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Abstract

Background: The purple pitcher plant, Sarracenia purpurea L., is a widely distributed species in North America with
a history of use as both a marketed pain therapy and a traditional medicine in many aboriginal communities.
Among the Cree of Eeyou Istchee in northern Québec, the plant is employed to treat symptoms of diabetes and
the leaf extract demonstrates multiple anti-diabetic activities including cytoprotection in an in vitro model of
diabetic neuropathy. The current study aimed to further investigate this activity by identifying the plant parts and
secondary metabolites that contribute to these cytoprotective effects.

Methods: Ethanolic extracts of S. purpurea leaves and roots were separately administered to PC12 cells exposed to
glucose toxicity with subsequent assessment by two cell viability assays. Assay-guided fractionation of the active
extract and fractions was then conducted to identify active principles. Using high pressure liquid chromatography
together with mass spectrometry, the presence of identified actives in both leaf and root extracts were determined.

Results: The leaf extract, but not that of the root, prevented glucose-mediated cell loss in a
concentration-dependent manner. Several fractions elicited protective effects, indicative of multiple active
metabolites, and, following subfractionation of the polar fraction, hyperoside (quercetin-3-O-galactoside) and
morroniside were isolated as active constituents. Phytochemical analysis confirmed the presence of hyperoside in
the leaf but not root extract and, although morroniside was detected in both organs, its concentration was seven
times higher in the leaf.

Conclusion: Our results not only support further study into the therapeutic potential and safety of S. purpurea as
an alternative and complementary treatment for diabetic complications associated with glucose toxicity but also
identify active principles that can be used for purposes of standardization and quality control.
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Background
The purple pitcher plant, Sarracenia purpurea L. (Sarra-
ceniaceae), is a perennial carnivorous plant widely dis-
tributed across northern North America. By consuming
nitrogen from insects trapped within their pitchers
(fused leaves), they adapt to nitrogen-poor environments
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such as bogs and peatlands. Due to this unusual natural
history, S. purpurea has received considerable attention
from an ecological perspective but, despite a long history
of use as a traditional medicine across the continent, the
therapeutic potential of the species remains largely unin-
vestigated. During the 19th century, S. purpurea served
as a treatment for small pox [1,2] and, more recently, as
an injected pain reliever marketed as SarapinW, an alka-
line extract of the root that specifically blocks C-fibre
excitation [3,4]. In Canada, the plant has long been
recognized among aboriginal peoples as medicinal. The
Cree of Eeyou Istchee (CEI) in Northern Québec refer to
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S. purpurea as “aygadash”, which translates to ‘frog’s
socks’ in reference to the plant’s long slender pitchers
and identify preparations from the leaves as beneficial in
treating symptoms of diabetes, in particular slow healing
infections [5].
The CEI, along with other Canadian First Nations

communities, are recognized as some of the highest at-
risk populations for T2DM in the world [6,7]. With an
average age at diagnosis of just 41 years [8], diabetics
also face a greater risk of developing diabetic complica-
tions [9,10]. As part of a collaborative research initiative
evaluating traditional Cree medicines as culturally rele-
vant treatment options for T2DM, our team tested a col-
lection of plants, including S. purpurea, used by the CEI
to treat symptoms of diabetes in a battery of anti-
diabetic assays [11-14]. In addition to insulinotrophic
effects in C2C12 muscle cells and 3T3-L1 adipocytes,
the ethanolic extract of S. purpurea leaf material demon-
strated cytoprotective activity in two models of diabetic
neuropathy, PC12 cells exposed to glucose toxicity or
glucose deprivation [11].
Currently, evidence supports the involvement of high,

