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Abstract

Background: Recent studies posit a reciprocal dependency between the microbiomes associated with humans and
indoor environments. However, none of these metagenome surveys has considered the viability of constituent
microorganisms when inferring impact on human health.

Results: Reported here are the results of a viability-linked metagenomics assay, which (1) unveil a remarkably
complex community profile for bacteria, fungi, and viruses and (2) bolster the detection of underrepresented taxa
by eliminating biases resulting from extraneous DNA. This approach enabled, for the first time ever, the elucidation
of viral genomes from a cleanroom environment. Upon comparing the viable biomes and distribution of phylotypes
within a cleanroom and adjoining (uncontrolled) gowning enclosure, the rigorous cleaning and stringent control
countermeasures of the former were observed to select for a greater presence of anaerobes and spore-forming
microflora. Sequence abundance and correlation analyses suggest that the viable indoor microbiome is influenced by
both the human microbiome and the surrounding ecosystem(s).

Conclusions: The findings of this investigation constitute the literature’s first ever account of the indoor metagenome
derived from DNA originating solely from the potential viable microbial population. Results presented in this study
should prove valuable to the conceptualization and experimental design of future studies on indoor microbiomes
aimed at inferring impact on human health.

Keywords: Indoor microbiome, PMA, Viability, Comparative metagenomics, Spacecraft, Cleanroom, Viruses, Bacteria,
Fungi

Background
Over the past decade, numerous studies have reported
correlations (of varying strengths and significance) be-
tween the microbial communities inhabiting indoor en-
vironments and the human microbiome. Most recently,
Brooks et al. reported that microbes regularly found in
hospitals were capable of colonizing infant guts and
could profoundly affect human health [1]. In addition,
16S rRNA gene analysis has been used to show that in-
door environments accumulate potential human patho-
gens in much greater numbers than their surrounding

outdoor environments [2]. However, the composition of
a given indoor microbiome has also been reported as be-
ing strongly influenced by both the architecture and
control parameters (e.g., humidity, temperature, airflow,
ventilation) of that particular facility [3]. Capitalizing on
antimicrobial attributes inherent in architectural design
and control logistics is relevant and important to numer-
ous industries, from hospitals to pharmaceutical, micro-
processor, and spacecraft manufacturing.
Spacecraft hardware is assembled in controlled clean-

room environments. External to the actual cleanroom,
there is an uncontrolled gowning area, i.e., a room in
which personnel change into cleanroom garments and
make preparations to enter the cleanroom. Due to the
elevated extent of human activity, this enclosure is
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thought to be strongly influenced by the human micro-
biome. The cleanroom itself has previously been posited
as representing an extreme environment [17], character-
ized by rigorous cleaning and bioburden control regi-
mens, controlled humidity (45 ± 5 %) and temperature
(25° C), and a paucity of available nutrients. As a pro-
active measure to monitor cleanliness and ensure mis-
sion integrity, researchers have been diligently cataloging
the diverse microbial populations detected about space-
craft and their assembly facilities for decades [4]. There-
fore, the indoor microbiome pertaining to spacecraft
assembly cleanrooms represents one of the best-studied
indoor microbiomes in the literature. The microbial
signatures held in this collection were recovered by both
cultivation and 16S rRNA gene sequencing [5–11]. As
is the case for many other environmental settings,
cultivation-based analyses lack the resolution required
to capture the entire breadth of microbial diversity
housed in indoor environments. It has been estimated
that a mere fraction of all microorganisms on Earth
are capable of being cultivated in the laboratory [12]. This
is due, in large part, to an insufficient understanding of
microbial metabolism, interactions (e.g., quorum sensing,
symbiosis), and dormancy (e.g., viable but not cultivable
status). Ribosomal RNA gene sequence analysis allows for
a much higher resolution of microbial diversity profiles
than cultivation, despite being limited by primer bias and
the generation of phylogenetic information only (no direct
metabolic inference). Consequently, environmental gen-
omics based on nucleic acid targets has become an at-
tractive technique for maximizing the coverage of
microbial community profiles from indoor environ-
ments [13]. However, these DNA-based techniques are
incapable of distinguishing viable from dead microbial
cells in the samples [14].
Controlled indoor microbiomes are influenced by sev-

eral factors, including but not limited to routine facility
maintenance and cleaning regimens, periodic acute bio-
burden reduction efforts (e.g., UV lights, vapor-phase
H2O2), controlled humidity and temperature, and a pau-
city of available nutrients. Consequently, not all mi-
crobes can withstand the conditions they encounter in
such environments. Recently, the findings of a 16S rRNA
gene amplicon study conducted on cleanroom samples
suggested that less than 10 % of the observed microbial
signatures originated from living microorganisms [11].
This work exploited the viability marker propidium
monoazide (PMA), which is able to enter only microbial
cells that have a compromised cell membrane [14]. Once
inside the compromised cell, PMA binds covalently to
DNA molecules, thereby precluding downstream PCR
amplification and detection. Previous studies convin-
cingly demonstrated that surveys on microbiomes tar-
geting nucleic acid signatures (e.g., 16S rRNA gene

amplicon analysis or metagenomics) sans live/dead
chemical markers fail to provide any information on the
physiology or viability of the microorganisms from
which the detected nucleic acids originated [10, 15, 16].
Consequently, metagenomic analyses based on total
environmental DNA extracts do not render a mean-
ingful understanding of the metabolic and/or func-
tional characteristics of living microorganisms in indoor
environments.
To overcome this hurdle in indoor microbiome re-

search, we augmented, for the first time ever, metage-
nomic sequencing with the PMA-based viability assay.
This enabled a comprehensive examination of the versa-
tile genetic potential of living biological communities in
indoor environments. The results and inferences gener-
ated in this study underscore the importance of live/
dead chemical markers in studying controlled ecosys-
tems. The experimental design and impactful insights
presented here empower the conceptualization and exe-
cution of ongoing and future investigations of the indoor
microbiome and its impact on human health.

