

and finally

CTSE(XV ) =
N−1∑

k′=1

N−k′∑

j=1

k′ · E(N − j + 1, N)
(N − j + 1)(N − j)

.

Rearranging the sums and summing up leads to equa-
tion (10)

CTSE(XV ) =
1
2

N∑

k=1

E(k, N).

Appendix C: TSE-complexity
with an additional element

Starting point is again the TSE-complexity expressed by
the average subset entropies (12)

CTSE(XV ) =
N∑

k=1

(
H(k, N) − k

N
H(XV )

)
.

After increasing the system by one additional element we
have

CTSE(XV ∪{v′}) =
N+1∑

k=1

(
H(k, N + 1) − k

N + 1
H(XV ∪{v})

)
.

Now we use that

(
N + 1

k

)
H(k, N + 1) =

(
N

k

)
H(k, N)

+
(

N

k − 1

)
H(k − 1, N) +

∑

A⊆V
|A|=k−1

H(X{v′}|XA)

and therefore

H(k, N +1) =
(

1 − k

N + 1

)
H(k, N)+

k

N + 1
H(k−1, N)

+
(

N + 1
k

)−1 ∑

A⊆V
|A|=k−1

H(X{v′}|XA). (30)

Now we can evaluate the sum over k

N+1∑

k=1

H(k, N + 1) =
N∑

k=1

H(k, N)

+
N∑

k=1

(
k + 1
N + 1

− k

N + 1

)
H(k, N)

+
N+1∑

k=1

(
N + 1

k

)−1 ∑

A⊆V
|A|=k−1

H(X{v′}|XA)

N+1∑

k=1

H(k, N + 1) =
(

1 +
1

N + 1

) N∑

k=1

H(k, N)

+
N+1∑

k=1

(
N + 1

k

)−1 ∑

A⊆V
|A|=k−1

H(X{v′}|XA).

Moreover

N+1∑

k=1

k

N + 1
H(XV ∪{v′}) =

N + 2
2

(H(XV )

+H(X{v′}|XV )
)

=
(

1 +
1

N + 1

)
N + 1

2
H(XV )

+
N+1∑

k=1

k

N + 1
H(X{v′}|XV ).

Now we can introduce for any subset Y of size k − 1 the
conditional mutual information

I(X{v′} : XV \Y |XY ) = H(X{v′}|XY ) − H(X{v′})|XV )

and get the result (14)

CTSE(XV ∪{v′}) = (1 +
1

N + 1
)CTSE(XV )

+
N+1∑

k=1

(
N + 1

k

)−1 ∑

Y ⊆V
|Y |=k−1

I(X{v′} : XV \Y |XY )

for the behavior of TSE-complexity after adding one el-
ement. Here we used that there are

(
N

k−1

)
subsets from

the original system containing k − 1 elements and that(
N

k−1

)
N+1

k =
(
N+1

k

)
.

Appendix D: TSE-complexity of the sum
of two independent systems

How does the complexity measure of Tononi, Sporns and
Edelman decompose if a system V is composed of two
independent subsystems A and B, i.e. V = A ∪ B and
I(XA : XB) = 0? In the following the number of elements
in V will be denoted by N . For the subsystems NA and
NB will be used respectively.
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Starting from

CTSE(XV ) =
1
2

N∑

k=1

E(k, X)

where E(k, X) = 1

(N
k)
∑

Y ⊆X,|Y |=k E(XY ) is the average

excess entropy over all subsets of cardinality k, one obtains

CTSE(XV ) =
1
2

∑

Y ⊆X

1(
N
|Y |
)E(XY )

. Using the fact that the excess entropy is additive for
independent subsystems, the TSE-complexity can be de-
composed as follows:

CTSE(XV ) =
1
2

∑

Y ⊆A∪B

1(
N

|Y ∩A|+|Y ∩B|
) (E(XY ∩A) + E(XY ∩B))

=
1
2

∑

YA⊆A,YB⊆B

1(
N

|YA|+|YB|
) (E(XYA) + E(XYB ))

=
1
2

∑

YA⊆A

∑

YB⊆B

1(
N

|YA|+|YB |
) (E(XYA) + E(XYB ))

=
1
2

∑

YA⊆A

E(XYA)
∑

YB⊆B

1(
N

|YA|+|YB|
)

+
1
2

∑

YB⊆B

E(XYB )
∑

YA⊆A

1(
N

|YA|+|YB|
) .

Comparing this to CTSE(XA) = 1
2

∑
YA⊆A

1

( NA
|YA|)

E(XYA)

shows that the two expressions differ in their weights in
the sum by a factor2 of

∑

YB⊆B

(
NA

k

)
(

N
k+|YB |

) =
NB∑

l=0

(
NB

l

)(
NA

k

)
(
NA+NB

k+l

) . (31)

If this factor is independent of k the TSE-complexity of X
can be written in terms of the TSE-complexities of A and
B. We can show (see Appendix F) that the sum is equal to
NA+NB+1

NA+1 . Then the TSE-complexity can be decomposed
as follows:

CTSE(XA∪B) =
1
2

∑

YA⊆A

1(
NA

|YA|
)E(XYA)

NA + NB + 1
NA + 1

+
1
2

∑

YB⊆B

1(
NB

|YB |
)E(XYB )

NA + NB + 1
NB + 1

=
NA + NB + 1

NA + 1
CTSE(XA) +

NA + NB + 1
NB + 1

CTSE(XB).