low, and fluctuating glucose concentrations in the patho-
physiology of diabetic peripheral neuropathy [15-17].
Whereas hypoglycemia likely contributes to the develop-
ment of diabetic neuropathy in Type 1 diabetics and
T2DM patients on intense pharmacotherapy, hypergly-
cemia is likely the main contributor in populations such as
the CEI where T2DM is far more prevalent and compli-
ance to modern treatment regimens is generally low [9].
As such, culturally acceptable treatment options could
benefit the control of glucotoxic neuropathic complica-
tions within the community. In this study, we sought to
identify the plant organ sources and the active constituents
contributing to the cytoprotective effects of S. purpurea
under conditions of glucose toxicity. In comparing activ-
ities of root and leaf extracts, we demonstrate enhanced
cytoprotective activity in the leaf extract as predicted by
the traditional usage. Through subsequent bioassay-guided
fractionation and phytochemical analyses, we identified
and quantified marker compounds including biologically
active metabolites contributing to cytoprotection.
Methods
Reagents
All cell culture reagents were obtained from Invitrogen
(Burlington, ON Canada) and all chemicals were pur-
chased through Sigma-Aldrich (St. Louis, USA) unless
otherwise stated. Pure hyperoside (quercetin-3-O-galac-
toside), isoquercetin (quercetin-3-O-glucoside), and (-)
epicatechin standards were purchased from Extrasynth-
èse (Lyon, France). Morroniside was isolated in-house to
a purity of over 95% as determined by ultraviolet (UV)
absorption, mass spectrometry (MS) and nuclear mag-
netic resonance (NMR) analyses.

Plant materials and extracts
In August 2006, wild samples were collected near Mistis-
sini, Quebec, Canada, as per the instructions of commu-
nity elders and healers. The specimens were identified as
Sarracenia purpurea L. by Dr. A. Cuerrier (Plant Biology
Research Institute, Montréal Botanical Garden) and vou-
cher specimens were deposited in the Marie-Victorin
herbarium (MT) of the Montréal Botanical Garden. Upon
collection, loose debris (such as peatmoss) was removed
from the plants, which were subsequently partially dried
by air (25°C) and transported to the University of Ottawa.
Whole plants were separated into leaves (pitchers), roots,
and flowers. Leaves were cut open and rinsed clean of
insects and dirt. Leaf and root tissues were then dehy-
drated using an electric food dehydrator (Nesco/Ameri-
can Hervest WI, USA) set to 40°C and processed using a
Wiley Mill (2 mm filter) prior to extraction with 80%
ethanol as previously described [18]. Dried extracts were
prepared for experimental use as stock solutions in di-
methyl sulfoxide (DMSO), filtered through a 0.2 μm
nylon membrane filter (Chromatographic Specialties Inc.,
Brockville, ON, Canada), and serially diluted as required
on the day of use to ensure all cultures were exposed to a
final concentration of 0.1% DMSO (vehicle).

Cell culture and glucose toxicity assay
PC12-AC cells, a clonal derivative of the PC12 rat adrenal
pheochromocytoma cell line (American Tissue Culture
Collection) developed in our laboratory [19], were cul-
tured in Roswell Park Memorial Institute medium (RPMI
1640) containing 11 mM glucose and supplemented with
10% horse serum and 5% newborn calf serum. Prior to
experimental use, cells were seeded in 96-well plates at a
density of 6.25x103 cells/well and incubated overnight at
37°C in 5% CO2 to allow adherence. As described previ-
ously [18], extract toxicity (IC50) was determined by treat-
ing cultures for 96 h in serum-free RPMI 1640 containing
11 mM glucose, 0.025% bovine serum albumin (BSA) to
facilitate intracellular passage of hydrophobic compounds,
and either 0.1% DMSO (vehicle control) or increasing
concentrations of plant extract (0-100 μg/mL). Similarly,
for the glucose toxicity assay, cells were treated for 96 h
in serum-free medium supplemented with glucose (to a
final concentration of 150 mM), 0.025% BSA, and vehicle
control or various concentrations of plant extract below
its determined IC50 value.

Cell viability assay
To assess viable cell number, the formazan dye WST
(Roche Diagnostics, Laval, QC) was added to each well
following 96 h of treatment in normal (11 mM) or high
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glucose (150 mM), as described by Harris et al. [18].
After a 60 min incubation with WST, spectrophotomet-
ric analysis at 420 nm (formazan) and at 620 nm (refer-
ence) was performed using a Tecan Spectra Shell
platereader model A-5082 (Durham, NC) and WinSelect
software (Tecan US, Inc.). Viable cell number per well
was calculated relative to standard curves produced from
wells containing known cell density present on each
plate. All treatments were tested in multiple wells over
two or three independent experiments (n = 8-15/condi-
tion). Data from vehicle-treated control cultures in nor-
mal and high glucose were included on all plates and
combined across plates when applicable (n = 12-24).
Percent viability was calculated as follows:

% viability ¼ cell number treatment wellð Þ
mean cell number normoglucose controlð Þ

