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1 Introduction and results

Various authors [1–4] have made use of gauge-gravity duality to study the stopping distance

of massless, high-energy jets in a strongly-coupled plasma of N=4 supersymmetric Yang

Mills theory (with and without the addition of fundamental-charge matter). All have

found that the furthest that such a jet penetrates through the plasma scales with energy

as E1/3. Most of these methods specified the initial conditions of the problem in the

gravity description of the problem, and it is not completely clear exactly what these initial
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Figure 1. The average deposition of charge as a function of x3 for jets created by the source

described in section 4.1 and in ref. [4].

conditions correspond to in the gauge theory. However, we recently showed [4] one possible

way to set up the entire problem directly in the gauge theory, only then translating to

the gravity description using the conventional elements of the AdS/CFT dictionary. We

specifically studied jets that carried R charge, and we measured how far that charge traveled

before stopping and thermalizing. Though we did find that the furthest charge would travel

through the plasma scaled as E1/3, we also found that, on average, almost all of our jet’s

charge stopped and thermalized at a shorter distance that scales as (EL)1/4, where L is the

size of the space-time region where our jet was created. Figure 1 shows a qualitative picture

of our result for, on average, how much of our jet’s charge was deposited as a function of

distance traveled x3. (Our convention here is to write 4-dimensional space-time position as

xµ and take our jets to be created near the origin, traveling in the x3 direction.) Between

the (EL)1/4 scale and the E1/3 scale, the distribution falls algebraically like (x3)−9 for jets

created by the source used in ref. [4]. We will work in units where 2πT = 1, and in those

units the specific formula we derived for figure 1 was

Prob(x3) ≃ 2
(4c4EL)2

(2x3)9
Ψ

(

− c4EL

(2x3)4

)

for x3 ≪ E1/3 (1.1a)

and

Prob(x3) ≃ 4
(c2L)2

E
Ψ(0) exp

(

−2c1x
3

E1/3

)

for x3 ≫ E1/3, (1.1b)

where Ψ(y) is a source-dependent function that suppresses |y| ≫ 1, causing suppression of

x3 ≪ (EL)1/4 above. The c’s are constants given by

c ≡ Γ2(1
4)

(2π)1/2
, (1.2)

c1 ≃ 0.927 , and c2 ≃ 3.2 .

The calculation that produced (1.1) was long and not particularly enlightening as to

the origin of the (EL)1/4 scale. The purpose of the current paper is to show how that
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scale, and then the precise result (1.1a) for the case x3 ≪ E1/3, can be derived from a very

simple calculation of how far a classical massless particle travels in AdS5-Schwarzschild

space before falling into the black brane. In the process, we will learn more about exactly

what feature of the source determines the (EL)1/4 scale. We will see that it is not directly

the size but the typical “virtuality” q2 of the source that matters (where q2 ≡ qµη
µνqν is

squared 4-momentum).

Our analysis of the distance traveled by falling particles in AdS5-Schwarzschild will be

essentially the same as an earlier analysis by Gubser et al. [1] and Chesler et al. [3], who

used it in a discussion of the falling endpoint of a classical string. The difference here will

be one of context and application: Our analysis of jets [4] does not involve classical strings,

and we will use the falling particles to explain the (EL)1/4 scale.

In our earlier work [4], we created the jet by turning on a small-amplitude source whose

space-time dependence had the form

source(x) ∼ eik̄·x ΛL(x) (1.3)

of (i) a high-energy plane wave eik̄·x times (ii) a slowly varying envelope function ΛL(x)

that localizes the source to within a distance L of the origin in both space and time. We

took k̄ to be light-like:

k̄µ = (E, 0, 0, E). (1.4)

In addition, for the sake of simplicity, we took the source to be translation invariant in the

two transverse directions. So, for example,

ΛL(x) = e−
1
2
(x0/L)2e−

1
2
(x3/L)2 . (1.5)

The Fourier transform of the source (1.3) is non-negligible in the region of momentum space

depicted in figure 2a: a region centered on k̄ with width of order L−1. We take L−1 ≪ E.

Note that this source covers a range of values of q2, from 0 to order ±E/L, and the typical

size of |q2| is order E/L.

In the gravity description, this source causes a localized perturbation on the bound-

ary of AdS5-Schwarzschild space-time, which then propagates as a wave into the fifth

dimension, eventually falling into the black brane horizon. The analysis of jet stopping in

refs. [2, 4] was based on the analysis of such 5-dimensional waves.

Now imagine instead a source where k̄ is slightly off the light-cone,

k̄µ = (E + ǫ, 0, 0, E − ǫ) (1.6)

with ǫ≪ E, and where the envelope size L is wide enough that the picture in momentum

space looks like figure 2b instead of figure 2a, with the spread 1/L in momenta small

compared to ǫ. In this case, the q2 of the source is approximately well defined, with

q2 ≃ k̄2 ≃ −4Eǫ. We will show that in this case the wave created by the boundary

perturbation is localized into a small wave packet, whose motion may be approximated

by that of a classical, massless particle which starts at the boundary, traveling in the x3

direction, with 4-momentum proportional to q. The trajectory of such a particle is shown

– 3 –
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Figure 2. Qualitative picture of momenta contributing to the source (1.3) used to generate jets (a)

for the calculation originally used to find (1.1), with L−1 ≪ E, and (b) in the case L−1 ≪ ǫ ≪ E

of (1.6). Figure (c) depicts (a) as a superposition of distributions of type (b). The cells in (c)

that are extremely close to the light cone cannot be treated in particle approximation, but the

contribution of cells that can be treated so dominates when L ≪ the maximum stopping distance

scale E1/3.

qualitatively in figure 3a. By a simple calculation, we will find that the particle falls into

the horizon after covering a distance

x3

stop ≃ c√
2

( |q|2
−q2

)1/4

≃ c

2

(

E

ǫ

)1/4

. (1.7)

where the constant c is given by (1.2). As measured by boundary time x0, the particle

takes an infinite amount of time to fall into the horizon. As it gets closer and closer to the

horizon, the boundary distortion that the particle creates (see figure 3b) becomes weaker

and more spread out, which corresponds to charge diffusion in the boundary theory after

the jet stops and thermalizes. This qualitative picture is similar to the qualitative picture

of the effects of a classical string falling into the horizon given in refs. [1, 6].1

Note that the stopping distance (1.7) only makes sense for q2 < 0 (i.e. ǫ > 0). The

q2>0 components of a source do not create an excitation of the system that persists after

the source turns off and so are not relevant [2, 4].

Now consider the original source of figure 2a as a superposition of sources like figure 2b,

as depicted in figure 2c. Since sources with different values of ǫ have different stopping

distances (1.7), we might guess that the different pieces of this superposition do not interfere

and so the source of figure 2a simply produces a distribution of stopping distances, weighted

by independent probabilities that the source produces a jet with a particular q2. That is,

Prob(x3) ≃
∫

d(q2)P(q2) δ
(

x3 − x3

stop(q2)
)

, (1.8)

1See in particular the discussion surrounding figure 2 of ref. [6], which inspired our figure 3b. See also

ref. [5].
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Figure 3. (a) A classical particle in the AdS5-Schwarzschild space-time, moving in the x3 direction

as it falls from the boundary to the black brane in the fifth dimension u. (b) The presence of the

particle (the large dot) perturbs the boundary theory in a manner that spreads out diffusively as

the particle approaches the horizon for x0 → ∞.

where P(q2) is the probability density for the source to produce a jet with a given q2, and

where the stopping distance x3
stop(q2) is given by (1.7). We will verify that this formula

precisely reproduces the x3 ≪ E1/3 case (1.1a) of our previous result.

We can now see where the (EL)1/4 scale comes from. It is only time-like source

momenta q2 < 0 that produce jets. The typical value of time-like q2 for the source of

figure 2a is q2 ∼ −E/L, corresponding to ǫ ∼ L−1. Putting this into (1.7), the typical

stopping distance in this case is therefore

x3

typical ∼ (EL)1/4 . (1.9)

Note that it is the q2 of the source that determines the stopping distance, and that the

typical value of q2 is determined by L in the case of figure 2a.

