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Abstract
Background: Metagenomics is a rapidly growing field of research that aims at studying uncultured
organisms to understand the true diversity of microbes, their functions, cooperation and evolution,
in environments such as soil, water, ancient remains of animals, or the digestive system of animals
and humans. The recent development of ultra-high throughput sequencing technologies, which do
not require cloning or PCR amplification, and can produce huge numbers of DNA reads at an
affordable cost, has boosted the number and scope of metagenomic sequencing projects.
Increasingly, there is a need for new ways of comparing multiple metagenomics datasets, and for
fast and user-friendly implementations of such approaches.

Results: This paper introduces a number of new methods for interactively exploring, analyzing and
comparing multiple metagenomic datasets, which will be made freely available in a new,
comparative version 2.0 of the stand-alone metagenome analysis tool MEGAN.

Conclusion: There is a great need for powerful and user-friendly tools for comparative analysis
of metagenomic data and MEGAN 2.0 will help to fill this gap.

Background
Metagenomics is a rapidly growing field of research that
aims at studying uncultured organisms to understand the
true diversity of microbes, their functions, cooperation
and evolution, in environments such as soil, water,
ancient remains of animals, or the digestive system of ani-
mals and humans. Although it is clear that communities
of microbes play a vital role in such systems, a more

detailed understanding is only beginning to emerge. A
main promise of metagenomics is that it will accelerate
drug discovery and biotechnology by providing new genes
with novel functions.

Currently, the key approach used in metagenomics is
large-scale sequencing of environmental samples. The
recent development of ultra-high throughput sequencing
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technologies [1,2], which do not require cloning or PCR
amplification, and can produce huge numbers of DNA
reads at an affordable cost, has boosted the number and
scope of metagenomic sequencing projects, see [3,4]. The
analysis of such datasets is aimed at determining and
comparing the biological diversity and the functional
activity of different microbial communities.

Computationally, species identification relies on the use
of reference databases or reference phylogenies that con-
tain of sequences of known origin and gene function. The
most prominently used databases are the NR and NT data-
bases [5]. Unfortunately, substantial database biases
toward model organisms present a major hurdle for
metagenomic analysis, and in a typical metagenome data-
set as much as 90% of the reads may exhibit no similarity
to any known sequence. However, this problem is beyond
the scope of this paper. Early 2007, our group released
and published the first publicly available, stand-alone
analysis tool for metagenomic data, called MEGAN [6,7].
We initially developed this tool to analyze the microbial
community present in a sample of mammoth bone [8].
MEGAN takes as input the result of a BLAST [9] compari-
son of a set of metagenomic reads against one or more ref-
erence databases and produces as output a taxonomical
analysis of the sample, obtained by assigning the reads to
different nodes in the NCBI taxonomy using an "LCA-
algorithm".

As an exploration tool designed and optimized to run on
a laptop, MEGAN complements other systems and
resources for metagenome analysis, which are offered in
the form of databases, web portals and web services, such
as [10-14].

MEGAN now has over 400 registered users working in
many different biological labs around the world. It is rou-
tinely used at the Joint-Genome-Institute (JGI) both in
quality control and also to provide initial analyses of
newly sequenced datasets. Other users include researchers
at the J.C. Venter Institute studying viral populations. In a
recent publication [15], we demonstrate how to use the
software for meta-transcriptomics, as well.

Increasingly, the emphasize of metagenome analysis is
shifting from species and functional identification for
individual datasets toward comparative analysis. This
paper addresses the latter issue and provides solutions to
questions such as: Given two or more metagenome data-
sets, how similar or different are their taxonomical and
functional profiles? Are observed differences statistically
significant? Have enough reads been sequenced, i.e. what
is the current "rate of discovery" as a function of the
number of reads sequenced? In the following section, we
will discuss some new ideas for analyzing individual

metagenome datasets. Then, we will focus on new com-
parative methods. Finally, we will illustrate the applica-
tion of the methods in two comparisons, one comparing
the contents of a human gut [16] with the contents of a
mouse gut [17] and the other comparing a soil sample
[18] with a recent marine sample [19].