Results and discussion
The viable indoor metagenome encompasses eukaryotes,
bacteria, and viruses
We analyzed and compared the total biome, and viable
contingent thereof, associated with a spacecraft assembly
facility. The facility that was examined housed an uncon-
trolled gowning area and a Class 100K (ISO-8) clean-
room environment. In total, the metagenomes of 12
samples were comparatively analyzed. Three samples
were collected from gowning area and three samples
were collected from the cleanroom. Each of these sam-
ples was split into two equivalent fractions, one of which
underwent direct DNA extraction while the other was
treated with PMA prior to nucleic acid isolation. Once
inside the cell, PMA intercalates and covalently binds to
DNA molecules, thereby inhibiting subsequent amplifi-
cation and/or manipulation of DNA from that particular
cell [14]. The taxonomic assignments corresponding to
the high-quality reads (Additional file 1: Table S1) popu-
lating the metagenomes elucidated in this investigation
spanned bacteria, eukaryotes, and viruses (Fig. 1). While
the major fraction of most of the resulting metagenomes
was attributed to bacteria, two PMA-treated samples
collected from the gowning area were mostly populated
by fungal sequences (Fig. 1). Non-PMA-treated samples
from the gowning area showed a very small proportion
of fungal sequences, although between 40 and 50 % of
those detected were of primate or other eukaryotic ori-
gin. These are likely the remains of dead cells from the
human skin and the environment surrounding the facil-
ity (e.g., plant cells). A comparison revealed that the pri-
mate sequences were significantly more abundant in the
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non-viable biome compared to the viable biome of both
cleanroom and gowning area samples. The presence of
viral sequences, on the other hand, was substantially
greater in the viable biome. This indicates that the re-
moval of (eukaryotic) DNA from dead cells by PMA
treatment enabled the detection of low abundance vi-
ruses, which were not detected otherwise.
No archaeal signatures were observed in the original

metagenomic dataset. While archaea are known to
colonize human skin and are thus readily introduced
to indoor environments via shedding [18], the impact
of their presence in spacecraft-associated cleanroom
environments may have been overestimated in the
past [6, 10, 19]. To date, studies have failed to show any
evidence in support of archaea actively contributing to
cleanroom environments, or posing any threat to clean-
room endeavors [18]. At this time, therefore, archaea
cannot be viewed as constituting a significant portion of
the cleanroom microbiome.
Taxonomic assignments of metagenomic reads were

compared to those presented in Mahnert et al. [26], a
study based on 16S rRNA amplicon sequencing of the
very same samples (Additional file 2: Table S2). In both
studies, Acinetobacter spp. were observed in very high

abundance in the spacecraft assembly facility (SAF) and
gowning area (GA) samples. Also congruent between the
two investigations was the elevated abundance of
staphylococcus signatures in GA samples. The high
abundance of Bacilli in SAF samples observed in the
current study was not reported by Mahnert and co-
workers. The differences in signature composition re-
corded between the two studies likely stem from subtle
differences in sample preparation, possible primer bias
in the PCR reactions, and the sampling of viral as well
as eukaryotic DNA in the metagenomic analyses. While
16S rRNA gene amplicon sequencing can detect low
abundant species like Archaea, metagenomic approaches
are able to resolve a much more comprehensive under-
standing of the cleanroom biome, particularly abundant
community members.

Genome reconstruction provides first ever evidence for
the presence of viruses in the cleanroom environment
The taxonomic analysis of the metagenomes generated
in this study identified a number of different viruses
present in the samples. Two phages were detected, a
Phi29-like virus and an unclassified Siphoviridae. In
addition, several viruses associated with humans or other
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Fig. 1 Proportional abundances per sample. Proportional abundances of community subpopulations (bacteria, eukaryotes excluding
primates/fungi, primates, fungi, viruses) in different samples. Subpopulations showing a significant change between sample groups are
highlighted with a colored frame
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eukaryotes were detected, namely human herpesvirus 4,
Cyclovirus TN12, Dragonfly cyclovirus 2, Hypericum
japonicum-associated DNA virus, various Fecal-associated
gemycircularviruses, and the Meles meles fecal virus.
The observation of viral signatures inspired further

investigation. All datasets were compared to known viral
genomes and all of the sequences matching any of those
viruses were re-assembled. This was performed separ-
ately on each of the two facility areas examined
(cleanroom and gowning area). For each of these en-
vironments, a subset of the resulting assembly showed
high similarity to one known viral genome. Phylogenetic
trees were computed based on capsid protein sequences
to confirm taxonomic assignments (Additional file 3:
Figure S1, 1B and 2B). Sequences reconstructed from the
cleanroom samples dataset matched human cyclovirus
7078A, providing average coverage at a level of 3880
across this organism’s entire 1.7 Kb genome (Additional
file 3: Figure S1, 1A). The assembly reconstructed
from the gowning area samples dataset was highly
similar to the genome of Propionibacterium phage
P14.4 (unclassified Siphoviridae), covering ca. 60 % of
this virion’s 29 Kb genome at an average coverage of
57 (Additional file 3: Figure S1, 2A). As propionibac-
terium phages have recently been reported as being
abundant on human skin [20], the recovery of such
genomes from the gowning area signify the influence
of the human skin microbiome on this ecosystem.
The presence of genomes from members of the family
Circoviridae (Cyclovirus TN12, Dragonfly cyclovirus 2) in
the viable metagenome of the cleanroom suggests that
human-associated viruses are in fact present in these
facilities. Circoviridae was even found to be among the
most abundant taxa in the samples (Fig. 2). This finding is
of consequence to those managing and maintaining