The estimate (1.9) of the stopping distance ceases to make sense if the size L of the

source becomes as large as the stopping distance itself. This happens when

L ∼ x3

stop ∼ (EL)1/4, (1.10)

which gives

x3

stop ∼ E1/3. (1.11)

We will see later that this is precisely the case where the wave packet in AdS5-Schwarzschild

can no longer be approximated as a particle. The moral is that the simple particle picture

gives us not only the (EL)1/4 scale but also, simply by estimating where it breaks down,

the E1/3 scale as well.

In the next section, we will briefly review the trajectories of massless particles in AdS5-

Schwarzschild and derive the corresponding stopping distance (1.7). In section 3, we discuss

the conditions for being able to approximate the 5-dimensional wave problem with particle

trajectories and verify that they apply in the case of interest. Then we use the particle

picture in section 4 to simply reproduce our original result (1.1a) for charge deposition for
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Figure 4. The probability distribution of jet stopping distances for scalar or transverse BPS sources

with conformal dimension ∆. Figure 1 corresponds to ∆=3. The scales x3

typical ∼ (EL/
√

∆)1/4

and x3

max ∼ (E/∆)1/3 indicated along the vertical axis assume that ∆ is held fixed when taking the

limit of large energy E (as well as large coupling g2Nc and large Nc). The parametric scaling with

∆ indicated for x3

typical assumes a Gaussian source envelope (1.5), but the other features shown in

the figure are independent of the details of the source envelope.

x3 ≪ E1/3. In section 5, we generalize our results to jets created by other types of source

operators than those originally considered in ref. [4]. We will see that figure 1 is modified

to figure 4. Finally, we offer our conclusions in section 6.

As an aside, some readers may be curious how the stopping distance scales (EL)1/4

and E1/3 generalize to other dimensions. On the gravity side, it is very easy to generalize

the results of this paper to different space-time dimensions d of the boundary, but it is less

certain what strongly coupled field theories these classical gravity theories correspond to.

(See refs. [7] for proposals.) Ignoring the question of interpretation, we show in appendix A

that (EL)1/4 and E1/3 generalize to (EL)(d−2)/2d and E(d−2)/(d+2) respectively for d > 2.

In this paper, we will use the convention that Greek indices run over the 4 space-time

dimensions (µ = 0, 1, 2, 3) of the boundary theory and capital roman indices run over all

five dimensions (I = 0, 1, 2, 3, 5) of the AdS5-Schwarzschild space-time. The symbol q2 will

refer to the squared 4-momentum, q2 ≡ qµη
µνqν = −ω2 + |q|2. When we use light-cone

coordinates, our conventions will be

V ± ≡ V 3 ± V 0, V± ≡ 1

2
V ∓ =

1

2
(V 3 ∓ V 0) (1.12)

for any 4-vector V . Throughout this paper, the adjective “transverse” will refer to the

spatial directions 1 and 2 orthogonal to q.

2 Review of falling massless particles

Null geodesics in a 5-dimensional space with 4-dimensional translation invariance are given

by (see appendix B)

xµ(x5) =

∫ √
g55 dx

5
gµνqν

(−qαgαβqβ)1/2
, (2.1)

– 6 –



J
H
E
P
0
4
(
2
0
1
1
)
0
2
7

where g is the 5-dimensional metric and qI is a constant of motion for I = 0, 1, 2, 3. We

will work in coordinates where the metric is2

ds2 =
R2

4

[

1

u
(−f dt2 + dx2) +

1

u2f
du2

]

, (2.2)

where f ≡ 1 − u2, and R is the AdS5 radius. The boundary is at u=0 and the horizon at

u=1. If we take the 3-momentum q to point in the x3 direction, writing qµ = (−ω, 0, 0, |q|),
then (2.1) gives the total distance x3 traveled in falling from the boundary to the horizon

to be

x3

stop =

∫ 1

0

du
√

u(u2 − q2

|q|2 )
, (2.3)

where q2 ≡ qµη
µνqν is the flat-space square of the 4-momentum. This is the same result as

refs. [1, 3].3

Now let us apply this result to the case |q2| ≪ |q|2 ≃ E2 relevant to the source of

figure 2b. For small −q2, the integral of (2.3) is dominated by small u, and so we may

approximate

x3

stop ≃
∫ ∞

0

du
√

u(u2 − q2

|q|2
)

=
c√
2

( |q|2
−q2

)1/4

, (2.4)

which gives (1.7).

3 Wave packets and geometric optics

In this section, we will discuss the conditions necessary for making the particle approxi-

mation. A wave packet behaves like a particle when it is wide enough to contain many

phase oscillations of the field yet small enough that the properties of the background do not

vary significantly across its width, as depicted in figure 5b at a particular moment in time.

We can arrange such a width provided the background properties do not vary significantly

over one wavelength of the phase oscillation. This is the geometric optics limit, which we

referred to in our earlier work [4] as a WKB approximation. To check the geometric optics

limit, one may focus as in figure 5c on a wave with a single, generic value of q typical of

the wave packet, and investigate how much things change over one phase oscillation.

To assess whether a wave packet is adequately particle-like to use a particle-based

calculation of the stopping distance, it will be helpful to understand what the important

scale for u is in determining the stopping distance (2.4). The integral in (2.4) is dominated

by u of order

u⋆ ∼
√

−q2
|q|2 ∼

√

ǫ

E
. (3.1)

2Our formulas in this paper would be a little tidier (fewer square roots) if we worked with the coordinate

z ≡ 2
√

u instead of u. We will stick with u in order to facilitate comparison with our previous work [4].
3Our (2.4) corresponds to the first part of eq. (5.3) of Gubser et al. [1], where their y is our

√
u, their

zH is 2 in our units 2πT=1, their p1/p0 is replaced by the q3/q0 of the momentum qµ typical of our source,

and their yUV is set to zero. It also corresponds to eq. (4.28) of Chesler et al. [3], where their u is our 2
√

u,

their uh = 2 in our units, their ξ is replaced by our q0/q1, and their u∗ is set to zero.
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λ ∼ 1/q5

(a)

u

field
∆u

λ ∼ 1/q5

(b)

u

field

λ ∼ 1/q5

(c)

Figure 5. (a,b) A snapshot in time x0 of waves in the fifth dimension u for times after the boundary

source has turned off but early enough that u . u⋆ ≪ 1 (that is, before the wave gets very close to

the horizon). (a) shows the type of wave generated by a localized source that superposes a range of

q2 values such as figure 2a. (b) shows the wave packet generated by a source with approximately

well-defined q2 such as figure 2b. (c) shows a single 4-momentum component, corresponding to a

single, definite value of 4-momentum qµ. Case (a) matches figure 7a of our earlier paper [4].

The relevant question is then whether the background varies significantly across one phase

oscillation for u ∼ u⋆. By (1.7), the distances x3
stop . E1/3 relevant to jet stopping

correspond to ǫ & E−1/3 in the particle picture and so to u⋆ . E−2/3 ≪ 1. So we may

focus on small u in what follows.

3.1 Geometric optics

For a massless 5-dimensional field with definite 4-momentum qµ, the exponential in the

WKB approximation is

exp

(

iqµx
µ + i

∫

dx5 q5(x
5)

)

, (3.2)

where the qµ are constant and q5(x
5) is determined by the 5-dimensional massless condition

qIg
IJqJ = 0, giving4

q5 =
√

g55(−qµ gµν qν). (3.3)

For the metric (2.2), this is

q5(u) =
1

f

√

u2|q|2 − q2

u
. (3.4)

For the geometric optics limit, we need the wavelength to vary insignificantly over one

wavelength.5 For the important values u ∼ u⋆ ≪ 1 of u, the wavelength λ(u) ∼ 1/q5(u) in

the fifth dimension satisfies this condition if

u⋆ q5(u⋆) ≫ 1, (3.5)

4The null geodesics (2.1) can be expressed in terms of q5 as xµ(x5) = −
R

dx5(∂q5/∂qµ). This particle

formula is simply the saddle point condition ∂qµ [iqνxν + i
R

dx5 q5(x
5)] = 0 with respect to qµ for the

wave (3.2). Also,
R

dx5 q5(x
5) was referred to as the WKB exponent S in ref. [4], where various expansions

of the integral may be found.
5This condition can be phrased in an x5-reparametrization invariant way as ∇5(1/q5) ≪ 1, which is

(g55)
−1/2∂5[(g55)

1/2/q5] ≪ 1. We give more detail in appendix C, in the specific context of the particular

type of source operator that we used in our original calculation.