� 100

Cell survival assay
Cell survival was directly assessed by Live/Dead viabil-
ity/cytotoxicity assay (Invitrogen) as described previously
[20-22]. Viable cells, identified by the conversion of
non-fluorescent calcein-AM to fluorescent calcein by
intracellular esterases, and dead cells, identified by nu-
clear incorporation of cell-impermeable ethidium homo-
dimer (ET), were imaged using a DMIR epifluorescent
inverted microscope (Leica, Richmond Hill, Canada)
coupled with a QICAM digital camera (Quorum Tech-
nologies, Guelph, Canada). Images were captured and
analysed using OpenLab software v5.05 (Improvision,
Lexington, USA). Percent survival was calculated as:

% survival

¼ Viable cell number per well calcein�positive and ET�negativeð Þ
Mean viable cells in vehicle control calcein�positve and ET�negativeð Þ

� 100

Phytochemical characterization
The total phenolic content of root and leaf extracts was
determined using the Folin-Ciocalteau method described
previously [23,24]. Total phenolic content, calculated rela-
tive to serially diluted quercetin standard analyzed concur-
rently with extracts, were expressed as quercetin
equivalents. Chromatographic analyses of root and leaf
extracts were performed on an Agilent 1100 high pressure
liquid chromatography (HPLC) system (Palo Alto, CA,
USA) comprised of an autosampler equipped with a 100
μL loop, a quaternary pump with maximum pressure of
400 bars, a column thermostat, a photodiode array de-
tector (DAD), and an online atmospheric pressure chem-
ical ionization mass selective detector (APCI/MSD VL
1946C). Separations were executed using a validated
method on a YMC ODS-AM column (100 × 2 mm I.D.; 3
μm particle size) (Distributed by Waters Inc., Mississauga,
Canada) as previously described [25] with minor modifica-
tions. Using aqueous trifluoroacetic acid (TFA, 0.05%), pH
3.4 (solvent A) and methanol (solvent B) as mobile phase,
initial conditions 92%:8% (A:B) were held for 2 min fol-
lowed by four linear gradients of 8 – 13% B in 3 min, 13 –
30% B in 15 min, 30 – 60% B in 5 min, and 60 – 100% B
in 4 min. Solvent composition was then returned to initial
conditions, which were maintained for 7 min to allow re-
equilibration. Solubilized samples were filtered through
0.2 μm PTFE membrane filter (Chromatographic Special-
ities Inc., Brockville, ON) prior to analysis. Chromato-
graphic separations were monitored at 325 nm, 230 nm
and at 520 nm (band width 4, reference off) by DAD and
MSD detection was performed in positive ionization scan
mode as optimized previously [25].
Initial compound identifications were performed by

matching the UV spectra of eluted peaks with those of
standards registered in an on-line Chemstation library.
Confirmation of identity was achieved through compari-
son of fragmentation patterns and relative retention times
with those of reference standards and/or isolated com-
pounds identified by NMR. Identified metabolites were
quantified on the basis of area under the peak of DAD
signals (at 230 nm for morroniside and 280 nm for epica-
techin and hyperoside) using calibration curves produced
with pure compounds analyzed on the same day (n=3).

Isolation of active compounds
Prior to fractionation by low-pressure column chroma-
tography, the crude leaf extract was washed with hexane
to remove the lipophilic fraction then dried and solubi-
lized in methanol. To separate the more polar com-
pounds, distilled water was added to the methanolic
solution and the resulting precipitate was collected by
centrifugation (the methanol fraction). The remaining sol-
uble fraction (water-methanol fraction) was dried by
lyophilization. The methanol-water fraction was loaded
onto a 100 × 5 cm Sephadex LH-20-packed glass column
and separated using a step-wise gradient from 100% water
to 100% methanol in 10% increments every 100 min. Col-
lected samples were pooled into 10 fractions based on
HPLC profiles, each of which was subsequently tested for
cytoprotective activity. Subfractionation of active fractions
was conducted using an Agilent 1200 Series semi-
preparative HPLC with online DAD and automated time-
based fraction collection. Following the subfractionation,
additional purification of major peaks was achieved by re-
eluting the collected subfractions using peak-based frac-
tion collection. The identity of marker compounds was
confirmed by 1H-NMR and 13C-NMR then, in the case of
hyperoside, morroniside, and epicatechin, confirmed by
comparing retention time, UV and MS data to those of
purified standards.