pharmaceutical cleanrooms and hospital operating the-
aters. The primary objective of these facilities is to prevent
the transfer of potential pathogenic organisms, be it via
aerosols, fomites, surgical instruments, or medications. As
human cycloviruses are frequently involved in disease
[21], their observed presence in the cleanroom environ-
ment presents an unappreciated potential risk to human
health in these types of facilities.
The increased incidence of viral detection in PMA-

treated samples is an intriguing finding, one which sug-
gests that PMA preferentially selects for virions having
an intact capsid. Another possibility is that certain
phages incorporated themselves into the genomes of
viable microorganisms as prophages. If this were indeed
the case, however, one would expect to observe an ele-
vated infection rate in the microorganisms that were vi-
able. Unless demonstrated otherwise, the authors opine
that such a phenomenon would stand in stark contrast
to the actual function of viruses (infection and killing of
the host). Ergo, we conclude that PMA treatment likely
favors the detection of virions with intact capsids.

Indoor biomes are influenced by both the surrounding
ecosystem and the human microbiome
Evaluating the bacterial diversity associated with clean-
rooms via sequencing of 16S rRNA genes has led to two
strong yet opposing opinions. Initial analyses of geo-
graphically distinct cleanrooms suggested that associated
microbiomes were largely dependent on the surrounding
ecosystem [5, 22, 23]. However, recent studies have
claimed more and more congruency between the clean-
room microbiome and the human microbiome, though
concrete evidence beyond 16S rRNA gene profile simi-
larity remains elusive [7, 24, 25]. Considering that vari-
ation exists in the human skin microbiome due to
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differences in the biogeographical characteristics of
people [20], the observed geographic dissimilarity of
cleanroom microbiomes could be attributed to variability
resulting from different personnel working in the
cleanrooms.
The authors hypothesized that certain viable microbial

taxa were dependent on the co-presence of human sig-
natures. To test this, the abundance of human sequences
in non-PMA-treated samples was correlated with the
abundance of non-human taxa in PMA-treated samples.
Results showed a statistically significant correlation be-
tween relative human abundance and eight microbial
lineages (seven bacterial and one fungal; Spearman cor-
relation, p value <0.05), as depicted in Fig. 3. As would
be expected, the abundance of human signatures was
highest in the gowning area samples and declined in
SAF samples. Helicobacter, unclassified Bacilli, and
Pleosporaceae exhibited a positive correlation with hu-
man signatures, and as such, the authors opine that
these organisms are likely introduced to the cleanroom
facility via human activity (these organisms were also
more abundant in gowning area samples than cleanroom
samples). Five bacterial taxa, unclassified Bacillales,
Bacillus, unclassified Clostridia, Clostridium, and Pro-
pionibacteriaceae showed a negative correlation with
human signature abundance. These organisms are there-
fore likely entering the facility aboard soil and/or dust
particles or aerosol droplets that originate in the sur-
rounding external environment. Interesting is the case

for Propionibacterium spp. cells, which are predomin-
antly anaerobic and thus susceptible to cleanroom
conditions. These microbes likely die off shortly after
being shed from the skin of their human host, their
natural ecosystem, and exposed to oxygen. In concert,
the results discussed above clearly demonstrate that
(a) the cleanroom microbiome is influenced by both
the ecosystem surrounding the facility and the human
microbiome, and (b) microorganisms are in fact intro-
duced to cleanroom facilities by humans, despite rigor-
ous and stringent facility maintenance and bioburden
control measures.

Functional and taxonomic complexity of the viable
cleanroom microbiome
Understanding the functional potential of the biological
communities inhabiting cleanrooms is of importance to
a number of industries, including medical, pharmaceut-
ical, superconductor, and space exploration. Those
charged with creating, imposing, and enforcing planetary
protection policies and requirements have recently come
to appreciate the resolving power of innovative molecular
strategies to taxonomically and functionally characterize
the microbial populations associated with the cleanrooms
in which spacecraft are assembled [4]. These endeavors
help better estimate the risk of transporting life to foreign
celestial bodies, as well as the probability of terrestrial
microbiota surviving spaceflight and/or another celestial
environment.