– 8 –
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which, using (3.4), is6

u⋆ ≫ 1

−q2 . (3.6)

Using the size (3.1) of u⋆, this condition is (−q2)3/|q|2 ≫ 1, or equivalently

ǫ≫ E−1/3. (3.7)

Referring to the stopping distance (1.7), we then see that the approximation of geometric

optics, necessary for a particle interpretation, breaks down unless

x3

stop ≪ E1/3. (3.8)

Within the context of our approach to jet stopping, a proper analysis of what happens

at distances & E1/3 requires a wave rather than particle description of the problem, as in

refs. [2, 4]. The wave analysis gives exponential fall-off for propagation beyond E1/3, as

described by (1.1b).

More on the geometric optics approximation can be found in appendix C.

3.2 Wave packets

The geometric optics limit for (3.8) allows us to create localized wave packets. Here we

will see how wide those wave packets are in u for sources of the form of figure 2b. We are

primarily interested in the case where the center of the wave packet is at the critical scale

u ∼ u⋆ in the fifth dimension. However, the presentation will be a little more straightfor-

ward if we first make parametric estimates for earlier times, when the center of the wave

packet is at u≪ u⋆, and then extrapolate those parametric estimates to u ∼ u⋆.

For u≪ u⋆, the distance traveled (2.1) for a massless particle is

x3(u) =

∫ u

0

du′
√

u′(u′2 − q2

|q|2
)
≃ 2

√

u|q|2
−q2 ≃

√

uE

ǫ
. (3.9)

Turning this around, the location of the particle in the fifth dimension is

u ≃ ǫ (x3)2

E
. (3.10)

When the particle is replaced by a wave packet, there are two sources of uncertainty. The

size L of the source introduces an uncertainty in the initial position of the excitation of

∆x3 ∼ L. It also introduces an uncertainty in the 4-momentum q, and so in ǫ, of ∆ǫ ∼ 1/L

as in figure 2b. From (3.10), the combined uncertainty ∆u in u is then of order

∆u

u
∼ max

(

∆ǫ

ǫ
,

∆x3

x3

)

∼ max

(

1

Lǫ
, L

√

ǫ

uE

)

. (3.11)

Extrapolating this parametric estimate to the case u ∼ u⋆ of interest, (3.1) and (3.11)

give
(

∆u

u

)

⋆

∼ max

(

1

Lǫ
, L

( ǫ

E

)1/4
)

. (3.12)

6In the language of ref. [4], the condition u⋆ ≫ 1/(−q2) is u⋆ ≫ umatch.
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The wave packet will then be localized provided (i) L ≫ 1/ǫ, as in figure 2b, and (ii)

L ≪ (E/ǫ)1/4. By (1.7), the last condition is just the condition that L be much less than

the stopping distance x3
stop.

4 Reproducing the distribution of stopping distances

Now we will show that the formula (1.1a) found in our earlier work [4] for the average

distribution of charge deposition can be understood as a convolution (1.8) of the particle

stopping distance with the probability density P(q2) for the source to create a jet with a

given q2.

We will later give in section 5 a very general argument, based on dimensional analysis,

for determining the P(q2) associated with different choices of source operator. This argu-

ment will also require a discussion of massive fields and massive particles in the gravity

dual. For the moment, we will be less general, stick to the specific type of source operator

that we used in previous work, and show how to extract P(q2) from a result for the aver-

age total charge produced by the operator. Readers who would prefer to just see the more

general argument may skip section 4.1 below and instead wait for section 5.2.

4.1 Extracting P(q2) from results in the literature

In ref. [4], we used a source involving R-current operators jaµ. Specifically, we modified the

4-dimensional gauge theory Lagrangian by

L → L + jaµA
aµ
cl , (4.1)

with a localized background field

Aµ
cl(x) = ε̄µNA

[τ+

2
eik̄·x + h.c.

]

ΛL(x), (4.2)

where NA is an arbitrarily small source amplitude, ε̄ is a transverse linear polarization, and

τ i are Pauli matrices for any SU(2) subgroup of the SU(4) R-symmetry. We then measured

the response 〈j(3)µ(x)〉 of the R charge current associated with τ3/2. The gravity dual to

the R charge current operators is a massless 5-dimensional SU(4) gauge field. We chose

our source (4.2) to be translationally invariant in the transverse spatial directions (x1, x2)

to simplify the calculation. In what follows, we will refer to the R charge associated with

τ3/2 as simply “the charge.”

For an arbitrarily small source amplitude NA, the source will usually have no effect

at all on the system. On rare occasions, with probability proportional to N 2
A, the source

creates an excitation (in our case a “jet”) with the same quantum numbers as the source

operator. In our case (4.2), that means it creates a jet with total charge equal to 1. The

creation of an excitation with different quantum numbers would be even higher-order in

NA and so negligible. Since an excitation (if any is created) has charge 1, the average total

charge Q created by the source is then equal to the probability of the source creating a

jet. We will see that from the previously calculated result for Q we can then extract the

probability density P(q2).
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In ref. [4],7 we showed how to use the field theory Ward identity to make a simple

calculation of the average charge Q. Here we will just quote the result, which was

Q ≃ 2πN 2
A

g2
SG

∫

d4q

(2π)4
θ(−q2) |q2|

∣

∣Λ̃L(q − k̄)
∣

∣

2
, (4.3)

where g2
SG = 4π/Nc (Nc→∞ is the number of colors) and θ is the step function. The

Λ̃L(q− k̄) in (4.3) is simply the Fourier transform of the x-dependence (1.3) of the source.

Our source only has support for q = k̄ + ∆q with ∆q small compared to k̄, in which case

q2 ≃ 4Eq+. Eq. (4.3) may then be approximated as

Q ≃ 8πEN 2
A

g2
SG

V⊥

∫

2 dq+ d∆q−
(2π)2

θ(−q+) |q+|
∣

∣Λ̃
(2)
L (q+,∆q−)

∣

∣

2
, (4.4)

where Λ̃
(2)
L is the two-dimensional Fourier transform

Λ̃
(2)
L (q+, q−) =

∫

dx+ dx−

2
ΛL(x) e−i(q+x++q−x−) (4.5)

of the source envelope and V⊥ is the area of transverse space (x1 and x2). Since (4.4)

involves an integral over q+, and since Q is the total probability of creating a jet, it is

natural to interpret (4.4) as giving a probability density

P+(q+) ≃ 8πEN 2
A

g2
SG

V⊥

∫

2 d∆q−
(2π)2

θ(−q+) |q+|
∣

∣Λ̃
(2)
L (q+,∆q−)

∣

∣

2
(4.6)

for producing a jet with a given value of q+, with Q =
∫

dq+ P+(q+). If a jet is produced,

the probability distribution for its q+ is then the relative probability

P+(q̄+) ≡ P+(q̄+)

Q ≃ θ(−q̄+) |q̄+|
∫

d∆q−
∣

∣Λ̃
(2)
L (q̄+,∆q−)

∣

∣

2

∫

dq+ d∆q− θ(−q+) |q+|
∣

∣Λ̃
(2)
L (q+,∆q−)

∣

∣

2
. (4.7)

Here we’ve put a bar over the argument of P+ just to distinguish it from the q+ integration

variable in the denominator on the right-hand side. Now package the source dependence

into the definition

Ψ(q̄+L) ≡
∫

dq− |Λ̃(2)
L (q̄+, q−)|2

4L2
∫

dq+ dq− θ(−q+) |q+|
∣

∣Λ̃
(2)
L (q+, q−)

∣

∣

2
. (4.8)

This is the definition we made in our earlier work [4] for the Ψ that appears in the charge

deposition result (1.1). With this definition,

P+(q+) = 4L2 θ(−q+) |q+|Ψ(q+L). (4.9)

7See specifically appendix A of ref. [4].
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4.2 Using P(q2) to get Prob(x3)

Since q2 ≃ 4Eq+, the probability distribution P(q2) for q2 is related to the probability

distribution P+(q+) of (4.9) for q+ by

P(q2) ≃ 1

4E
P+

( q2

4E

)

. (4.10)

However, at this point it will be easier to just stick with q+ and P+.