Figure 1 Leaf but not root extract of Sarracenia purpurea
protects PC12 cells from high glucose-mediated death.
Exposure to glucose toxicity elicited a significant loss in cell viability
compared to normal glucose conditions as assessed by
mitochondrial dehydrogenase activity measured by cleavage of the
formazan dye WST [left panel, ** denotes a significant difference
(p < 0.01) relative to normal glucose control, Student’s t-test, n = 24].
Multiple concentrations of leaf or root extract were administered to
high glucose-treated cells to assess cytoprotective activity [right
panel, # and ## denote significant differences (p < 0.05 and ## p <
0.01, respectively) relative to high glucose control, ANOVA, post-hoc
Dunnett’s t-test, n = 8-12]. Data are reported as the mean ± SEM.
Extracts were tested at concentrations below their IC50
concentrations established under normal glucose conditions.
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Statistical analyses
Data were analyzed using one-way ANOVA tests fol-
lowed by post hoc Dunnett’s t-tests for each extract, frac-
tion, or pure compound relative to normal and high
glucose controls, respectively. Differences with p values less
than 0.05 were considered statistically significant and were
represented as * (relative to normal glucose control) or
# (relative to high glucose control). P values under 0.01
were considered highly significant (shown as ** or ##).

Results and discussion
Prior to evaluating protective effects, the toxicities of S.
purpurea leaf and root extracts were established follow-
ing 96 h exposure to cells in serum-free, normal glucose
(11 mM) conditions. IC50 concentrations were defined
as the extract concentration eliciting a 50% loss of viable
cells relative to control cultures. Cell viability was deter-
mined by mitochondrial dehydrogenase cleavage of the
formazan dye WST relative to vehicle-treated (0.1%
DMSO) control cells. Both extracts were well-tolerated
by cells but, with IC50 concentrations of 129 μg/mL and
56 μg/mL, respectively, the leaf extract was less toxic
than that of the root.
PC12-AC cells can be differentiated to a peripheral

catecholaminergic neuron phenotype by the combination
of serum deprivation and treatment with nerve growth
factor. As such, these cells have commonly been used to
model neuronal stress and serve as an accessible model of
diabetic peripheral neuropathy repeatedly used by us and
others [11,26-28]. Consistent with previous reports using
the current protocol [29], the viability of vehicle-treated
PC12-AC cells exposed to elevated glucose concentra-
tions (150 mM) for 96 h was reduced by 40-50% relative
to vehicle-treated cells under normal glucose conditions
(Figure 1, left panel). This cell loss is glucose-specific and
not due to osmotic stress as substitution of D-glucose for
L-glucose abolishes toxicity [18,30]. Other studies have
demonstrated a similar loss (30%) of PC12 cells exposed
to 75 mM high glucose media once differentiated to a
neuronal phenotype [28]. To ascertain whether the pro-
tective activity of S. purpurea in the glucotoxicity model
[11] is organ-specific, root and leaf extracts were evalu-
ated at various concentrations below their respective IC50

concentrations (0-30 μg/mL for root and 0-100 μg/mL
for leaf). The leaf extract reduced glucose-induced cell
loss in a concentration-dependent manner up to 30 μg/mL
but failed to provide protection at 100 μg/mL. Con-
versely, the root had no appreciable effect on glucose tox-
icity at low concentrations but significantly exacerbated
cell loss when concentrations approached the IC50 value
(Figure 1, right panel).
In order to confirm the cytoprotection offered by S.

purpurea leaf extracts, a more direct measure of cell sur-
vival was employed since mitochondrial dehydrogenase
activity can be either elevated in dying cells or reduced
in metabolically compromised but not terminally
damaged cells thereby confounding readouts of WST ab-
sorbance [31]. For this reason, we refer to cell number
determined using the WST assay as viable cell number
compared to other measures of cell survival. Following
the same treatment protocol, serum-deprived cultures
were treated with 0.1% DMSO (control) or increasing
concentrations of leaf extract. Cell survival was subse-
quently quantified by Live/Dead assay after 96 h. This
technique allows for direct assessment of viable and
dead (or dying) cells in culture as well as cells that have
detached over the course of treatment; viable adherent
cells were identified by cleavage of calcein AM to its
fluorogenic product by intracellular esterases and dead
or dying cells were identified by uptake of the
membrane-impermeant ethidium bromide homodimer.
Data are expressed relative to surviving cell number in
vehicle-treated cultures in normoglucose to account for
cell loss over treatment. Upon exposure to high glucose,
cell survival in vehicle-treated cultures was compro-
mised by more than 50% (Figure 2A,B). Cell loss was
significantly inhibited by the presence of leaf extract
with concentration-dependent protection (Figure 2A,B).
As observed by WST determination, exposure to leaf ex-
tract (0-25 μg/mL) did not affect the survival of cells