Fig. 3 Microbial taxa that significantly correlate with human signals across metagenomes. Relative abundance of human sequences and eight
microbial taxa whose abundances were significantly correlated with the abundance of human sequences in gowning area and cleanroom
samples, respectively. Unclassified Bacilli, unclassified Pleosporaceae, and Helicobacter spp. showed a positive correlation with the relative
abundance of detected human reads, whereas Clostridium, unclassified Propionibacteriaceae, unclassified Bacillales, unclassified Clostridia, and
Bacillus spp. showed a negative correlation with such reads
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The variation observed across taxonomic clades and
the influences of different ecosystems on the clean-
room microbiome suggest a fairly complex biological
community. This is most likely a consequence of sto-
chastic introduction of microorganisms to the clean-
room facility via the surrounding ecosystem and the
shedding of skin from different personnel. Generally
speaking, the skin microbiome has been shown to be
dependent on the biogeography of the individual [20],
which adds yet another level of complexity to the
cleanroom ecosystem. A rank-abundance curve based
on read abundances (Fig. 2) suggested a fairly simple
community, with Bacillus and Clostridiales highly
abundant in PMA-treated SAF samples (Fig. 2a) and
the fungus Leotiomyceta dominant in PMA-treated
GA samples (Fig. 2b). However, this analysis was
somewhat limited in that it was predicated on genus,
i.e., each genus represented numerous organisms, and
thus an array of different genomes. For instance, at
least 15 and 34 operational taxonomic units were re-
ported for the highly abundant genera Bacillus and
Clostridium, respectively, by another parallel study
(data based on 16S rRNA gene amplicons of the very
same samples [26]). These genera are thus representa-
tive of at least 15 and 34 different genomes. This ob-
served variability in constituent microbial species,
coupled with the detection of various highly abundant
eukaryotes (Amoebozoa and fungi) having larger and
more complex genomes, leads the authors to con-
clude that the viable contingent of the cleanroom
microbiome is considerably more complex than previ-
ously estimated [11]. This complexity hampers se-
quence assembly for genome reconstruction, as has
also been observed for the skin microbiome [20]. Fu-
ture investigations will necessitate substantially deeper
sequencing than has been performed here with very
recently developed metagenomic tools that allow reso-
lution at strain level [27].
Genetic evidence for fermentative and respiratory pro-

cesses was inferred from KEGG annotations. Lactate and
alcohol dehydrogenases detected in the metagenome
may enable growth of microbes under oxygen-limited
conditions via substrate-level phosphorylation. Anaer-
obic respiration was inferred from genes that encode
nitrate and nitrite reductases. Energy generation via re-
spiratory processes may have occurred via NADH dehy-
drogenases, cytochrome oxidases, and ATP synthases
annotated in the metagenome.
Carbon metabolism was inferred from the detection

of genes encoding enzymes involved in glycolysis and
the TCA cycle. These metabolic processes not only
generate ATP but also NADH, which is re-oxidized
by either fermentative or respiratory processes (see
above). Autotrophic metabolisms were inferred from

the detected presence of ATP citrate lyase, a key en-
zyme for carbon fixation in bacteria operating the re-
verse TCA cycle. Also found were genes annotated as
small subunits of the RuBisCO gene. Although this
enzyme’s catalytic subunit is localized on the large
chain (i.e., encoded on the marker gene), the presence
of the small subunit of the most important enzyme in
the Calvin-Benson-Bassham cycle suggests that some
organisms may be able to fix carbon dioxide via this
pathway. In oligotrophic cleanroom environments, the
only readily available source of carbon for microbial
proliferation is atmospheric CO2, rendering carbon
fixation a particularly attractive strategy for the con-
tinued persistence and outgrowth of contaminant mi-
croorganisms. This metabolic capability has previously
been reported in a handful of microbes isolated from
cleanrooms [7]. With respect to extraterrestrial envi-
ronments targeted by future space exploration efforts,
organic carbon is most likely limited and autotrophy
might very well be the only type of metabolism
capable of furnishing hitchhiking microbes with the
molecular building blocks required to survive and
proliferate.
With respect to the reconstruction of metabolic

pathways, the elucidation of the total community,
even on the sequence level, also remains incomplete.
Nevertheless, the partial coverage of some metabolic
pathways in the current dataset enabled conclusions
regarding stress response, DNA repair, and carbon,
nitrogen, and sulfur cycling. The observed abundance of
key enzymes in these pathways is depicted in Additional
file 4: Figure S2. Key enzyme abundances did not vary
significantly between environments (GA vs. SAF). In
general, enzyme abundances were higher in samples not
treated with PMA. Absolute abundances were particu-
larly high in one sample sans PMA treatment (SAF_A)
but dropped below detection limits after the sample had
undergone viability treatment (SAF_A_PMA). The
placement of these two samples in the community pro-
files in Fig. 4 suggests that this variation coincides with
the eukaryotic fraction of the community. Ultimately,
however, only the genes involved in stress response and
DNA repair were observed in both the non-PMA-
treated and PMA-treated samples. In contrast, genes for
carbon, nitrogen, and sulfur cycling were only detected
in samples not subjected to the PMA-based viability
assay. This might imply that the cells that remain vi-
able in these environments do so by mitigating the
stresses imposed with optimally functioning, well-
regulated, and DNA repair and stress response path-
ways. These results underscore the need for more
thorough assessments of the functional genetic poten-
tial held in the microbial communities dwelling in
cleanroom environments.
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Cleanroom maintenance significantly affects microbiome
structure
In this study, differences in biome structure were
assessed at the single taxon level, at the metabolic