The ideas presented in this paper are all quite simple and
unsophisticated. The main merit of this work lies in the
integrated implementation of the methods in the form of
a very robust and user-friendly program, which is easily
used by biologists. The implementation goes well beyond
the hastily written "proof of concept" implementations
that so often accompany method papers. We are currently
beta-testing version 2.0 of the MEGAN software, which
implements all ideas presented in this paper. The latest
beta version can be obtained from our website at [20].

Methods
One goal of metagenome analysis is to determine the tax-
onomical content of a dataset [6,21]. There are two main
approaches toward doing this.

The phylogenetic approach is based on carefully chosen
genes that are believed to provide robust phylogenetic
information [22,23], see [21,24]. When randomly-tar-
geted sequencing is used, only a small fraction of the
sequences will correspond to such phylogenetic markers
[21,25]. Often, universal primers are employed to specifi-
cally target the phylogenetic markers. The DNA sequences
obtained are usually aligned into precomputed reference
alignments and placed into precomputed reference trees,
using fast heuristics and then taxonomical placements are
deduced from this.

The taxonomical approach places reads directly into the
NCBI taxonomy, based on the similarity of the reads to
sequences in one or more reference databases. As ran-
domly sequenced reads will exhibit very different levels of
evolutionary conservation, it is important to make use of
all ranks of the NCBI taxonomy, placing more conserved
sequences higher up in the taxonomy (i.e. closer to the
root) and more distinct sequence onto nodes that are
more specific (i.e. closer to the leaves, which represent
species and strains). This can be done using the LCA algo-
rithm and is the basis of the MEGAN program.

In summary, the LCA algorithm works as follows. A
sequencing read is compared against a database of refer-
ence sequences, such as the NCBI NR database, and the
taxon information of significant matches is extracted and
mapped onto the leaves of the NCBI taxonomy. The leaves
of the NCBI taxonomy represent different species and
strains. The LCA algorithm computes the lowest common
ancestor of all these hits, which will correspond to some
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higher-order taxon, and will then assign the read to that
taxon. In this way, species-specific sequences will be
assigned to the leaves or specific taxa, whereas sequences
that are conserved among different species, or that are sus-
ceptible to horizontal gene transfer, will be assigned to
taxa of less-specific rank. See the original paper [6] for
more details.

Both approaches have different advantages and draw-
backs. The phylogenetic approach can use established
phylogenies that are well understood and targeted
sequencing provides much more informative data per
sequencing run. However, a commonly acknowledged
draw-back is that the "universal primers" employed may
produce only a subset of the true spectrum of different
sequences. On the other hand, random sequencing is
often used in metagenomics to analyze the gene content
of a community and then the taxonomical approach can
make full use of the data and can be complemented by a
phylogenetic approach.

Rate of discovery
One important question is whether the level of sequenc-
ing performed for a given sample is sufficient to capture
the most abundant taxa. This can be addressed by plotting
the discovery rate of a dataset, which is obtained by repeat-
edly selecting random subsamples of the dataset at 10, 20
..., 90% of the original size, and then plotting the number
of taxa predicted by the LSA algorithm, see Figure 1. This
graph can be used to estimate (roughly) how many addi-
tional species are likely to be discovered if one were to
increase the number of reads by a factor of two, say.

In this, to estimate the number of species, one might first
consider counting the number of leaves of the taxonomy
to which reads have been assigned. However, this number
may be confounded by the presence of different strains
and isolates. To avoid this problem, in our implementa-
tion in MEGAN 2.0 we use the number of strongly sup-
ported nodes as a proxy for the number of species. We say
that a node v in the NCBI taxonomy is strongly supported at
level t, where t is a small number (≈ 5), if v has been
assigned t or more reads and no node below v has that
property.