Figure 2 Leaf extract of Sarracenia purpurea prevents high glucose-mediated cytotoxicity. (A) Exposure to glucose toxicity elicited a
significant loss in cell survival compared to normal glucose conditions as assessed by Live/Dead assay [left panel, ** denotes a significant
difference (p < 0.01) relative to normal glucose control, Student’s t-test, n = 8]. Multiple concentrations of leaf extract were administered to
high glucose-treated cells to confirm cytoprotection [right panel, # and ## denote significant differences (p < 0.05 and ## p < 0.01, respectively)
relative to high glucose control, ANOVA, post-hoc Dunnett’s t-test, n = 8]. (B) Treatment with 25 μg/mL of leaf extract reversed high
glucose-induced loss of PC12 cells, which were identified by intracellular cleavage of calcein-AM to its fluorescent product (green cells)
without loss of membrane integrity (red cells). Data are reported as the mean ± SEM.
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under serum-free normal glucose conditions (data not
shown).
The 80% ethanol extraction of dry leaf material pro-

duced a yield of 24.4%. As an initial fractionation step,
lipophilic substances were separated into the ‘hexane’
fraction, which represented 6.5% of the crude extract by
weight. The resulting defatted fraction was difficult to
solubilize at high concentration (>30 mg/mL) in metha-
nol and precipitated significantly with the introduction
of water. The concentrated methanolic extract was
therefore mixed with an equal part of cold water that,
after centrifugation, was separated in two fractions, the
precipitate (methanol fraction) consisting of over 30% by
weight of the crude extract and the supernatant (metha-
nol-water fraction). The dried hexane, methanol and
methanol-water fractions were each dissolved in DMSO
and assessed for protective effects in high glucose trea-
ted cultures using the WST viability assay (Figure 3A).
Remarkably, all three extracts significantly improved cell
viability in high glucose media in a concentration-
dependent manner (3-15 μg/mL) (Figure 3A).
Because the methanol-water fraction was the most ac-

tive, represented the largest fraction of the crude extract,
and is likely most similar in chemical content to trad-
itional Cree preparations, this fraction was selected for
further fractionation by Sephadex LH20 column chro-
matography. When tested in the high glucose paradigm,
4 of the 10 subfractions significantly improved cell via-
bility (Figure 3B, results from inactive fractions not
shown). Of these, fractions 3 and 5 were of low yield
whereas fractions 1 and 10 were the two largest by
weight (29% and 9.0% of the crude extract, respectively).
Fraction 1 (10% MeOH) contained a large amount of
saccharides with a single major peak detected by HPLC-
DAD/APCI-MS. Once separated by preparative HPLC
using peak-based fraction collection, this peak was iden-
tified as morroniside, an iridoid glycoside previously
reported in the genus [32], by 1H and 13C NMR. Elicit-
ing a similar response as the original fraction (#1), mor-
roniside was subsequently purified and confirmed as the
active component by WST (cell viability, Figure 3C) and
Live/Dead (cell survival, Figure 3D) assays. Because
the HPLC trace of fraction #10 (100% MeOH) was fair-
ly complex, a third round of fractionation was performed
by semi-preparative HPLC with automated fraction
collection. Using time-based peak collection, seven
subfractions (10A-G) were collected and prepared for
administration to PC12-AC cells. As presented in
Figure 3C, only subfraction 10C significantly reduced
glucose-induced cell death.
HPLC-DAD/APCI-MS analysis of subfraction 10-C

revealed a single peak accounting for > 90% of the total
area under the chromatograph with UV and MS data
consistent with a quercetin monoglycoside. Using pure
quercetin standards as references, in-house library
matching and 1H NMR, the unknown peak was identi-
fied as hyperoside (quercetin-3-O-galactoside). Apart
from hyperoside, other quercetin glycosides are also
known to occur in the species [33]. To verify that this
compound was indeed responsible for the cytoprotective
effects elicited by the subfraction, a commercially pur-
chased hyperoside standard was tested in the PC12
model, significantly improving survival as determined by
Live/Dead assay (Figure 3D).