Note that in each cell of figure 2c, the typical value of q+ is just what we have previously

called −ǫ for that cell. The distribution (1.8) of stopping distances based upon the picture

of massless falling particles in 5 dimensions can then be written as

Prob(x3) ≃
∫

dǫP+(−ǫ) δ
(

x3 − x3

stop(ǫ)
)

,

≃ 4L2

∫ ∞

0
dǫ ǫΨ(−Lǫ) δ

(

x3 − c

2

(

E

ǫ

)1/4
)

= 2
(4c4EL)2

(2x3)9
Ψ

(

− c4EL

(2x3)4

)

. (4.11)

As promised, in the case x3 ≪ E1/3 where we have argued that the particle picture should

work, this exactly reproduces our earlier result (1.1a) that came from a full, much more

complicated calculation.

5 Massive particles in 5 dimensions

In the preceding sections, we have assumed that the 5-dimensional bulk field dual to the

source which creates the jet is massless, such as the 5-dimensional gauge field dual to R

current operators. One may wonder what results change if we choose different types of

source operators that are instead dual to massive bulk fields. In this section, we will see

that the basic qualitative picture of figure 1 of the distribution of stopping distances remains

the same, except that the exponent of the (x3)−9 power-law tail changes, depending on the

conformal dimension of the source operator.

When we wish to make contact with a particular example, we will for simplicity restrict

attention to scalar BPS (e.g. chiral primary [8]) operators.8 In that case, the mass m of

the 5-dimensional field is related to the scaling dimension ∆ of the operator by [9]

(Rm)2 = ∆(∆ − d), (5.1)

where R is the radius of AdS5, and d=4 is the dimension of ordinary space-time. The

possible values of ∆ are bounded below by

∆ ≥ d

2
. (5.2)

8Examples of scalar BPS operators include the Lagrangian density and the symmetrized trace

tr(φ(i1φi2 · · ·φin)), where φ1, φ2, and φ3 are the three complex scalar fields of N=4 supersymmetric Yang

Mills.
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In what follows, we will hold m fixed when we consider the limit of large jet energy

E. However, it will be interesting to consider the case ∆ ≫ 1 (i.e. Rm ≫ 1) in addition

to the case where ∆ is of order one. We will find that the typical and maximum stopping

distances decrease for larger ∆.

We will study the propagation of excitations of a massive bulk field by studying the

propagation of massive particles in the bulk, similar to the massless case studied earlier in

this paper. (An alternative discussion directly in terms of a wave analysis is sketched in

appendix D.) We should emphasize that the term “massive” refers only to the bulk fields

and corresponding bulk “particles” in our discussion, and so to the conformal dimension

of the source operators in the boundary theory. We have not introduced any masses in the

4-dimensional strongly-coupled field theory: the theory is still just N=4 supersymmetric

Yang Mills theory.

5.1 Stopping distance of massive particles

For a particle of mass m in 5 dimensions, the stopping distance integrals (2.1) and (2.3)

are modified to

x3

stop =

∫ √
g55 dx

5
gµνqν

(−qαgαβqβ −m2)1/2
=

∫

du
√

u(u2 − q2

|q|2
) − (Rm)2

4|q|2
f
. (5.3)

As in the massless case, we shall see below that the stopping distance will be dominated

by u ∼ u⋆ ≪ 1. So we will be able to approximate f ≃ 1 above:

x3

stop ≃
∫

du
√

u(u2 − q2

|q|2
) − (Rm)2

4|q|2

. (5.4)

For ∆ > d (in which case m2 is positive), there is an issue with the lower limit of

integration in (5.4): our classical particle with 4-momentum qµ cannot exist in the region

where the square root in (5.4) is imaginary. For u ≪ u∗ (and focusing on q2 < 0), this

condition allows for a classical particle when u ≥ umin with

umin ≃ (Rm)2

−4q2
. (5.5)

How to interpret this? The wave equation is not well described by geometric optics near

the turning point umin. However, as long as umin ≪ u⋆, the calculation of the stopping

distance will be dominated by much larger u (where m is ignorable), and so we may still

use the particle picture to approximate

x3

stop ≃
∫ 1

∼umin

du
√

u(u2 − q2

|q|2 ) − 1
4(Rm)2

≃
∫ ∞

0

du
√

u(u2 − q2

|q|2 )
, (5.6)

which is the same as the massless particle result (2.4). In this respect, the mass can

be ignored.
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What happens at u ∼ umin can be made more concrete by returning to the wave

problem and looking at the solution to the massive scalar wave equation

1√−g∂5(
√−gg55∂5Φ) = (qµg

µνqν +m2)Φ (5.7)

in the limit u ≪ u⋆ ≪ 1. In this limit, one is close enough to the boundary that AdS5-

Schwarzschild is approximately just AdS5, and the equation becomes the zero-temperature

wave equation of a massive scalar in AdS5. The retarded solution to this equation is

Φ ≃ Nq
iπ

Γ(ν)

(

1

2

√

−q2
)ν

(4u)d/4 H(1)
ν (

√

−4uq2), (5.8)

where H
(1)
ν is the Hankel function, d=4 is the space-time dimension of the boundary theory,

Nq is an overall normalization, and

ν = ∆ − d

2
. (5.9)

The solution behaves like

Φ ≃ Nqz
d−∆ (5.10)

in the boundary limit z→0, where z ≡ 2
√
u. The divergence of (5.10) as z → 0 for

∆ > d (i.e. m2 > 0) reflects the renormalization required of the corresponding operators

in the 4-dimensional gauge theory. In our discussion, we will be able to ignore the de-

tails of holographic renormalization prescriptions and simply summarize that (5.8) should

approach zd−∆ φb(q) as z approaches the (regulated) boundary, where φb is the (renor-

malized) boundary source. Choosing φb(q) = 1 defines the bulk-to-boundary propagator,

which corresponds to (5.8) with Nq ≃ 1.9

The Hankel function goes through many oscillations, and so is well approximated by

the geometric optics limit, when its argument is large compared to both 1 and ν. In our

case, this condition is parametrically equivalent to

u≫ umatch ≡ max(1, (Rm)2)

−q2 , (5.11)

which may be also be written as

u≫ max

(

1

−q2 , umin

)

. (5.12)

This generalizes the condition u ≫ 1/(−q2) previously discussed for the massless case. If

we convolve (5.8) with a high-energy source (1.3), we will not be able to use the particle

9In more detail, follow ref. [10] and normalize the bulk-to-boundary propagator to be zd−∆
B at z=zB,

where zB is arbitrarily small. Then

Nq = zd−∆
B

»

iπ

Γ(ν)

„

1

2

p

−q2

«ν

(4uB)d/4 H(1)
ν (

p

−4uBq2)

–−1

= 1 + O(zB),

and one takes zB → 0 at the very end of the calculation. In yet more detail, a systematic method for

holographic renormalization is described in refs. [11–13].
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approximation to figure out the details of what is happening at u ∼ umin, but we will be

able to use it when the resulting wave packet propagates to u ∼ u⋆ provided u∗ ≫ umatch,

and so we may then use the particle approximation to calculate the stopping distance.

Because we get the same stopping distance as for the massless case, we can take

over (1.7):

x3

stop ≃ c√
2

( |q|2
−q2

)1/4

≃ c

2

(

E

ǫ

)1/4

. (5.13)

The geometric optics approximation at u ∼ u⋆ (and so this result for the stopping distance)

will fail unless umatch ≪ u⋆. Using (3.1) and (5.11), that condition requires

ǫ≫
(

E

max(1, (Rm)4)

)−1/3

. (5.14)

One might suspect that the particle approximation breaks down at the maximum possible

stopping distance, in which case (5.13) then gives that maximum to be

x3

max ∼
(

E

max(1, Rm)

)1/3

∼
(

E

∆

)1/3

. (5.15)

We give a more detailed argument for this result in appendix D.