pathway level (both see above), and at the community
level. When datasets were confined to the eukaryotic
and/or viral community, there were no significant differ-
ences observed in community structure between the
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Fig. 4 Community composition analyses. a Heatmap depicting a summary of the results of PERMANOVA and MRPP tests on the entire community
and various subpopulations (bacteria, eukaryotes, fungi, viruses) based on both Bray-Curtis and Sorensen distance. The heatmap is based on the chance
corrected within-group agreement of each test, which provides a measure on the intra-group similarity and inter-group dissimilarity (i.e., the higher
the value the greater the difference in the community composition between the groups tested). The value is indicated by the cell color, with white
representing the minimum and black representing the maximum value in the heatmap. b The observations from significance testing (a) were
supported by ordination analyses at genus level abundances for entire community profiles. c Ordination analysis of bacterial community profiles of
all the samples. d Ordination analysis of eukaryotic community profiles of all the samples. e Ordination analysis of fungal community profiles of all
the samples. f Ordination analysis of viral community profiles of all the samples
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cleanroom and gowning area samples. However, upon
analyzing the bacteriome, and even the grand biome in
its totality, the cleanroom exhibited a significantly differ-
ent community composition than the gowning area
(Fig. 4). At the taxon level, viable Coxiellaceae and un-
classified Clostridia were observed in far greater abun-
dance in the gowning area samples (Fig. 5a). With
respect to metabolic pathways, cleanroom samples were
significantly depleted of peroxisome and folate biosyn-
thesis pathway signatures yet enriched in nitrogen
metabolism, vitamin B6 metabolism, and membrane
transport genes (ABC transporters). Certain signatures
were markedly underrepresented in the gowning area
including an acyltransferase involved in glycerolipid
metabolism, a methyltransferase involved in lysine deg-
radation, and several genes associated with genetic infor-
mation processing (Fig. 5b). These observed differences
seem to imply a point at which the cleanroom and
gowning area bacteriomes diverged. The authors specu-
late that differences in the stringency and robustness of
cleaning regimens and facility maintenance led to this
divergence and continue to impose the varied pressures
required to discern these biomes today. These results
show that the extent of cleanroom maintenance has a
significant influence on the resident viable bacterial

community. The same cannot be concluded for the
eukaryotic and viral portions of the cleanroom biome.

The total microbiome and viable contingent thereof have
very different taxonomic and functional features
In this investigation, PMA treatment was shown to dra-
matically alter the structure of recovered biomes, at vari-
ous levels. At the community level, this viability assay
significantly affected the entire, bacterial, eukaryotic,
fungal, and viral communities irrespective of the metric
applied (binary or abundance; Fig. 4). Permutational
MANOVA (PERMANOVA) and multiresponse permu-
tation procedure (MRPP) tests showed high congruency
among each other and across the taxonomic groupings
tested (genus level and family level). The greatest
chance-corrected within-group agreements (Fig. 4a) of
all of the tests performed were those for viability assay
versus total biome of both fungi and viruses. These two
taxonomic groups appeared to be very sensitive to PMA
treatment, confirming that PMA-pretreatment did in
fact affect the detectability of community members other
than bacteria. PMA chemistry has previously been used
to discern viable from dead fungi [28, 29] and viruses
[30–33]. The authors are aware, however, that PMA-
based viability assays are limited in their ability to
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Fig. 5 Taxonomic and functional sample differences. Heatmaps displaying differences between the viable and non-viable biome and between
gowning area and the cleanroom biome investigated using paired Student’s t tests and Welch tests, respectively. These were carried out individually
for each classification, namely taxa, KOs (KEGG Orthologs, Additional file 5: Figure S3) and entire KEGG pathways. All tests performed were checked for
robustness using permutations of sample sets (Additional file 9: Table S4); robust comparison groups (95 % confidence) were highlighted in this figure
and in Additional file 5: Figure S3 (column names of heatmaps). a The 37 taxa with significant differences across all six comparison groups comprised
Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Fungi, and Viridiplantae. b Fifty-eight pathways associated with Metabolism, Genetic
Information Processing, Environmental Information Processing, and Cellular Processes showed significant differences between the six comparison
groups. Most of the pathways were less abundant in the viable biome
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accurately distinguish viable spores and archaea from
their expired counterparts. This limitation might very
well explain why no archaea were detected in any of the
PMA-treated samples. However, Mahnert et al. detected
archaeal signatures at very low abundance in the very
same samples via amplicon sequencing [26]. Future ex-
periments might benefit from co-treatment with dithio-
threitol, to promote the penetration of PMA into
inactivated spores [34]. Whether or not “all” non-viable
cells are precluded from downstream molecular detec-
tion remains a point of heated debate, and concrete evi-
dence one way or the other continues to elude the PMA
community. Although signatures of the human genome
decreased significantly after viability treatment (paired
student’s t test, p value 0.025, Fig. 1), some were still
found in treated samples. Since it can be assumed that
all of the human cells found in these indoor environ-
mental samples are not viable, PMA must sometimes
struggle to permeate the (thick) glycocalyx cell walls
enveloping these cells. On the other hand, human cells
may still have an intact cell wall and thus escape PMA
treatment. Nevertheless, the PMA chemistry appeared
remarkably effective at manipulating the bias of a mo-
lecular reaction (and an entire investigation for that mat-
ter) in a favorable manner, i.e., towards the viable
community members of interest and away from dead
cells and large amounts of human DNA.
On the taxon level (Fig. 5a), the abundance of numer-

ous genera decreased significantly when treated with
PMA, while unclassified Aspergillaceae and unclassified
Coxiellaceae increased markedly. This effect on Asper-
gillaceae is of particular interest, as these organisms have
been shown to affect human health in indoor environ-
ments [34]. The ability to more accurately gauge the
abundance of these and other pathogens sans artifacts
and bias resulting from the DNA of dead cells should be
of interest to health and medical professionals. The au-
thors believe that the enabling capabilities made possible
by PMA treatment (resolution of functional, viral, and
eukaryotic nucleic acid signatures) largely outweigh the
limitations of such treatment on endospores. Therefore,
we recommend the augmentation of viability assays as a
complement to non-PMA treatment whenever screening
for the taxonomic signatures of potentially viable
pathogenic organisms. The viable biome resulting from
cleanroom samples was far more laden with unclassi-
fied Clostridia signatures yet significantly depleted in
unclassified Coxiellaceae signatures. This could be a
consequence of the physiological flexibility (i.e., anaer-
obic growth and endospore formation) of Clostridia.
The entire (i.e., viable + dead) biome resulting from
cleanroom samples also exhibited a reduced abun-
dance of unclassified Coxiellaceae and unclassified
Bacilli signatures, whereas the abundance of unclassified