Functional assessment
In a functional analysis, the goal is to determine which
types of genes are available at what relative levels of abun-
dance. Such an analysis can be based on sequences
obtained by random sequencing either of the genomic
DNA in a metagenome, or (reverse transcribed) RNA. In
the former case, the coding potential is analyzed, whereas
in the latter case, the focus is on gene expression. A general
strategy is to compare the reads against reference data-
bases of gene sequences such as COG [26] and SEED [11].

A number of sequences available in the NR database are
annotated by COG [26] identifiers. Hence, after BLAST
comparison of a metagenomic dataset with the NR data-
base, a first analysis of the types of genes present in the
dataset can be performed by extracting all COG identifiers
from the BLAST hits and then summarizing the relative
abundances of the different COG categories, see Figure 2.

Meta-data analysis
The result of a taxonomical analysis can be enhanced by
using "meta-data" to summarize the identified species.
For example, the "Prokaryotic Attributes Table" (obtaina-
ble from the NCBI website) lists attributes of microbes
that describe their cellular features, environment, temper-
ature, pathogenicity and relevance for diseases. A sum-
mary of an analysis based on such attributes is shown in
Figure 3.

Taxonomy-guided capture of reads
Once a first analysis has been performed and reads have
been assigned to taxa, it is often desirable to be able to
identify and capture all reads that have been assigned to
one part of the NCBI taxonomy, not only to a specific spe-
cies, but also to a class, genus or other rank of the taxon-
omy. This is very useful, for example, when performing
additional analysis such as determining the GC-content
for a collection of taxa, or for sequence assembly pur-
poses.

A discovery rate plot computed by MEGAN 2.0 for the mouse gut datasetFigure 1
A discovery rate plot computed by MEGAN 2.0 for the 
mouse gut dataset. The x-axis represents the percentage of 
reads subsampled from the total dataset and the y-axis repre-
sents the number of strong nodes (with t = 5) computed by 
the LCA algorithm, approximating the number of identified 
species. The datapoint at 10 × t % is based on t independent 
runs.
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Comparative visualization
In a comparative analysis, different datasets are brought
together and compared for taxonomical and functional
content. To compare multiple datasets, we define a new
multiple-comparison tree view in which an arbitrary number
of different datasets are displayed together on a subtree of

the NCBI taxonomy, as shown in Figures 4 and 5. In such
a view, each node in the NCBI taxonomy is shown as a pie
chart indicating the number of reads (normalized, if
desired) from each dataset that have been assigned to that
node. An important feature is the ability to interactively
collapse or expand the presented tree at different levels of

Summary of the microbial attributes of the soil dataset based on the NCBI's "Prokaryotic Attributes Table"Figure 3
Summary of the microbial attributes of the soil dataset based on the NCBI's "Prokaryotic Attributes Table". In each pie chart, 
the number of classified species having the indicated property is displayed.

A classification of all COGs determined in the mouse gut sampleFigure 2
A classification of all COGs determined in the mouse gut sample.
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the taxonomy, so as to be able to start at a high-level view
and then to drill down to a low-level comparison.

For publication purposes, the ability to interactively setup
and generate different types of summaries using bar and
pie charts, and also heat maps for many-way compari-
sons, are important. We are developing an interactive and
fully customizable chart viewer for MEGAN 2.0 that
allows one to extract a number of different comparisons
directly from the multiple comparison tree view. For
example, one can generate a bar chart summarizing the

number of reads assigned at any desired rank of the NCBI
taxonomy, see Figure 6.