Eq. (5.15) implies that the maximum stopping distance decreases as the conformal

dimension ∆ of the BPS source operator is increased. This qualitative feature is not novel

to the strongly-coupled theory: it is true for the weakly-coupled theory as well. For the

BPS operators, large ∆ corresponds to an operator with roughly ∆ powers of scalar fields,

such as tr(φ∆), where φ is one of the three complex scalar fields in the theory. In weak

coupling, if we inject total energy E with such an operator, it will typically generate ∆

particles that each have energy of order E/∆. In weak coupling, the stopping distance of

a particle with energy E scales as E1/2 (up to logarithms), and so the stopping distance of

the ∆ particles each with energy E/∆ will scale as x3
max ∼ (E/∆)1/2.

5.2 Generalizing the power-law tail

In this section, we investigate how the (x3)−9 power-law tail in figure 1 generalizes to other

choices of source operator. We will take the source term in the gauge-theory action to be

of the form
∫

x
eik̄·x ΛL(x)O(x), (5.16)

where O(x) is a scalar BPS operator with dimension ∆. We will see, however, that our

result also applies to the case of O being a transverse-polarized R current, which was the

case discussed in section 4.

Since the dependence (5.13) of the stopping distance on q2 is the same as in the massless

case, the only significant qualitative difference in the distribution of stopping distances will

come from the distribution P(q2) of q2 created by the source operator. The shape of this

distribution is determined by the dimension ∆ of the source operator, as we now describe.

As discussed in refs. [2, 4], temperature does not affect the initial creation of the jet, and
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so we can simplify the analysis by evaluating P(q2) at zero temperature. Consider the

probability density in q associated with a source operator O acting on the vacuum:

∑

any

〈any|[O(q)]†|vac〉∗〈any|[O(q′)]†|vac〉

= 〈vac|O(q) [O(q′)]†|vac〉 ≡ iG>(q) (2π)dδ(d)(q − q′), (5.17)

where G> is the Wightman correlator of O. At zero temperature, it is related to the

spectral density ρ of the operator by10

iG>(q) = θ(q0) ρ(q). (5.18)

The distribution of jet 4-momenta is therefore given by the spectral density ρ(q). At zero

temperature, Lorentz and scaling invariance allow us to use simple dimensional analysis to

know how ρ scales with q:11

ρ(q) ∝ θ(−q2) (−q2)ν , (5.19)

where ν = ∆ − 1
2d as in (5.9). The θ(−q2) appears because only sources with time-like q2

produce persistent excitations at zero temperature.

If O were a vector operator V µ, like an R current, the dimensional analysis would be

complicated by the fact that one could get factors of qµ associated with the vector index

(rather than only factors of the virtuality q2). However the transverse spatial components

q⊥ of qµ vanish, by definition. So this complication does not arise for the transverse R

current operator j⊥ that we discussed earlier, and (5.19) can also be used in that case.

So far, we have only looked at the operator O and not the other factors in the source

term (5.16). We can rewrite (5.16) in q space as
∫

q
Λ̃∗

L(q − k̄)O(q). (5.20)

Correspondingly attaching a factor of Λ∗
L(q− k̄) to each O(q) in (5.17), we get a probability

distribution for q proportional to

θ(q0) ρ(q) |Λ̃L(q − k̄)|2 ∝ θ(−q2) (−q2)ν |Λ̃L(q − k̄)|2. (5.21)

For a transverse-translation invariant source, the relative probability distribution for cre-

ating a jet with a given q+, where q2 ≃ 4Eq+, is then

P+(q̄+) =
θ(−q̄+) |q̄+|ν

∫

d∆q−
∣

∣Λ̃
(2)
L (q̄+,∆q−)

∣

∣

2

∫

dq+ d∆q− θ(−q+) |q+|ν
∣

∣Λ̃
(2)
L (q+,∆q−)

∣

∣

2
, (5.22)

which generalizes (4.7). We will repackage this as

P+(q+) =
2(3+ν)/2L

Γ(1+ν
2 )

θ(−q+) |q+L|ν Ψν(q+L), (5.23)

10Alternatively, we could use the finite-temperature relation iG>(q) = [1 + n(q0)] ρ(q), where n(ω) =

(eβω − 1)−1 is the Bose distribution, and then use the fact that q0 ≃ E ≫ T in our problem.
11To get the dimension of ρ(q), use (5.17) and note that O(x) having dimension ∆ means that the Fourier

transform O(q) has dimension ∆ − d.
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where

Ψν(q̄+L) ≡ Γ(1+ν
2 )

∫

dq− |Λ̃(2)
L (q̄+, q−)|2

2(3+ν)/2L
∫

dq+ dq− θ(−q+) |q+L|ν
∣

∣Λ̃
(2)
L (q+, q−)

∣

∣

2
(5.24)

has been normalized so that Ψν(0) = 1 in the case of a Gaussian source envelope (1.5).

Following (4.11), the distribution of stopping distances is then

Prob(x3) ≃
∫

dǫP+(−ǫ) δ
(

x3 − x3

stop(ǫ)
)

,

≃ 2(3+ν)/2L

Γ(1+ν
2 )

∫ ∞

0
dǫ (ǫL)ν Ψν(−Lǫ) δ

(

x3 − c

2

(

E

ǫ

)1/4
)

=
16(

√
2 c4EL)1+ν

Γ(1+ν
2 ) (2x3)5+4ν

Ψν

(

− c4EL

(2x3)4

)

. (5.25)

So the power-law tail in figure 1 has generalized to (x3)−(5+4ν) = (x3)3−4∆, as shown in

figure 4. For the transverse R current operator, ∆ = 3, which recovers our previous result

of (x3)−9 in that case.

5.3 Gaussian source envelope

Throughout this paper, we have discussed two different scales x3

typical ∼ (EL)1/4 and x3
max ∼

E1/3 characterizing the stopping distance. In (5.15), we generalized the latter to x3
max ∼

(E/∆)1/3 for the case of large ∆. Now we will discuss the similar generalization of x3

typical.

In general, we will still have

x3

typical ∼
(

E

(−q+)typical

)1/4

, (5.26)

but the relation between the typical q+ of jets and the source envelope size L for large ∆ will

depend on details of how the source envelope ∆̃L(q) falls off for large q+. That’s because

the probability distribution (5.22) for the q+ of the jet involves a competition between

the |q̄+|ν factor which favors large |q+| and the |ΛL(q̄+,∆q−)|2 factor which suppresses

|q+| ≫ L−1. The typical value of q+ represents a balance between the two and will scale

with ν. For the sake of a concrete example, we consider here the case of a Gaussian source

envelope (1.5). In this case, the function Ψν(q+L) in (5.23) and (5.25) is simply

Ψν(q+L) = e−2(q+L)2 . (5.27)

The typical values of q+ from the probability distribution (5.23) then scale as

(−q+)typical ∼
ν1/2

L
∼ ∆1/2

L
, (5.28)

corresponding to12

x3

typical ∼
(

EL√
∆

)1/4

. (5.29)

12Alternatively, one could compute the average value of x3

stop directly from (5.25), giving x3

avg =
c Γ( 3

8
+ ν

2
)

27/8 Γ( 1

2
+ ν

2
)
(EL)1/4.
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6 Conclusion

The 5-dimensional particle picture provides a relatively easy way of understanding (from

the gravity side of the calculation) the appearance of the scale (EL)1/4 in jets created by

finite-size sources in strongly coupled N=4 super Yang Mills plasmas. By thinking about

sources with different types of momentum distributions, such as figures 2a and b, we have

learned that it is the range of q2 of the source which determines the range of stopping

distances. Making |q2| larger causes the jet to stop sooner. For any finite size L of source,

the uncertainty principle implies that there will be a spread in the components of q of at

least order 1/L and so a spread in q2 of at least order E/L. As a result, almost all of the jets

produced will travel distances . (EL)1/4 [of order (EL)1/4 in the case of figure 2a and ≪
(EL)1/4 in the case of figure 2b]. Events where a jet travels further (up to E1/3) will always

be rare if the source size L is small compared to the maximum stopping distance scale E1/3.

This interpretation, based on the 5-dimensional particle picture, provides an important

clarification to our original derivation of the average distribution of charge deposition shown

in figure 1. This average includes an average over all events. From the original result, it

was unclear whether on not figure 1 qualitatively tracks how the jet deposits its energy,

momentum, and so forth on an event-by-event basis. It might have been that every single jet

produced deposits some of its energy at x3 ∼ E1/3 and most of its energy at x3 ∼ (EL)1/4.