Rhizobiales and unclassified Alphaproteobacteria in-
creased significantly.
Changes in functional genetic potential were evaluated

at the pathway level (Fig. 5b) while also considering
KEGG orthologs (KO; Additional file 5: Figure S3).
Functional differences between KO were often observed
in pathways whose signature abundances were signifi-
cantly altered. The detected abundance of most pathway
signatures decreased in the viable biome (Fig. 5b,
PMA vs. non-PMA). Focusing on cleanroom samples,
the viability assay resulted in a slight increase in cell
communication signatures and a marked decrease in
genes involved in regulation of autophagy, signaling,
genetic information processing, and pyruvate and nu-
cleotide metabolism (Fig. 5b, SAF: PMA vs. non-PMA).
Of all of the PMA-treated samples analyzed, cleanroom
samples were markedly depleted in peroxisome and pyru-
vate metabolism pathways (Fig. 5b, PMA: SAF vs. GA).

Conclusions
In conclusion, the results of analyses of taxonomic and
functional variability indicate that the gowning area har-
bors more strictly aerobic and non-spore-forming taxa,
while the cleanroom is richer in facultative and obligate
anaerobes and spore-forming taxa. These results are in
good agreement with findings presented in [26]. Also,
the functional profile of the cleanroom biome suggests
that this population might be less dependent on oxygen
for energy generation and slightly more amenable to
other sources, such as nitrogen. Focusing on the viable
portion of the microbial community is advantageous for
many reasons. Quelling the DNA molecules originating
from dead cells imposes a bias in favor of detecting sig-
natures arising from the viable cells of interest. This is
of immense importance as researchers attempt to accur-
ately infer microbiome composition and/or function
from a given biotope. In natural environments not
undergoing drastic changes, the majority of microorgan-
isms exist in an active, viable state [35], while the major-
ity of signatures recovered from indoor microbiomes,
cleanrooms in particular, originate from non-viable mi-
croorganisms [11]. Understanding the natural status (i.e.,
viable vs. non-viable) of source organisms is crucial
when inferring risk to human health from environmental
samples (intensive care units; [36]) via nucleic acid-
based analyses. Results convincingly demonstrate that
the cleanroom microbiome consists of bacteria, eukary-
otes, and even viruses, and as such, is much more com-
plex than was previously posited. Adding to this
complexity, at least in part, is an appreciable reciprocal
dependency on the human microbiome. The work de-
scribed here provides a well-established infrastructure
for future studies centered on the indoor microbiome
and should prove of significant relevance to those
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interested in epidemiology, pharmaceutical manufactur-
ing and packaging, and operating theater cleanliness or
human health in general. Collectively, the experimental
design, molecular techniques, and conclusions discussed
here constitute the scientific literature’s first ever func-
tional and taxonomic characterization of the viable in-
door biome.

Methods
Sample collection
Samples were collected from floors of the Jet Propulsion
Laboratory’s Spacecraft Assembly Facility (SAF;
Pasadena, CA) and adjacent gowning area (GA) via wet
surface wiping with biological sampling kits (BiSKit;
QuickSilver Analytics, Abingdon, MD), as previously
described [37]. In total, ten samples were collected
from the SAF and three samples were collected from
the adjacent GA (1 m2 each), all in triplicate fashion.
Negative controls (Sterile PBS prewash of all Sam-
pling kits), handling controls (sampling kits briefly ex-
posed to the ambient sampling environment), and
other reagent controls (PBS, DNA extraction re-
agents) were also prepared. None of the control sam-
ples yielded enough DNA to construct metagenome
libraries. Hence, these control samples were not con-
sidered for sequencing any further analysis. The SAF
is a Class 100K certified cleanroom per Fed-Std-209E
(equivalent ISO 14644-1 Class 8), within which, spacecraft
hardware was actively being assembled at the time that
samples were collected.
To minimize microbial contamination of the SAF

floor, an all-purpose cleaning and degreasing agent
(Kleenol 30, Accurate Industrial Supply, Inc., Cerritos,
CA, Cat #: J-CC-00040) is routinely applied by mainten-
ance personnel. Cleanroom surfaces were cleaned twice
a day while spacecraft hardware was present and under-
going assembly. In addition, the cleanroom portion of
the facility was maintained with stringent protocols
geared towards minimizing the influx of particulate mat-
ter, including HEPA filtration, the routine replenishment
of tacky mats at points of ingress/egress, and daily
vacuuming and mopping of floors. Prior to entering the
cleanroom, personnel were required to take necessary
precautions in the gowning area, including the donning
of cleanroom garments, the gloving of hands, and the
taping of gloves to garments. Hence, the gowning area
was also sampled as a means of evaluating the extent to
which microbes gain entry into the cleanroom via this
portal.

Sample processing
Sample volumes were extracted from each BiSKit device
in accordance with manufacturer-provided protocols.
Biological materials from each 45 ml sample were

concentrated with Amicon Ultra-50 Ultracel centrifugal
filter tubes (Millipore, Billerica, MA). Each filter unit,
having a molecular mass cutoff of 50 kDa, facilitated the
concentration of cells, spores, and nucleic acid frag-
ments greater than 100 bp. All concentrated samples
(1 ml final) were divided into two separate 500 μL frac-
tions, one to be treated with PMA prior to analysis
(viability assessment), and the other to serve as a null
environmental sample (viable + non-viable, i.e., total
DNA).