2 Since this factor just depends on the cardinality of the spe-
cific subset, k will be used in the following to denote the car-
dinality of YA.

Appendix E: TSE-complexity of two identical
copies

Now consider the situation that the system consists of
two identical copies of one smaller system, i.e. V = A∪B
with p(xA, xB) = p(xA)δxA(xB). In this case each subset
Y of V can be considered to be composed of two subsets
from YA ⊆ A and YB ⊆ B respectively. Furthermore each
subset YB of B corresponds to a subset Y A

B of A. Since V
is a disjoint union of A and B, one has |Y | = |YA|+ |YB |.
Due to B being a copy of A the entropy of Y is given by

H(XY ) = H(XYA∪Y A
B

) = H(XYA) + H(XY A
B
|XYA).

The TSE-complexity of X can therefore be decomposed
as follows3:

CTSE(XV ) =
N∑

k=1

⎛

⎝
∑

Y ⊆X,|Y |=k

1(
N
k

)H(XY ) − k

N
H(XV )

⎞

⎠

=
∑

Y ⊆X

1(
N
|Y |
)H(XY ) − N + 1

2
H(XV )

=
∑

YA⊆A

∑

YB⊆A

1(
N

|YA|+|YB|
)H(XYA∪YB ) − N + 1

2
H(XV )

=
∑

YA⊆A

∑

YB⊆A

1(
N

|YA|+|YB|
)H(YA) − N + 1

2
H(XA)

+
∑

YA⊆A

∑

YB⊆A

1(
N

|YA|+|YB |
)H(XYB |XYA)

=
∑

YA⊆A

1(
NA

|YA|
)H(XYA)

∑

YB⊆A

(
NA

|YA|
)

(
N

|YA|+|YB|
)

−2NA + 1
2

H(XA)

+
∑

YA⊆A

∑

YB⊆A

1(
N

|YA|+|YB |
)H(XYB |XYA)

=
∑

YA⊆A

1(
NA

|YA|
)H(XYA)

NA∑

l=0

(
NA

|YA|
)(

NA

l

)
(

N
|YA|+l

)

−2NA + 1
2

H(XA)

+
∑

YA⊆A

∑

YB⊆A

1(
N

|YA|+|YB |
)H(XYB |XYA)

=
2NA + 1
NA + 1

CTSE(XA) +
∑

YA⊆A

∑

YB⊆A

1(
N

|YA|+|YB |
)

×H(XYB |XYA).

3 The cardinalities of V and A are denoted by N and NA

respectively. Due to V being composed of two copies of A one
also has that N = 2NA.
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N+1∑

l=0

(
N+1

l

)
(

NA+N+1
k+l

) =

N∑

l=0

(
N
l

)
(

NA+N+1
k+l

)+

N∑

l=0

(
N

l−1

)
(

NA+N+1
k+l

) +

(
NA + N + 1

NA − k

)−1

=

N∑

l=0

(
N
l

)
(

NA+N+1
k+l

)+

N−1∑

l′=−1

(
N
l′
)

(
NA+N+1
k−1+l′+1

)+

(
NA + N + 1

NA − k

)−1

= S(N, NA + 1, k) + S(N, NA + 1, k − 1)

−
(

NA + N + 1

NA − k

)−1

+

(
NA + N + 1

NA − k

)−1

=

(
NA + 1

k

)−1
NA + 1 + N + 1

NA + 2

+

(
NA + 1

k − 1

)−1
NA + 1 + N + 1

NA + 2
=

(
1(

NA+1
k

) +
1(

NA+1
k−1

)
)

NA + (N + 1) + 1

NA + 2

=
1(

NA
k

) NA + 2

NA + 1

NA + (N + 1) + 1

NA + 2
=

(
NA

k

)−1
NA + (N + 1) + 1

NA + 1
. ��

Appendix F: Evaluation of the sum (31)

In the following we want to show by induction that

NB∑

l=0

(
NB

l

)
(
NA+NB

k+l

) = S(NB, NA, k) =
(

NA

k

)−1
NA + NB + 1

NA + 1
(32)

Proof. First we note that for NB = 0 the equation holds
for all NA and k.

Second we assume that it holds for NB = N and arbi-
trary NA and k, i.e. we have

S(N, NA, k) =
(

NA

k

)−1
NA + N + 1

NA + 1
. (33)

What happens for NB = N + 1? Using that
(
N+1

k

)
=(

N
k

)
+
(

N
k−1

)
we get

See equation above.
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