The success of the 5-dimensional particle interpretation, and in particular the success

of (1.8), indicates that figure 1 instead reflects a probability distribution for how far the jet

travels, and each individual jet dumps its energy and charge in a very localized region of

x3. It should be possible to independently verify this conclusion by calculating correlations

of the charge deposition at different distances, which we will leave to future work.

Our analysis of massive 5-dimensional fields indicated that the maximum stopping

distance E1/3 depends on the type of operator used to create the jet and that the distance

decreases as the conformal dimension of that operator increases. That is, the maximum

stopping distance depends on the type of high-energy excitation created. This may shed

some light on a discrepancy between (i) the stopping distances found here and in refs. [2, 4],

which find x3
max ∼ E1/3, and (ii) those based on the evolution of classical strings in 5

dimensions [1, 3], which find the parametrically smaller result x3
max ∼ (E/

√
λ)1/3, where

λ ≡ Ncg
2 is the large ’t Hooft coupling. The gauge theory states corresponding to classical

strings in the gravity dual may simply be states that are much more easily stopped by the

strongly-coupled quark-gluon plasma than are the states created by the source operators

considered in this paper. One could then ponder which (if either) might be more instructive

for lessons about the theory of real QCD plasmas. In order to further clarify the differences

between the two approaches, it would be interesting to find a 4-dimensional gauge-theory

description of a source that could be precisely linked through duality to the 5-dimensional

initial classical string configurations that have been used to study jet quenching.
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A Stopping distances in different dimensions

The only relevant difference between AdS5-Schwarzschild space and AdSd+1-Schwarzschild

space is that the blackening function f = 1 − u2 in the metric (2.2) is replaced by f =

1 − ud/2 [14]. The stopping distance (2.3) then becomes

x3

stop =

∫ 1

0

du
√

u
(

ud/2 − q2

|q|2

)

≃
∫ ∞

0

du
√

u
(

ud/2 − q2

|q|2

)

=
cd√
2

( |q|2
q2

)(d−2)/2d

≃ cd√
2

(

E

4ǫ

)(d−2)/2d

, (A.1)

where cd =
√

2B(1+1
d ,

1
2−1

d ), B is the Beta function, and we have assumed d > 2. Taking

ǫ ∼ 1/L, the dominant stopping distance (1.9) for our original source of figure 2a then

generalizes from (EL)1/4 to

x3

typical ∼ (EL)(d−2)/2d. (A.2)

The quickest way to estimate the maximum stopping distance, generalizing E1/3, is to

estimate when the stopping distance (A.2) becomes as large as the source itself, as we did

for d=4 in section 1. The result is

x3

max ∼ E(d−2)/(d+2). (A.3)

The last result can also be obtained from a wave analysis by analyzing the poles of the

retarded bulk-to-boundary propagator, just as was done for d=4 in ref. [4]. The scale of

the exponential decay in (1.1b) was determined by the imaginary part of the propagator

pole closest to the real axis. Here we simply follow section 4.6.2 of ref. [4], generalizing to

arbitrary d. The massless field equation for A⊥ is
[

∂2
u − 4Eq+ − ud/2E2

u

]

A⊥ = 0. (A.4)

Changing variables to U ≡ e−i2π/(d+2)E4/(d+2)u, the field equation becomes
[

−∂2
U +

(

U (d−2)/2 − a

U

)]

A⊥ = 0 (A.5)

where

a ≡ 4E(d−2)/(d+2)e−iπd/(d+2)q+. (A.6)

Poles of the bulk-to-boundary propagator occur when the Schrödinger-like equation (A.5)

has a zero-energy bound state that vanishes at the origin. The smallest value of a for which

this occurs is O(1), from which (A.6) gives that the pole closest to the origin has

Im qpole
+ ∼ E−(d−2)/(d+2). (A.7)
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So the response to the source falls exponentially as

|eiqpole
+ x+ |2 ∼ e−κdE−(d−2)/(d+2)x+

(A.8)

for large x+, for some constant κd. This behavior is consistent with (A.3).

B Null geodesic in AdS5-Schwarzschild

For the sake of keeping this paper self-contained, we give here a brief derivation of (2.1).

A null geodesic has13

0 = (ds)2 = dxµ gµν dx
ν + dx5 g55 dx

5, (B.1)

and so
dx5

dλ
=

1√
g55

[

−gµν
dxµ

dλ

dxν

dλ

]1/2

, (B.2)

where we will take λ to be any affine parameter for the trajectory. Because of 4-dimensional

translation invariance,

gµν
dxν

dλ
(B.3)

is conserved and proportional to qµ, so that

dxµ

dλ
∝ gµνqν . (B.4)

Dividing this equation by (B.2) gives

dxµ

dx5
=

√
g55

gµνqν

(−qαgαβqβ)1/2
, (B.5)

which in turn gives (2.1).

C More on the geometric optics approximation

Here, we will go into a little more detail about the conditions for the geometric optics

approximation, for space-time backgrounds with 4-dimensional translation invariance. For

the sake of concreteness, we will consider the case of the source (4.1) used in our earlier

work, where the source operator is a transverse-polarized R current and so is dual to a

5-dimensional transverse vector field A⊥ = ε̄µA
µ in the gravity description. The equation

of motion for A⊥(q, x5), where q is the 4-momentum, has the form

1√−g ∂5(
√−g g⊥⊥g55∂5A⊥) = g⊥⊥qµg

µνqνA⊥ (C.1)

where g⊥⊥ is the component of the inverse metric in the direction of the polarization, e.g.

g⊥⊥ = g11 = g22 for q in the x3 direction.14 Now switch to coordinate

ℓ ≡
∫ √

g55 dx
5, (C.2)

13This analysis applies whenever the background metric has 4-dimensional translation invariance and the

x5 coordinate is chosen so that g5µ vanishes.
14Here we are implicitly assuming rotational invariance of the background in the transverse plane.
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which parametrizes proper length in the direction of the fifth dimension, and note for future

reference that

∂ℓ =
1√
g55

∂5. (C.3)

The equation of motion is then

w−1∂ℓ(w∂ℓA⊥) = qµg
µνqνA⊥ , (C.4)

where

w =
√−g(4) g⊥⊥ (C.5)

and g(4) = g55g is the determinant of the 4-dimensional part of the 5-dimensional metric.

(As another simple example, one could consider the case of a source operator dual to a

massless scalar field, which would correspond instead to taking w =
√−g(4) in the equation

of motion.) Now define

a ≡ √
wA⊥ (C.6)

to get

∂2
ℓ a =

[

qµg
µνqν +

1

2
√
w
∂ℓ

(∂ℓw√
w

)

]

a. (C.7)

This looks just like a one-dimensional quantum mechanics problem in ℓ with wavenumber

k(ℓ) ≡
√

2m(E − V (ℓ)) replaced by

k(ℓ) =

√

−qµgµνqν − 1

2
√
w
∂ℓ

(∂ℓw√
w

)

. (C.8)

The WKB condition that the wavelength λ(ℓ) = 2π/k(ℓ) in such a quantum mechanics

problem not change significantly over distances of one wavelength is ∂ℓλ(ℓ) ≪ 1.

For the metric (2.2), w = (R/2)2f1/2u−1, and (C.8) becomes

k(u) =
2

R

√

u

f
(u2q2 − q2) +

1 − 2u2

4f
(C.9)

with the help of (C.3). For the u’s of interest to our discussion of particles, which are

u ∼ u⋆ ≪ 1, the (1 − 2u2)/4f term under the square root is negligible, giving

k(u) ≃
√

−qµgµνqν ≃ 2

R

√

u(u2q2 − q2). (C.10)

Again using (C.3), the condition ∂ℓλ(ℓ) = ∂ℓ(2π/k) ≪ 1 then gives (3.6) for u ∼ u⋆.

D Maximum stopping distance for high-dimension source operators

In section 5.1, we saw that the particle picture breaks down when x3 & x3
max with

x3

max ∼
(

E

max(1, Rm)

)1/3

∼
(

E

∆

)1/3

, (D.1)
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and we suggested that this x3
max was the furthest that jets would propagate — that is, that

energy or charge deposition at larger distances would be exponentially suppressed, similar

to our previous ∆=3 result of (1.1b). In this appendix, we will discuss how (D.1) arises

in a wave analysis following the methods of ref. [4]. We will focus on the case of ∆ ≫ 1.