Statistical significance

Comparative visualizations are useful to obtain an
impression of how two datasets differ. For a more detailed
analysis, one requires information on the statistical signif-
icance of observed differences, see Table 1 and 2. To this
end, we have adapted a test developed for comparing
curated subsystems in metagenomic data [27]. This test

Two multiple-comparative tree views of a human gut metagenome [16] shown in red and a mouse gut metagenome [17] shown in green, as computed by MEGAN 2.0, using normalized countsFigure 4
Two multiple-comparative tree views of a human gut metagenome [16] shown in red and a mouse gut metagenome [17] 
shown in green, as computed by MEGAN 2.0, using normalized counts. In (a), we show an overview of the taxonomy down to 
the phylum level, whereas in (b) we display a part of a class-level analysis. In bold we show the support values as listed in Table 
1.
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uses bootstrapping to determine for which subsystems a
difference in counts is significant. This can be extended by
defining a support value as the proportion of deviation

given by , based on the average difference M of

pairs of values sampled from the two different datasets
and the percentile values Px obtained by resampling from

the same dataset. In MEGAN 2.0, it will be possible to
apply this test to any level of the NCBI taxonomy.

Dealing with very large datasets
To be able to deal with ever larger, multiple datasets on a
computer with a limited amount of main memory,
MEGAN 2.0 can perform the analysis of any given dataset
in a new summary mode, in which the analysis is per-
formed on-the-fly and none of the read or match data are
loaded into memory. A summary file obtained in this way
describes only how many reads were assigned to each
taxon, and thus the size of such a file is independent of the
size of the original input dataset.

2 50
95 5

M P
P P

−
−

A multiple-comparative tree view of a soil metagenome [18] shown in green and a marine metagenome [19] shown in red, as computed by MEGAN 2.0Figure 5
A multiple-comparative tree view of a soil metagenome [18] shown in green and a marine metagenome [19] shown in red, as 
computed by MEGAN 2.0. In (a), we show an overview of the taxonomy down to the phylum level, whereas in (b) we display a 
part of a class-level analysis. In bold we show the support values as listed in Table 2.
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In an ongoing study, we are using a beta version of
MEGAN 2.0 to analyze datasets containing a million or
more reads. As another example, a BLAST file generated
for the soil sequences discussed in Section is 53 GB in size
and can be parsed in less than 40 minutes on a laptop.
Once parsed in this way, the data can then be saved in a
summary format that can be reopened in seconds.

Results and discussion
In this section we will illustrate some of the methods
described above, using a number of publicly available
datasets. We first consider two recent metagenomic data-
sets, one taken from a human gut (approx. 145, 000 reads
using Sanger sequencing) [16] and the other from the gut

of an obese mouse (approx. 675, 000 reads using 454
sequencing) [17].

Using the mouse gut dataset, we show a discovery rate
analysis in Figure 1. From this, we can estimate that dou-
bling the number of sampled read sequences will only
lead to the discovery of approximately 50 additional taxa.
This result, therefore suggests that this particular metage-
nome consists of roughly 950 predominant taxa, a large
majority of which are already identified using only half of
the reads. This example illustrates that the assessment of
the species discovery rate per number of reads may be
highly beneficial for the design and economy of any
project with unknown species composition. Cost savings

Table 1: Significant differences in the comparison of human gut and mouse gut metagenomes. The five most statistically significant 
differences in numbers of reads assigned to taxon classes in the comparison of a human gut [16] and obese mouse gut [17] 
metagenomes. A positive support (proportion of deviation) indicates that the difference is in favor of the human gut dataset, whereas 
a negative sign indicates the opposite.

Comparison of human and mouse gut datasets

Rank 1 2 3 4 5

Phylum level Support Actinobacteria +282.88 Firmicutes +115.30 Euryarchaeota +30.93 Chordata -10.12 Ascomycota -6.96

Class level Support Actinobacteria +282.70 Clostridia +110.21 Methanobacteria +87.0 Mollicutes +46.66 Bacilli +25.01

A summary of the comparison of the marine (red) and soil (green) datasets, generated at different taxonomical ranksFigure 6
A summary of the comparison of the marine (red) and soil (green) datasets, generated at different taxonomical ranks.
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are likely to be realizable for any project that proves to
have a much lower taxonomical diversity than assumed at
the outset [28].