Figure 3 Activity-guided fractionation of Sarracenia purpurea leaf extract. In the first phase the crude leaf extract was fractionated based on
solubility in hexane, methanol and water. (A) Each of the solvent fractions was evaluated in the glucose toxicity cell viability assay using WST and
the methanol-water fraction was selected for further fractionation by Sephadex LH-20 column chromatography. (B) Each of the subsequent
fractions was similarly evaluated with four of ten demonstrating significant cytoprotection. Fractions #1 and #10 were selected for further
fractionation by semi-preparative HPLC. (C) Upon evaluation of resulting subfractions using the WST assay, only subfractions #1A and #10C,
significantly reduced cell loss. (D) The concentration dependent protective activities of pure morroniside (>95%), the predominant metabolite in
fraction #1, and hyperoside (>95%), the predominant metabolite in subfraction #10C, were confirmed using the Live/Dead cell survival assay. In
left panels, ** denotes a significant difference (p < 0.01) relative to normal glucose control (Student’s t-test, n = 8-12). In right panels, # and ##
denote significant differences (p < 0.05 and ## p < 0.01, respectively) relative to corresponding high glucose control (ANOVA, post-hoc Dunnett’s
t-test, n = 8-12).
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In previous studies using this model, plant extracts con-
taining quercetin derivatives have yielded varying results.
Whereas we reported that quercetin glycosides may con-
tribute to organ-specific cytoprotective effects of Vacci-
nium angustifolium and Picea glauca [18,29], quercetin-
containing extracts of Vaccinium vitis-idaea and Kalmia
angustifolia were ineffective [12]. To address this incon-
sistency, different quercetin glycosides were assessed indi-
vidually. Though quercetin and each of its glycosides
showed similar responses with increasing activity to an ap-
proximate concentration of 5 μM before protection
waned, the 3-O-galactoside (hyperoside) and 3-O-rutino-
side were most and least effective, respectively (Figure 4).
Within a given extract, both the specific moieties as well
as the relative and absolute quantities of quercetin deriva-
tives are thus likely to impact overall activity. It is import-
ant to note that, consistent with these results in
undifferentiated PC12-AC cells, recent studies have also
demonstrated protective activity of quercetin following
challenge of PC12 cells differentiated to a neuronal pheno-
type with 75 mM high glucose [28].
We next sought to characterize the crude leaf and root

extracts to 1) determine whether the identified actives
were present in sufficient concentrations to exert their
effects, and 2) provide qualitative and quantitative data
for quality control purposes. HPLC-DAD/APCI-MSD
analysis revealed distinguishing differences between leaf
and root extracts, most notably the absence of the large
hyperoside peak with the retention time of 10 min in the
Figure 4 Quercetin and its glycosides protect PC12 cells from
high glucose-mediated death. Exposure to glucose toxicity elicited
a significant loss in cell viability compared to normal glucose
conditions as assessed by mitochondrial dehydrogenase activity
measured by cleavage of the formazan dye WST [left panel, **
denotes a significant difference (p < 0.01) relative to normal glucose
control, Student’s t-test, n = 16]. Multiple concentrations of
quercetin aglycone, hyperoside, isoquercetin (quercetin-3-O-
glucoside), and rutin (quercetin-3-O-rutinoside), were administered
to high glucose-treated cells to assess cytoprotective activity [right
panel, coloured # and ## denote significant differences (p < 0.05
and ## p < 0.01, respectively) between high glucose control and
similarly coloured samples, ANOVA, post-hoc Dunnett’s t-test,
n = 8-10]. Data are reported as the mean ± SEM.
root chromatograph (Figure 5). The concentration of
hyperoside in the leaf extract, determined relative to a
pure standard, was 62.5 μg/mL (Table 1). Three com-
pounds, goodyeroside, epicatechin, and morroniside, were
identified in both extracts and serve as species markers.
Whereas epicatechin and morroniside were identified by
UV and MS spectra and quantified relative to a pure
standard, goodyeroside was identified by MS as well as
1H and 13C NMR spectra but was not quantified.
At their detected concentrations within the leaf ex-