As in the main text, we assume that the large E limit is taken first, and only then do we

consider large ∆.

There is a subtlety to the results we will find. In section D.2, we will analyze the

exponential fall-off of jet charge deposition at very large x by finding the location in the

complex q+ plane corresponding to the first quasi-normal mode of the bulk field. For large

∆, we will find an exponential fall-off of the form

exp

(

− 2c′1x
3

E1/3/∆4/3

)

, (D.2)

where c′1 is a constant. This is the large-∆ version of the exponential in (1.1b). The x3

scale that determines the rate of exponential fall-off in (D.2) is E1/3/∆4/3. One might

naturally guess that exponential suppression therefore applies whenever x3 ≫ E1/3/∆4/3

and so guess that x3
max ∼ E1/3/∆4/3 instead of (D.1). This guess fails, however, for reasons

we shall now outline.

D.1 Overview

To understand the issues involved, we briefly highlight some relevant aspects of the m=0

calculation from ref. [4]. The main part of the calculation there involved computing the

bulk response A to the high-energy source on the boundary, given by

A(x, u) ≡
∫

q
GR(q, u) Λ̃L(q − k̄) eiq·x, (D.3)

where G is the bulk-to-boundary propagator. Our result for the stopping distance came

from extracting the behavior of A near the horizon, u → 1.15 The critical part of the q

integration was the integral over q+. For x3 ≪ E1/3 (in the m=0 case), we found that

we could deform the q+ integration contour in the complex plane so that the integral was

everywhere exponentially suppressed except at a saddle point16

q⋆
+ ≃ − c4E

(2x3)4
(D.4)

15Readers may wonder at the connection between (i) studying u → 1 and (ii) studying u ∼ u⋆ ≪ 1 as

in the particle arguments in the main text of this paper. The point is that how far the particle travels

is determined by where it is when u → 1, but the integral which gives that distance is dominated by

u ∼ u⋆ ≪ 1. In the wave analysis of ref. [4], we studied the response at late times, corresponding to u→1

for the bulk excitation. Our results for the near-horizon bulk response were determined by the E1/4(−q+)3/4

term in the WKB exponent S for G (see eq. (4.51) of ref. [4]). But this term was generated by the u∼u⋆

region of the integral that gave S. See, for example, eq. (D13) of ref. [4], which is proportional to the

current paper’s particle stopping distance integral (2.3).
16In ref. [4], we expressed formulas in terms of X+ ≡ x+− τ (u) instead of x3. As discussed in that paper,

the late-time response is localized to x− ≃ −τ (u) (see eq. (4.49) of ref. [4]), and so X+ ≃ 2x3.
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x
3

/(E

4
)

x
3 / L

2

Figure 6. Integration contour in the q+ complex plane for saddle point approximations to the q+
integral in (D.3). This is a slightly simplified version, appropriate for u→1, of figure 13b of ref. [4].

The location of the saddle point q⋆
+ is marked by the large dot. The circles indicate different

parametric scales for |q+|.

of (3.2). This contour is depicted in figure 6. Parametrically far into the interior of

the shaded region indicates places where the magnitude of the integrand is exponentially

suppressed. Parametrically far into the unshaded regions indicates places where it is expo-

nentially large. The dashed line depicts a line of poles of the bulk-to-boundary propagator

GR, corresponding to quasi-normal modes. In the WKB approximation to that propagator,

this line of poles became a cut.

For x3 ≫ E1/3, the regions of exponential suppression for the integrand are shown in

figure 7a. Saddle point methods are unreliable. Instead, choose the integration contour

shown there. The piece that goes around the line of poles can be re-expressed as a sum

of contributions from each pole, as shown in figure 7b, which depicts a magnification of

the neighborhood of the origin of figure 7a. The eiq+·x+
piece of the eiq·x in (D.3) causes

the contributions from the poles to be exponentially suppressed according to their distance

Im q+ from the real axis. For x3 ≫ E1/3, the nearest pole dominates and produces the

exponential fall-off (1.1b) of the jet’s charge deposition.

Now we return to the massive case, with ∆ ≫ 1, and ask what happens for

E1/3

∆4/3
≪ x3 ≪ E1/3

∆1/3
. (D.5)

This is the interesting case, where (i) the geometric optics and particle arguments of sec-

tion 5 indicate that the charge deposition is not exponentially suppressed but (ii) the guess

we might make based on (D.2) suggested that it is suppressed. As we shall discuss in

section D.3, the mass does not significantly affect the massless picture of figure 6 provided

|q+| ≫
∆4/3

E1/3
, (D.6)

– 23 –



J
H
E
P
0
4
(
2
0
1
1
)
0
2
7

x
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(a) (b)

Figure 7. (a) Similar to figure 6 but for the case x3 ≫ x3
max. (b) A magnification of the region

near the origin.

x
3

/(E

4
)

x
3 / L

2

Figure 8. Like figure 6 but for the case of large ∆ and x3 ≪ E1/3/∆1/3. The cross-hatched region

represents |q+| . ∆4/3/E1/3.

which is the condition (5.14) discussed in the main text. For x3 ≪ E1/3/∆1/3 as in (D.5),

the condition (D.6) is satisfied at the saddle point (D.4) and for larger |q+|. So, as long

as we are careful to route the contour as in figure 8, we can take over the methods of

the m=0 calculation, make a saddle point approximation to the q+ integral (which cor-

responds to making the geometric optics approximation), and so find a result that is not

exponentially suppressed.

But now consider a large x3 calculation, along the lines of figure 7. We shall see in

section D.2 that the closest pole to the real axis has

Im qpole
+ ∼ ∆4/3

E1/3
. (D.7)
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(a) (b)

x
3

/(E

4
)

x
3 / L

2

∆ E −1/34/3

Figure 9. Like figure 8 but using a contour that picks up the poles instead of passing through the

saddle point.

That is, the line of poles in figure 8 begins at the edge of the hatched circle. For x3 in the

range of (D.5), picking up the poles is not so useful. Figure 9 shows the large-∆ analog of

figure 7 for this x3 range. As one looks at poles progressively further from the origin, the

exp(iq ·x) factors leads to suppression, as before, but the GR factor grows exponentially (as

well as oscillates), and this exponential growth dominates the integrand in the unshaded

region of figure 9. So one cannot approximate the integral by the contribution from the

nearest pole, and asymptotic formulas like (D.2) do not apply in this case.

Since the saddle point approximation is controlled and gives a result that is not expo-

nentially suppressed in the range (D.5), whereas the approximations that lead to (D.2) are

not valid there, we conclude that the maximum stopping distance is of order E1/3/∆1/3

and not E1/3/∆4/3.

What happens as one continues to increase x3? For x3 ≫ E1/3/∆1/3, the saddle point

approximation breaks down and figure 9 becomes figure 10. In this case, the calculation is

dominated by the first pole and (D.2) applies. We will not attempt here to calculate the

details of the transitional behavior at x ∼ x3
max.

17

D.2 Quasi-normal modes

To find the poles of GR in the complex q+ plane for large E, we follow the method of ref. [4].