In Figure 4, we show a multiple-comparative tree view of
the human gut and mouse gut metagenomes, using nor-
malized counts. The analysis is based on a BLASTX com-
parison of all reads against the NR database. At first
glance, there appears to be many nodes at the taxonomi-
cal rank of class for which the number of assigned reads
differs substantially. However, using the described statisti-
cal test, we see that there are only a few statistically signif-
icant differences, listed in Table 1.

Because the two datasets were obtained using different
sequencing technologies, it may be that some adjustments
to the analysis will have to be made to account for the dif-
ferent read-length distributions of multiple data sets. This
is ongoing work.

We now briefly discuss the five main differences identified
in Figure 4 and Table 1. As expected, Actinobacteria are
more dominant in the human gut, manifested through a
high abundance of Bifidobacterium longum, B. adolescentis
and Collinsella aerofaciens ATCC 25986. All three species
are known to be normal inhabitants of the human intes-
tine.

Also, Firmicutes are more dominant in the human gut,
mostly in the form of Clostridia, Lactobacillales and Mol-
licutes. Clostridia and Lactobacillales can live in intestinal
tracts of animals and humans, however it is not clear why
the levels of abundance differ in the two datasets. The
human dataset also contains Eubacterium dolichum DSM
3991 whose presence has previously been established by
its isolation from the human gut flora. Mesoplasma florum
is considered a commensal strain in humans and an ani-
mal parasite. A striking contrast between the two datasets
also seems to be the high abundance of Euryarchaeota/
Methanobacteria. As previously reported, the main repre-
sentative of this group is Methanobrevibacter smithii, a well-
known archaeal inhabitant of the human gut, see [16,29].

In our experience, the class of Chordata is always prob-
lematic in this type of metagenomic analysis. This is most
likely due to the high complexity and large sequence space
covered by higher eukaryote and especially vertebrate
genomes. This is further aggravated by database biases
toward model organisms and the problem of false anno-
tation of vertebrate genetic elements.

The amount of hits mapped to Ascomycota was signifi-
cantly higher in the mouse gut probe, mostly reads
assigned to yeast species like Saccharomyces and Candida.
It is well known that these yeast species can be found in
caeca of mouse [30] and rat [31]. As stated in [17], the
mouse gut probe was extracted from its caecum, whereas
the human probe was taken from distal gut.

Interestingly, the proportion of mouse gut reads that
exhibit no hits to the NR database is much higher than for
the other dataset. This probably reflects the different read
lengths produced by the employed sequencing technolo-
gies (Sanger for the human gut sample, 454 for the mouse
one). An additional potential explanation may be that
there is a bias in NR database that favors human endo-
symbionts and parasites. A basic functional analysis of the
mouse dataset can be obtained from the COGs present in
the NR database. We show the result of such an analysis in
Figure 2.

As a second example, we analyze a set of approx. 140, 000
reads extracted from a soil sample using Sanger sequenc-
ing [18] and then compare this to a small subset of
approx. 145, 000 reads of the Global Ocean Survey dataset,
[19] obtained using Sanger sequencing technology. The
analysis is based on a BLASTX comparison of all reads
against the NR database. In Figure 5 we show a multiple-
comparative tree view of the two datasets.

We now briefly discuss some of the main differences sum-
marized in Figure 5 and Table 2. Our analysis reiterates
the well-known fact that soil metagenomes are signifi-
cantly more complex than marine ones. However, this
diversity is underrepresented in current reference data-

Table 2: Significant differences in the comparison of marine and soil metagenomes. The five most statistically significant differences in 
numbers of reads assigned to taxon classes in the comparison of marine [19] and soil [18] metagenomes. A positive support 
(proportion of deviation) indicates that the difference is in favor of the soil dataset, whereas a negative sign indicates the opposite.