Viability assay
Each 500 μl aliquot of filter-concentrated sample sus-
pension to undergo viability assessment was treated with
PMA (2 mM; Biotium, Inc., Hayward, CA) to a final
concentration of 50 μM [16, 38], mixed thoroughly, and
incubated in the dark for 5 min at room temperature.
Tubes were inverted 5–6 times manually during the in-
cubation to promote homogeneous PMA exposure. Both
PMA-treated and non-treated samples were subjected to
PMA photoactivation at room temperature for 15 min
using a LED light source (λ = 464–476 nm, 60 W;
PhAST Blue, GenIUL, Barcelona, Spain). To facilitate re-
covery of the broadest spectrum of recovered DNA mol-
ecules possible, one-half of the volume of each sample
(250 μl) was subjected to bead beating in Lysing
Matrix E tubes (60 s at 10 m/s) on a FastPrep®-24
(MP Biomedicals, Solon, OH, USA). Following agita-
tion, respective sample fractions were combined
(500 μl) and subjected to automated DNA extraction
in a Maxwell® 16 instrument, in accordance with the
manufacturer’s accordance with mPromega; Madison,
WI). The DNA extracts resulting from the ten clean-
room samples were then pooled, as were those from
the three gowning area samples. As samples were col-
lected in triplicate from each sampling location, pro-
cessing in this manner resulted in three representative
samples each from the cleanroom and gowning area.

Metagenomic sequencing
All manipulations were performed in a bleach-cleaned
biohood, which resided in an ultra-clean laboratory en-
vironment (i.e., single-use lab coats, bleached gloves,
booties, etc.). Each sample was divided into 1 μl aliquots,
which were amplified via Multiple Displacement
Amplification (MDA) using Repli-g single-cell whole
genome amplification kit (Qiagen part #150345) ac-
cording to the manufacturer’s instructions. Reaction
mixture consisted of Phi29 Reaction Buffer (1X final
concentration), 50 ng in hexamers with phosphoro-
thioate modification of the two 3’-terminal nucleo-
tides (IDT) [39], 0.4 mM dNTP, 5 % DMSO (Sigma),
10 mM DTT (Sigma), 100 U Phi29, and 0.5 μM Syto
13 (Invitrogen) in a final volume of 15 μl. A master
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mixture of MDA reagents was prepared and subse-
quently dispensed into Safe-Lock 1.5 ml clear micro-
centrifuge tubes (Eppendorf ). Syto 13 was omitted
from the master mixture as it is easily degraded by
UV radiation. All plastic ware, water, lysis, and stop
buffer were UV treated in a Stratalinker 2400 UV
Crosslinker (Stratagene) with 254-nm UV for 30 to
90 min on ice [40]. This represents a UV dose range
of 5.7 to 17.1 J/cm2, calculated by measuring the dis-
tance from inside the tubes to the light bulb (4 cm).
Following UV irradiation, master mixture was aug-
mented with Syto 13 and dispensed into each well of
a 384-well plate. MDA reactions were real-time moni-
tored and stopped when sample amplification reached
saturation.
Amplified fractions of each sample were combined,

and this pooled DNA product (100 μl) was sheared using
a Covaris E210 instrument (Covaris, Woburn, MA) set
to 10 % duty cycle, intensity 5, and 200 cycles per burst
for 1 min. The concentration and fragment size of each
sheared product was determined using Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA) in
accordance with the manufacturer’s recommended con-
ditions. The sheared DNA was end-repaired, A-tailed,
and ligated to Illumina adaptors according to standard
Illumina (Illumina, San Diego, CA) PE protocols. The
concentration of the resulting Illumina-indexed libraries
was again determined using Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA). JPL samples
GA-A, GA-B, GA-C, GA-A + PMA, GA-B + PMA, and
GA-C + PMA were pooled into one library; JPL samples
SAF-A, SAF-B and SAF-C, SAF-A + PMA, SAF-B +
PMA, SAF-C + PMA were pooled into a second library.
In this context, “pooling” refers to the barcoding and
multiplexing of numerous sample sets into a single li-
brary. The pooled libraries were normalized to a final
concentration of 400 mM each, and the primary
bands corresponding to the sizes were gel-purified
and dissolved in 30 μl TE. One flow-cell was gener-
ated from each pooled library, which was subse-
quently subjected to sequencing in an Illumina MiSeq
instrument, in accordance with manufacturer-provided
protocols. The raw sequence data are available within
IMG/M (http://img.jgi.doe.gov/).