For the sake of simplicity, we will focus on the case of a massive bulk scalar field, whose

equation of motion is (5.7). As discussed in ref. [4], the pole positions at high energy are

determined (up to small corrections) by the nature of the equation of motion for u≪ 1. It

will be more convenient to work with the variable z = 2
√
u instead of u. Writing

φ = z(d−1)/2ψ, (D.8)

17However, for the sake of showing that (D.2) is mathematically consistent with x3

max ∼ E1/3/∆1/3, we

point out that {exp[
2c′

1
(x−x3

max
)

E1/3∆−4/3
] + 1}−1 is an example of a function that is unsuppressed for x ≪ x3

max but

decays like (D.2) for x ≫ x3

max.
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(a) (b)

∆ E −1/34/3

Figure 10. Like figure 9 but for the case x3 ≫ E1/3/∆1/3.

the equation of motion for u≪ 1 becomes the Schrödinger-like equation

− 1

2
∂2

zψ + V (z)ψ = −1

2
q2ψ (D.9)

with potential

V (z) =
1

2

[

−
(z

2

)d
q2 +

(Rm)2 + d2−1
4

z2

]

. (D.10)

Taking the high energy limit and and setting d=4, this is

− 1

2
∂2

zψ + V (z)ψ ≃ −2Eq+ψ (D.11)

with

V (z) ≃ 1

2

[

−
(z

2

)4
E2 +

M2

z2

]

(D.12)

and

M2 ≡ (Rm)2 +
15

4
. (D.13)

Following ref. [4], make the change of variables from u to

U ≡ e−iπ/3E2/3u, (D.14)

which turns the retarded boundary condition at large u into the requirement that ψ be

real and exponentially falling. In terms of z, this redefinition is

Z ≡ e−iπ/6E1/3z. (D.15)

The resulting equation is18

− 1

2
∂2

Zψ + V(Z)ψ =
1

2
aψ (D.16)

18For comparison with ref. [4], one may write a similar equation in terms of U by defining φ = u(d−2)/4φ̄,

giving [−∂2
U + U + (Rm)2+3

4U2 − a
U

]φ̄ = 0 for d = 4. This reduces to (4.66) of ref. [4] for A⊥ in the case
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with

V(Z) =
1

2

[

(

Z

2

)4

+
M2

Z2

]

(D.17)

and a defined in terms of q+ as in ref. [4]:

q+ =
1

4
ei2π/3E−1/3a. (D.18)

Solving (D.16) with the desired boundary conditions is equivalent to setting a to be twice

the bound-state energies associated with the potential V(z). For M ≫ 1, these can be well

approximated by treating V(z) in harmonic-oscillator approximation around its minimum.

The result is
1

2
an =

3

8
M4/3 +

(

n+
1

2

)

√

3

2
M1/3 +O(M−2/3) (D.19)

for n = 0, 1, 2, · · · .19 Using (D.18), we find that the first pole in q+ is a distance of order

∆4/3/E1/3 from the real axis, but the spacing between successive poles in figure 10b is only

of order ∆1/3/E1/3. The specific result for a0 determines

c′1 =

√
3 a0

4∆4/3
≃ 3

√
3

16
(D.20)

for the exponential fall-off (D.2) in the case ∆ ≫ 1.

D.3 Saddle point analysis

In section D.1, we claimed that a large mass m for the bulk field does not qualitatively

change the massless saddle-point picture of figure 6 except inside the (avoidable) hatched

region of figure 8. Here, we will briefly sketch why. For Rm ≫ 1, the condition for the

validity of the WKB approximation20 is satisfied in the small u→ 0 regime u≪ umin as well

as in the oscillatory regime u≫ umin. (The turning point u ∼ umin can be avoided simply

by analytically continuing around it, as in the textbook discussion of WKB in ref. [15]).

So we may use WKB all the way to the boundary u = uB:

GR ∝ eiS ≡ exp

[

i

∫ u

uB

du′ q5(u
′)

]

(D.21)

where, for the sake of simplicity of presentation, we will suppress showing the WKB pref-

actor. For the massive case,

q5(u) =
1

f

√

u2|q|2 − q2

u
− (Rm)2f

4u2
. (D.22)

(Rm)2 = −3, corresponding to ∆ = 3. The formulation in the current paper in terms of Z is more

convenient because the pole locations q+ can be identified as proportional to the bound state energies of

a Schrödinger potential V(Z). Note also that M2 plays a roll analogous to angular momentum squared in

the Schrödinger problem (D.16), with M2/Z2 like a centrifugal potential and the large-M limit analogous

to a large angular momentum limit.
19Here we label the first pole a0. In ref. [4] we instead called it a1.
20Essentially: that the derivative of the WKB exponent does not change significantly over one e-folding

or oscillation.
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The integrand in (D.3) then has exponential dependence

eiq·xGR ∝ eiS ≡ ei(q·x+S), (D.23)

and the saddle point of its integral is determined by

0 =
∂S
∂qµ

=
∂

∂qµ

[

q · x+

∫

dx5 q5(x
5)

]

, (D.24)

which gives

xµ = −
∫

dx5
∂q5
∂qµ

. (D.25)

Together with (D.22), this simply reproduces the particle-based formula (5.3) for the stop-

ping distance. Approximating q− ≃ E and solving for q+ in terms of x3 will then give

the saddle point q⋆
+ for the q+ integration in (D.3). We’ve already discussed the effect of

the mass on the particle stopping formula (5.3) back in section 5.1. Tracing the discussion

of section 5.1 backward, x3 ≪ (E/∆)1/3 corresponds to −q+ given by ǫ ≫ (E/∆4)−1/3,

which corresponds in turn to umin ≪ u⋆. That’s precisely the case where the mass had a

negligible effect on the relationship between x3 and q+. In consequence, the mass m will

not have a significant effect on the determination of the saddle point q∗+ for x3 ≪ (E/∆)1/3.

What about the behavior of the integrand elsewhere along the contour in figure 6? A

discussion of the WKB exponent S of (D.21) is complicated by the divergence (5.10) of the

bulk-to-boundary propagator on the boundary, which shows up as a logarithmic divergence

(∝ lnuB) of the integral in (D.21). We will briefly indicate in section D.4 how one can do

a WKB analysis that avoids this divergence, but such details lose the forest for the trees.

More simply, the lnuB divergence of
∫

du q5 is independent of q+ and so does not affect

the q+ dependence of the integrand in (D.3), and so it will only affect the result by overall

factors. To focus on the question of whether the mass makes a significant effect on the q+
dependence, look at the effect of the mass on ∂S/∂q+ instead of on S. So look at

∂S
∂qµ

= xµ +

∫

dx5
∂q5
∂qµ

. (D.26)

The first term is mass independent, and the second term is just once again our integral for

the particle stopping distance as a function of q+, given by the right-hand side of (5.3),

though with an imaginary part even for real negative q+ due to integrating over u <

umin. However, if |q+| ≫ ∆4/3/E1/3, then the effect of the mass on this integral will have

negligible relative magnitude, just as in the previous discussion concerning the location of

the saddle point.

D.4 Avoiding WKB exponent divergences

Finally, we sketch how one could set up a finite WKB integral if one wanted to carry

through the analysis of this appendix in more detail than we have given. To get the

normalization (5.10) appropriate for the bulk-to-boundary propagator G, we want Φ to

give u
(d−∆)/2
B at u=uB. So

GR ≈ u
(d−∆)/2
B exp

[

i

∫ u

uB

du′q5(u
′)

]

, (D.27)
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where we have again suppressed showing the WKB prefactor, other than the overall power

of uB. We can trade the divergent u
(d−∆)/2
B normalization factor for a finite u(d−∆)/2 by

introducing a compensating change in the exponent:

GR ≈ u(d−∆)/2 exp

[

i

∫ u

uB

du′
(

q5(u
′) − i

(∆ − d)

2u′

)

]

. (D.28)

In the large ∆ limit (required for our WKB analysis in the region u≪ umin), ∆−d ≃ Rm,

and so we will replace the last equation by21

GR ≈ u(d−∆)/2 exp



i

∫ u

uB

du′







1

f(u′)

√

u′2|q|2 − q2

u′
− (Rm)2f(u′)

4u′2
− i

Rm

2u′









 . (D.29)

Now the integral in the exponent is finite if we take the limit uB → 0, and so the ap-

propriate WKB expression (still suppressing showing the original WKB prefactor) can be

approximated as

GR ≈ u(d−∆)/2 exp



i

∫ u

0
du′







1

f(u′)

√

u′2|q|2 − q2

u′
− (Rm)2f(u′)

4u′2
− i

Rm

2u′









 . (D.30)

One may then use this WKB formula to pursue a more detailed analysis. The −iRm/2u′
subtraction in the integral cancels the original integrand for u≪ umin and so keeps the inte-

gral finite. Its contribution for u≫ umin will introduce an additive piece of approximately
i
2Rm lnumin ≃ i

2∆ lnumin in the WKB exponent S. That corresponds to a multiplicative

factor of u
−∆/2
min in the result for eiS and so u−∆

min in |A|2. Using (5.5) for umin and then the

saddle-point value (D.4) for q+, this factor is

u−∆
min ∝ (q2)∆ ∝ (q⋆

+)∆ ∝ (x3)−4∆, (D.31)

which is just the dependence of the power-law tail on ν ≃ ∆ that we previously found

in (5.25).
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