Comparison of marine and soil datasets

1 2 3 4 5

Phylum level Support Proteobacteria +37.95 Cyanobacteria +33.54 Acidobacteria -29.31 Chlorophyta +22.67 Chloroflexi -18.83

Class level Support Prochlorales +267.33 Thermoprotei +82.36 Oligohymenophorea 
+52.36

Aconoidasida +50.36 Prasinophyceae +52.33
Page 8 of 10
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bases. Therefore, more reads are assigned to the proteo-
bacterial phylum in the marine dataset than in the soil
one, in particular Pseudomonas mendocina ymp, Shewanella
(aquatic bacteria), and some unclassified gamma proteo-
bacteria, such as marine gamma proteobacteria
HTCC2080, HTCC2143 and EBAC20E09. Differences in
the number of reads assigned to Cyanobacteria can be
attributed to Synechococcus and Prochlorococcus marinus
which both belong to the most abundant bacterial species
in marine surface water [21].

Significantly more reads are assigned to Acidobacteria in
the soil dataset, most mapping to Solibacter usitatus
Ellin6076, a soil bacterium. However, since the Acidobac-
teria are a very divergent class of taxa, this discrepancy
could be due to the low amount of currently sequenced
species within this group. The fact that reads hitting Chlo-
rophyta are more present in the marine dataset is due to
the number of hits to Prasinophyceae, which are marine
algae. The existence of fresh water variants may explain
the small number of hits in soil. Reads that match Chlo-
roflexi are found more often in the soil than in the marine
dataset, in particular Herpetosiphon aurantiacus ATCC
23779, which was originally isolated from a lake in Min-
nesota, the same state from which the soil sample was
taken. The fact that Thermoprotei are favored by the
marine sample is due to reads assigned to Nitrosopumilus
maritimus SCM1, which is a mesophilic (not ther-
mophilic) salt-water bacterium. The groups Oligohymen-
ophorea and Aconoidasida both belong to the phylum
Alveolata comprising a very divergent group of unicellular
eukaryotes, some of them are capable of photosynthesis.
Accordingly, the marine dataset contains significantly
more reads of these eukaryotic clades than the soil dataset.
Interestingly, most hits within Aconoidasida belong to the
taxon Plasmodium falciparum, the pathogen of malaria.
Since it is known that P. falciparum possesses a chloro-
plast-like organelle which presumably was derived in a
common ancestor of Apicomplexa [32], a possible expla-
nation may be that these reads come from a marine spe-
cies that is closely related to the Aconoidasida but not well
represented in the NR database.

In Figure 3 we analyse the microbial attributes content of
the soil dataset. Of 564 microbes identified in the dataset,
510 where found among the ≈ 1500 prokaryotes currently
listed in the NCBI "Prokaryotic Attributes Table". Some-
what disappointingly, this profile of attributes differs only
insignificantly from the one computed for the marine
dataset (not shown), most likely due to database biases.

The comparison of the soil and marine datasets can be
performed at different levels of the NCBI taxonomy and
represented as bar charts, see Figure 6.

Conclusion
Comparative metagenomics is a fast growing field and
novel tools are required to support comparative analysis
of multiple metagenomic datasets. In this paper we have
discussed a number of new techniques that address this
issue. These will all be made available in a new version 2.0
of MEGAN.

We anticipate that a metagenomic project will routinely
look at 5–10 different samples, each consisting of
100,000 or more reads. Once the data has been compared
against appropriate reference databases, MEGAN 2.0 can
be used for fast and user-friendly comparative analyses of
datasets of this size, providing graphical support for the
publication process.

A number of papers on new metagenome datasets that
employ MEGAN as the primary analysis tool are in prepa-
ration. Future improvements of the program will include
the use of the GO gene ontology [33] to classify functional
content and the implementation of more statistical tools
for comparing different datasets. MEGAN 2.0 is currently
being incorporated into the CAMERA metagenomics web
portal [13].

Availability
The datasets discussed are available at [34]. Installers for
common operating systems for MEGAN 2.0 will be avail-
able at [20].
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