Sequence data analysis
MiSeq-generated paired-end reads 250 bp in length
were merged using PEAR software (default parame-
ters) [41], and both the merged reads and each of the
non-merged reads (forward and reverse) were retained.
FastQC [42] was used to determine the base quality
throughout the reads, and all merged and non-
merged reads were processed using prinseq-lite [43]
with the parameters: “-min_len 100 -trim_qual_right

20-trim_qual_left 20-trim_left 8.” Adapter sequences
and overrepresented homooligonucleotides were iden-
tified with the tool FastQC [42] and removed using
Cutadapt [44]. The remaining high-quality reads were
mapped against the genome of the Illumina positive
sequencing control, Bacteriophage PhiX174, and a JGI
standard collection of potential contaminant genomes
(Additional file 6: Table S3) using the BBMap short
read aligner [45]. Any reads matching any of these
contaminant genomes were removed from the dataset.
Remaining high-quality, non-contaminant reads were
assembled using the Velvet [46], Ray Meta [47], and
IDBAUD [48] assembly tools. The assemblies resulting
from each of the three tools were of low value (largest
contig, 2–17 Kb; N50, 0.6–1 Kb, coverage, 1–4), and as
such, all subsequent analyses were based on unassembled
read data.
All high-quality, non-contaminant reads were com-

pared against NCBI non-redundant database (NR) [49]
using RAPSearch2 [50], and results were imported into
MEGAN (min score, 80; [51]). Read counts per taxon
were exported for family and genus level, as were counts
for functional assignments against KEGG on KEGG
ortholog (KO) and pathway level. This represented the
total abundance dataset. For various sample groups,
genus level taxon abundances were summed, ranked,
and normalized based on the total abundance of all taxa
in the respective group of samples. The top ten taxa in
each group of samples were then plotted in a rank-
abundance curve.
Bacterial taxa were compared to the results from

Mahnert et al. [26], which are based on the same sam-
ples. Genus level taxon abundances were summed and
normalized based on the total abundance of all taxa in
the respective samples of both studies, and top 20 taxa
for each sample were extracted.
For univariate statistics, human reads were removed

from the dataset. Therefore, all high-quality, non-
contaminant reads were mapped against the human as-
sembly “GRCh38” (including the mitochondrial genome)
using BBMap [45], and matching reads were removed.
Remaining reads were compared against NCBI NR [49]
using RAPSearch2 [50], and the results were imported
into MEGAN (min score, 80; [51]). For each sample, the
“primate” sub-branch was removed, and then read
counts per taxon, as well as for functional assignment
against KEGG on KO and pathway level, were deter-
mined as described above. This represented the non-
human abundance dataset.
High-quality non-contaminant reads were also mapped

against all viral genomes in NCBI RefSeq [49] using
BBMap [45]. Reads matching to viral genomes were ex-
tracted, grouped by environment (SAF or GA), and as-
sembled with the metagenome assembler Ray Meta [47].
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For each environment (SAF or GA), the reads used for as-
sembly were mapped to the resulting contigs to derive
coverage and validate the assembly. Assembled contigs
were then compared to the NCBI NR database via BlastX
[52] and aligned against the genome sequences of the best
BlastX hits using MAUVE [53]. Capsid proteins detected
by BlastX in each of the contig subsets were aligned to
amino acid sequences of capsid homologs in closely
related taxa using Muscle [54] with default parame-
ters, and a maximum-likelihood phylogenetic tree was
constructed from the alignment with FastTree 2 using
default parameters [55].

Statistical analysis
Taxonomically and functionally classified sequences were
analyzed using the R programming environment [56].
Multivariate statistics were based on rarefaction of the
non-human abundance dataset to the lowest amount of
reads of all samples. Rarefaction, followed by calculat-
ing the Bray-Curtis or Sorensen distance, was per-
formed 10,000 times, and the average distance was
calculated. Tests using this averaged distance spanned
PERMANOVA (Adonis testing), MRPP, and principal
coordinate analysis (PCoA) calculated using the R-vegan
package [57]. The according R script can be found in the
supplementary (Additional file 7: Zipfile S1).
Calculations for determining significantly increased/

depleted taxa were based on log10-transformed se-
quence abundance data (normalized by number of reads)
and included paired t tests (when pairing was possible
due to PMA treatment) and Welch tests for non-paired
data (comparisons across non-paired samples, e.g.,
cleanroom vs. gowning area). Additionally, a permuta-
tion test was carried out to check for false discovery.
Abundance differences for significant taxa were visual-
ized as a heatmap of Z-scores.
Correlations between abundance of human and every

classified taxon were calculated based on the total abun-
dance dataset using Spearman’s correlation coefficient.
Taxa within the “Eumetazoa” lineage were excluded from
the correlation analysis, as these were likely to represent
nonspecific human sequences. Abundance data was
log10-transformed and normalized by number of reads.
Human abundance per non-PMA sample was deter-
mined by summing up abundances of all taxa that con-
tain “Primates” in their lineage. Human abundances in
non-PMA samples were correlated with the abundances
in PMA samples for each taxon by Spearman’s correl-
ation coefficient.

Functional analysis
Functional annotations were derived from MEGAN
[51]. Significantly increased/depleted pathways and
KEGG orthology (KO) were based on log10-transformed

non-human sequence abundance data (normalized by
number of reads) and were identified by paired t tests and
Welch tests as described above for taxa. A permutation
test was carried out to check for false discovery, and abun-
dance differences for significant pathways/KOs were visu-
alized as a heatmap of Z-scores. The complete set of KO
annotations was searched for key terms related to stress
response and DNA repair. Search terms used were
“sulfoxide,” “thioredoxin,” “homologous,” “repair,” “sbc,”
“recombination,” “exopolysaccharide,” “glycosylase,”
“heat,” and “cold.” The relative abundance of enzymes
annotated with these key terms, as well as enzymes
contained in the KEGG pathways “Carbon fixation in
prokaryotes,” “Nitrogen metabolism,” and “Sulfur me-
tabolism” were calculated by dividing absolute abundance
values by the total number of functional annotations.
Coverage of KEGG pathway maps were manually
inspected using MEGAN.

Availability of data and materials
The data sets supporting the results of this article are
available within IMG/M (http://img.jgi.doe.gov/).
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