tract, both morroniside and hyperoside significantly
reduced PC12-AC cell loss but neither was as active as
the crude extract. Moreover, assay-guided fractionation
revealed significant activity in multiple leaf fractions sug-
gesting additive or synergistic effects that require further
investigation to resolve. Recently, morroniside was iso-
lated from Shan Zhu Yu (Cornus officinalis SIEB. et
ZUCC.), a Traditional Chinese Medicine used for kidney
problems [34]. In models of nephropathy and neurode-
generation, morroniside demonstrates strong anti-oxi-
dant, reno- and neuroprotective effects [34-36] that
likely contribute to Shan Zuh Yu’s beneficial properties.
Figure 5 HPLC chromatograms of Sarracenia purpurea leaf and
root extracts. Chromatograms of ethanolic leaf (A) and root (B)
extracts with diode array detection at 230 nm wavelength. Labelled
peaks represent the marker compounds morroniside (1), epicatechin
(2), and hyperoside (3). The structures of the identified active
metabolites (1, 3) are shown with quantitative results reported in
Table 1.



Table 1 Quantitation of marker compounds in leaf and root extracts of Sarracenia purpurea by HPLC-DAD

Yield a Leaf Root

24.4% 14.6%

mg / g extract mg / g dry plant tissue mg / g extract mg / g dry plant tissue

1 – Morroniside 145.3 ± 1.1 35.5 ± 0.4 21.3 ± 0.6 3.1 ± 0.1

2 – Epicatechin 35.2 ± 1.8 8.6 ± 0.4 48.1 ± 1.7 7.0 ± 0.2

3 – Hyperoside 62.5 ± 1.0 15.3 ± 0.3 n/d n/d

Goodyeroside ✓ ✓

Total phenolic content b 74.5 ± 6.1 18.2 ± 1.5 146.1 ± 6.2 21.3 ± 0.9

Results are expressed as the mean of three replicates ± the standard error of the mean.
n/d = not detected.
a Yield was calculated as (mass recovered extract / mass dry material) × 100%.
b Expressed as mg quercetin equivalents / g extract as determined using with the Folin Ciocalteau method.
✓ Presence detected but not quantified.
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With the previously known bioactivities ascribed to
quercetin and its glycosides, the isolation of hyperoside
as one of the active metabolites responsible for S. pur-
purea’s cytoprotective effects is not surprising. Our data
are consistent with previous findings indicating that
quercetin derivatives display anti-diabetic and neuropro-
tective activities relevant to the treatment or prevention
of diabetic neuropathy [28]. Three of the major factors
contributing to microvascular complications of diabetes,
such as neuropathy, include oxidative stress, the forma-
tion of advanced glycation endproducts (AGEs), and
increased flux through the polyol pathway [37,38]. As
established anti-oxidants that inhibit both AGE forma-
tion [39] and aldose reductase activity [40], quercetin
derivatives potentially act through a number of mechan-
isms. Although this study was not conducted in primary
neurons, we have previously confirmed the neuroprotec-
tive activity of plant compounds identified through pre-
liminary testing in PC12 cells [22] and recent studies
have validated this finding in neuronally differentiated
PC12 cultures [28]. Moreover, since quercetin and quer-
cetin glycosides prevent neuronal death in several
in vitro and in vivo models of neurodegeneration
[41,42], their activity in the current model is promising.
The observed effects of the leaf extract are, however,

of increased interest considering that SarapinW, a root
extract of S. purpurea, is used to relieve pain. Though
clinical evidence supporting SarapinW is incomplete and
the putative active constituents remain unidentified, the
preparation has been used for a variety of pain-related
ailments [3,4]. With further study, S. purpurea products
could potentially provide both symptomatic relief and
slowed progression of diabetic neuropathy through the
preparation of two separate medicines, a leaf tincture
and an alkaline root extract.

Conclusions
Our study provides compelling evidence that traditional
preparations of S. purpurea, such as those used by CEI
healers, are based on tangible pharmacological agents
and actions in vitro. While restricted to cell-based
assays, this provides further experimental support for
the traditional use of the plant in CEI communities and
has identified active metabolites – hyperoside and mor-
roniside – that will guide future investigations into the
extract’s mechanism(s) of action focusing on potential
synergies as well as additional species markers valuable
for quality assurance and standardization purposes.
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